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Abstract Automated detection of visually salient regions is an active area of
research in computer vision. Salient regions can serve as inputs for object detectors as
well as inputs for region-based registration algorithms. In this paper, we consider the
problem of speeding up computationally intensive bottom-up salient region detection
in 3D medical volumes. The method uses the Kadir–Brady formulation of saliency.
We show that in the vicinity of a salient region, entropy is a monotonically increasing
function of the degree of overlap of a candidate window with the salient region. This
allows us to initialize a sparse seed point grid as the set of tentative salient region
centers and iteratively converge to the local entropy maxima, thereby reducing the
computation complexity compared to the Kadir–Brady approach of performing this
computation at every point in the image. We propose two different approaches for
achieving this. The first approach involves evaluating entropy in the four quadrants
around the seed point and iteratively moving in the direction that increases entropy.
The second approach we propose makes use of mean shift tracking framework to
affect entropy maximizing moves. Specifically, we propose the use of uniform pmf
as the target distribution to seek high entropy regions. We demonstrate the use of our
algorithm on medical volumes for left ventricle detection in PET images and tumor
localization in brain MR sequences.
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1 Introduction

Images contain great amounts of information at multiple frequencies, scales, and
spatial locations. Perceiving this information in its entirety is a hard task. The human
brain has evolved neurological processes that selectively focus attention [1] at one
salient frequency, scale, or image location at a time. In order to enable processing of
large amounts of data, it is natural to automate these neurological processes. This has
led to the development of automated visual saliency detection algorithms that esti-
mate salient features in images [2, 3]. Frintrop et al. in [4] showed the higher repeata-
bility and discriminative power of salient regions as compared to ensemble-based
detections, leading to more accurate matching across different scenes for registra-
tion or 3D scene estimation. Object detection and recognition accuracies have been
improved by applying saliency filter as the front end followed by specific descriptors
like SIFT [5] trained on the object class.

Visual saliency, can be thought of as a combination of bottom-up and top-down
attention [6, 7]. Top-down uses the prior knowledge, models, and abstractions [8].
Judd et al. [9] used a combination of low-level local features and semantic infor-
mation from high-level detectors for faces and people. Such top-down approaches
try to predict the way humans perceive the visual world. It is difficult to translate
such an approach to domains like medical image analysis where human attention is
task-dependent. Hence, we primarily concentrate on bottom-up saliency, which pre-
dominantly depends on the conspicuity emerging from contrasting/distinguishing
local image features. For instance, Mahadevan and Vasconselos [10] proposed an
architecture where saliency is proportional to the discriminability of a set of features
that classify center from surround, at that location. They set the size of the center
window to a value comparable to the size of the display items and the surround win-
dow six times the size. This ratio is motivated from the neurological evidences on
natural images. However, such an assumption does not hold in medical images where
the lesions and organs can take diverse range of sizes. Itti and Koch [2] deal with this
problem by estimating the size of salient region by applying difference of Gaussians
on the imagepyramidusingdifferent combinations of standard deviations that capture
different center–surround ratios. This adds an extra dimension of complexity leading
to high compute expense. Le Ngo et al. [11] estimated the conditional entropy of the
center given its surrounds using kd-tree to reduce computation. This method assumes
fixed size windows for defining center and surround region making it intractable for
medical imaging where anatomies could be of various sizes. Also their method is
not scalable for finding salient regions in three-dimensional volumes. Considering
the above-mentioned shortcomings, we adopt the saliency definition proposed by
Kadir and Brady [12]. Specifically, their framework considers different-sized neigh-
borhoods of every point in an image. The maximum of the product of the local
entropy and the rate of the pdf as a function of scale of the neighborhood is then
computed. If this maxima exceeds a pre-decided threshold the point is designated
as a salient point. Subsequently, Expectation–Maximization (EM) based clustering
is employed to coalesce nearby detections. These steps of computing entropy and
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differential pdf at every point in the image at multiple scales are computationally
intensive, especially when considering 3D volumetric imagery common in medical
imaging.

In this paper, we propose an approach for fast salient region detection in 3D
imagery based on the Kadir–Brady approach.We show that in the vicinity of a salient
region, entropy is a monotonically increasing function of the degree of overlap of a
candidate window with the salient region. This allows us to initialize a sparse seed
point grid as the set of tentative salient region centers and iteratively converge to the
local entropy maxima. This reduces the computation considerably compared to the
Kadir–Brady approach of performing this computation at every point in the image.
We propose two different approaches for achieving this. The first approach involves
evaluating entropy in the four quadrants around the seed point and iteratively mov-
ing in the direction that increases entropy. In particular, the effective displacement is
calculated as the summation of four quadrant displacementsweighted by correspond-
ing normalized entropies. The second approach we propose makes use of pixel-level
information in a mean shift tracking framework to effect entropy maximizing moves.
Specifically, we propose the use of uniform pmf as the target distribution to seek high
entropy regions. We also extend this Saliency shift algorithm to capture 3D salient
regions in medical volumes by estimating orientation using 3D extension of ABM-
SOD algorithm [13]. We develop an optimized GPU implementation of the saliency
seek algorithm to enable and accelerate the detection of salient regions. We demon-
strate results for left ventricle detection in PET and for the tumor map in brain MR
sequence.

2 Technical Details

2.1 Motivation

As discussed before, the Kadir–Brady approach considers different-sized neighbor-
hoods of every point in an image. The maximum of the product of the local entropy
and the rate of the pdf as a function of scale of the neighborhood is then computed.
If this maxima exceeds a pre-decided threshold the point is designated as a salient
point. Subsequently, Expectation–Maximization (EM) based clustering is employed
to coalesce nearby detections. The key problem with this approach is the need to
perform this computation at every point in the image which as we show can be quite
unnecessary. To motivate this, consider a toy example consisting of a single salient
region as shown in the Fig. 1.

We assume that the intensity distribution f in the salient region follows a uniform
distribution and the background distribution g follows a delta distribution. Specif-
ically, f ∼ U [0, M] and g ∼ δ(k − l). The choice of these distributions captures
the fact that salient regions have higher entropy as compared to their background in
an exaggerated sense. Now consider a candidate window with an overlap fraction α
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Fig. 1 Toy example to
demonstrate monotonicity of
entropy against percentage
overlap with the salient
region. The figure shows a
target object with a uniform
range of intensities in a
homogeneous background
region. The candidate
window partially overlaps
with the target with the
fraction of overlap given
by α

with the salient region. It is easy to see that the intensity distribution of this window
will be a mixture distribution α f + (1−α)g. The entropy of this mixture distribution
is given by:

H(α) = −
M∑

k=0

(α f + (1 − α)g) log (α f + (1 − α)g) (1)

Substituting the distributions for f and g from above, the entropy evaluates to

H(α) = −(
α

M
+ 1 − α) log (

α

M
+ 1 − α) − α

M − 1

M
log

α

M
(2)

The rate of change of this entropy as a function of α is given by Eq.3

d

dα
(H(α)) = M − 1

M
log

α + M(1 − α)

α
(3)

Note that for α = 0 H(α) = 0 and for α = 1, H(α) = log(M). Also, it can be
seen that the above expression in Eq.3 for the derivative of the entropy is positive, for
α ranging between 0 and 1. This shows that for the simple toy example that we have
considered, that entropy increases monotonically as a function of overlap percentage
in the vicinity of the salient object. In turn, this relationship suggests that, in the
neighborhood of a salient region, an iterative algorithm that increases entropy of the
enclosed region, will increase the overlap percentage. This would result in moving
the candidate window closer to the salient object, obviating the need to perform an
exhaustive entropy computation at every point.

In the following sections, we describe two approaches which use the above idea
to detect salient regions starting from a sparse set of initial seed points. The first
approach involves evaluating entropy in the four quadrants centered around the seed
point and iteratively moving in the direction that increases entropy. In particular, the
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effective displacement is calculated as the summation of four quadrant displacements
weighted by corresponding normalized entropies. The second approach we propose
makes use of mean shift tracking framework to effect entropy maximizing moves.
Specifically, we propose the use of uniform pmf as the target distribution to seek
high entropy regions. We would like to note here that while the above assumptions
made regarding the distributions of the salient region and its background do not
strictly hold for real-world problems, the proposed entropy maximizing algorithms,
nevertheless succeed in converging to the salient regions.

2.2 Quadrant Method

In this algorithm, we initialize a uniformly sampled grid of points on the image. In
order to capture all the entropy maxima, we assume that each salient region has at
least one grid point within its vicinity. Let us denote the locations of these initial
grid points with P̄0

i where the subscript represents the index of the i th point and
the superscript denotes the iteration. Each of the points in the grid represents the
tentative center of a salient region for the corresponding iteration. At every step,
direction of increasing entropy has to be calculated. This is achieved by dividing
the neighborhood of the point considered into four quadrants as shown in the figure
below. In each of the quadrants we take windows W jk(Pt

i ) of all scales in a range
varying over k and compute respective entropies. For each quadrant, the window at
the scale that gives maximum entropy is selected. The effective shift vector ¯δedi is
calculated as the summation of the displacement vectors corresponding to the optimal
scales weighted by their normalized entropies. For more details, see Algorithm 1 and
Fig. 2a.

(a) (b)

Fig. 2 a The figure shows the 4 quadrants for a seed point. It shows the range of scales for entropy
calculation for one of the quadrants. The optimum scales for each of the quadrants are shown in
red with dotted lines representing the displacement vectors. b A sample result obtained using the
quadrant method on a synthetic image figure. As can be seen, the four quadrants localize the target
salient object.
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Once entropy maxima are found we calculate the change in pdf about the optimal
scale. Salient regions are obtained by filtering out the high entropy noise by applying
a lower bound on the pdf difference. A sample result of this approach is shown in
Fig. 2b. The quadrant approach considers variable-sized neighborhoods of a test point
andmakes an entropy-weighted move toward the salient region. The entropy weights
are coarse, however, in the sense that they are computed for each quadrant rather than
pixel level. In the next section, we propose a more fine-grained approach to make
more precise shifts to higher entropy regions. While the idea of using quadrants is
feasible for 2D problems, its extension to 3D volumes is computationally intensive.
Furthermore, it cannot deal with anisotropic salient regions as described in the next
section.

2.3 Saliency Shift

Mean shift tracking [14] is a popular approach for nonrigid object tracking based on
maximizing the Bhattacharyya coefficient between histogram of the target and the
candidate window in successive frames. This maximization is achieved by an itera-
tive procedure which involves computing a weight map over the candidate window
that reflects the likelihood of a pixel belonging to the target histogram. A shift vector
pointing to the centroid of the weight map is then computed and the procedure is
repeated till convergence. We adapt this concept for maximizing entropy. One prob-
lem with this is that unlike the visual tracking problem where the target histogram
refers to a fixed template, we do not have a specific target histogram to work with
for the entropy problem. This can be addressed as follows: We note that among all

Algorithm 1 Quadrant Method
Uniformly sampling the image with an initial grid of points P0

i
Initialize magnitude effective displacement vector ¯δedi to η

for each point Pi do
while ‖ ¯δedi ‖ ≤ η do

for each quadrant j centered at Pi do
for each scale k in the range of scales do

Calculate the entropy εi jk in window W jk centered at point Pt
i

end for
εi j = maxkεi jk � Find the maximum entropy for each quadrant across the range

of scales
kopt i j = argmaxkεi jk � Find the corresponding scale maximizing the entropy

end for
nεi j = εi j∑

j εi j
� Find the normalized entropy for each quadrant

di j = √
2k_opti j � Displacement in each quadrant direction

¯δedi = ∑
j nεi j d̄i j � Calculate effective displacement for the point

t = t + 1
P̄ t+1

i = P̄ t
i + ¯δedi � Change location of point

end while
end for
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discrete distributions, the uniform distribution has highest entropy. In order to adapt
the mean shift tracking procedure to seek entropy maxima, a simple solution is to use
the uniform distribution as the target histogram. We now describe the procedure in
detail. A sparse set of seed points is distributed throughout the image. A search win-
dow Wx is centered around each candidate point x and candidate feature distribution
p of the the window is calculated by aggregating the weighted kernel responses over
all the pixels in it.

pb(Wx ) = CH

∑

s∈W

|H |−1/2K (d(x, s))δ[β(s) − b] (4)

where b is the histogram bin index, β(s) is the bin number in which pixel s lies,
CH is the normalization constant, H denotes the bandwidth matrix, δ is the discrete
Kronecker delta function, and d is the Euclidean distance. As mentioned above, to
move toward higher entropy regions, we define the target distribution to be uni-
form q ∼ U [0, M]. The algorithm estimates the shift by maximizing the similar-
ity between the candidate distribution and uniform pdf, measured in terms of the
Bhattacharyya coefficient given by ρ(x) = ∑M

b=1
√

pb(Wx )qb. Each pixel in the
candidate window is assigned weights given by Eq.5

w(s) =
M∑

1

√
qb/pb(x)δ[β(s) − b] (5)

which in effect assigns higher importance to the candidate pixels belonging to the
target distribution. At each iteration, the next position x of the seed point is calculated
by a kernel K weighted mean of the candidate window pixels.

x =
∑

s∈S −K ′
H (x − s)w(s)s∑

s∈S −K ′
H (x − s)w(s)

(6)

The algorithm increasing the Bhattacharyya coefficient with the uniform distrib-
ution effectively moves the candidate in a higher entropy direction till the maximum
is achieved. All maxima with entropy values above a certain predefined thresh-
old are selected and the change in pdf is calculated at the specified scale. Regions
with high rate of change of pdf are considered to be salient at that scale. We use
above-mentioned framework for identifying 3D salient regions in medical volumes.
Specifically, we use cuboid search windows that are initially distributed randomly
throughout the medical volume. Each of these windows has a scale parameter gen-
erated uniformly in a range constrained by the size of the volume. The size of the
window does not change across iterations, i.e., the bandwidth matrix H remains
the same throughout the mean shift procedure. We use the identity function as our
kernel K (x) = x . This approach worked well for isotropic salient regions as well
as for anisotropic regions aligned with the coordinate axes. However for salient
regions which are anisotropic and oblique, the cuboids lack the flexibility to pre-
cisely encapsulate the salient region resulting in a higher fraction of the background
pixels contributing to the candidate histogram thus reducing its entropy and resulting
in a missed detection as can be seen in Fig. 3.
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Fig. 3 The image on the left shows a 2Dprojection of the output for the saliency detection algorithm
using the conventional mean shift framework, whereas the right image shows the same volume slice
using the ABMSOD framework. The cheek bones are not detected using conventional mean shift
because of the anisotropy

To address this problem,we useAdaptiveBandwidthMean shift forObject Detec-
tion (ABMSOD) algorithm [13]. ABMSOD is a mean shift-based iterative algorithm
used for 2D object detection in computer vision. It simultaneously estimates the
position, scale, and orientation of the target object. The initialization step involves
randomly scattering elliptical candidate windows with varying sizes throughout the
volume. The iterative step of the algorithm consists of two parts. In the first part, new
estimate of the candidate location is calculated using the conventional mean shift
framework. In the second part, we estimate the scale and orientation parameters that
are encoded within the bandwidth matrix of the candidate window. For details of the
implementation see Algorithm2. The optimal bandwidth corresponds to the scale
and orientation that maximizes the Bhattacharyya coefficient at the current posi-
tion. Chen et al. [15] derive the expression for estimating the optimum bandwidth
matrix H .

H =
∑

s∈S(x − s)(x − s)T w(s)∑
s∈S w(s)

(7)

Vaswani et al. [16] validate the expression Eq.7 for higher dimensions and use
the ABMSOD framework for localizing 3D structures in medical volumes. For this,
the feature histogram of the anatomy to be localized is used as the target distribution.
We adopt the same framework for maximizing the entropy using uniform pdf as the
target distribution. However, the algorithm described in Algorithm2 is computation-
ally expensive and is amenable to parallelization using GPUs. The scheme used for
parallelization of our algorithm is described in the next subsection.
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Algorithm 2 Adaptive Bandwidth Mean shift
HQ is the target histogram
for each candidate ellipsoid Wi centered at Pi with a bandwidth matrix Hi do � Perform

iterative search
i ter_cnt ← 1
bhatc f ← 0 � Initialize Bhattacharyya coefficient
max_bhatc f ← 0 � Maximum Bhattacharaya coefficient across all iterations
delta_bhat ← T H RE SH O L D
xopt ← Pi
Hopt ← Hi
while (delta_bhatc f ≤ T H RE SH O L D and i ter_cnt < M AX_I T E R AT I O N S) do �

Termination criteria for the meanshift search
for each voxel v ∈ Wi do

H P(bv) ← H P(β(v)) + c exp −dv

2 � H P is the candidate histogram local to each
thread, β(v) is the bin index for voxel v, and dv is the distance of voxel v from the
center of the ellipsoid

end for
for each voxel v ∈ Wi do

wv ←
√

H Q(β(v))
H Pβ(v)

� Weight is computed for each voxel as the ratio of the bin heights
of the candidate and target histograms.

δxv ← −K ′ H(v)wvsv � δxv denotes the contribution of the voxel v having position
sv to the change in the position of the ellipsoid

xnew ←
∑

∀v δxv∑
∀v −K ′ H(v)wv

� xnew is the new position of candidate ellipsoid and is
computed according to Eq.6

for each voxel v ∈ Wi do
Repeat Steps 11 to Step 14 for the candidate ellipsoid Wi centered at xnew
δHv ← (xnew − sv)(xnew − sv)

T wv � δHv denotes contribution of a voxel to the H
matrix

end for
Hnew ←

∑
∀v δHv∑
∀v wv

� Hnew is the optimum H matrix at the new position of the
candidate ellipsoid and is calculated using Eq.7

bhatc f ← √
(H Q)(H P)

delta_bhatc f ← max_bhatc f − bhatc f
if bhatc f > max_bhatc f then

max_bhatc f ← bhatc f
xopt ← xnew
Hopt ← Hnew

end if
i ter_cnt ← inter_cnt + 1

end for
end while
Pi_opt ← xnew
Hi_opt ← Hnew

end for
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2.4 Parallelization Using GPUs

In this subsection, we describe the scheme used to parallelize the ABMSOD algo-
rithm on a GPU. A similar scheme is used to accelerate the conventional mean shift
algorithm. The GPU is a data-parallel computing device consisting of a set of mul-
tiprocessing units (SM), each of which is a set of SIMD (single instruction multiple
data) processing cores. Each SM has a fixed number of registers and a fast on-chip
memory that is shared among its SIMD cores. The different SMs share a slower off-
chip device memory. Constant memory and texture memory are read-only regions
of the device memory and accesses to these regions are cached. Local and global
memory refers to read–write regions of the device memory and its accesses are not
cached. In the CUDA context, the GPU is called device, whereas the CPU is called
host. Kernel refers to an application that is executed on the GPU. A CUDA ker-
nel is launched on the GPU as a grid of thread blocks. A thread block contains a
fixed number of threads. A thread block is executed on one of the multiprocessors
and multiple thread blocks can be run on the same multiprocessor (For details on
GPU architecture see [17]). The independent exploration of different search paths
originating from each initial random point is distributed amongst thread blocks. In
addition, using the finer level of parallelism offered by threads within a thread block,
we further parallelize operations within each search iteration. We make the threads
in a thread block handle computations for a subset of the voxels from the window.
Computations such as the application of the kernel function, construction of the can-
didate histogram, weight assignment to the voxels, H matrix computation, etc. are
all done in parallel where each thread is responsible for a set of voxels. Summa-
tion of values across threads is performed through parallel reduction. To reduce the
synchronization operations among threads during histogram computation, we allow
each thread to construct a local histogram of the voxels handled by that thread. These
histograms are stored in shared memory for fast access. After all local histograms
are constructed, the histograms are binwise aggregated by the threads in parallel
to form the global candidate histogram. The volume is stored in a 3D texture and
the access to the volume is ensured to be in a way that maximizes spatial locality
and efficiently utilizes the texture cache. Constant variables that target the histogram
are stored in constant memory to utilize the constant cache. Data shared by threads
within a block like the local histograms, etc. are stored in shared memory for fast
retrieval through the broadcast mechanism supported by CUDA. Enough number of
threads are launched to keep all the cores of each streaming multiprocessor (SM)
busy. We try and maximize the occupancy for each SM. The occupancy is, however,
limited by the amount of shared memory and the number of registers available per
SM. We also ensure that there is no register spilling and uncoalesced global memory
accesses.
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3 Experiments

We consider the usage of fast salient region detection in order to speed up medical
workflows. Specifically, we demonstrate the efficacy of our algorithm in estimating
the location and size of left ventricle inmyocardial perfusion imaging and quantifying
brain tumor in MR images acquired by Fluid Attenuated Inversion Recovery Pulse
Sequence (FLAIR).

3.1 LV Detection in Myocardial Perfusion Imaging

Myocardial perfusion imaging is a nuclear medicine procedure that illustrates
the function of the heart muscle (myocardium). The patient is typically adminis-
tered FDG—fluorodeoxyglucose—which has radioactive isotope fluorine that emits
imagable positrons. This technique captures the functional information of the body
as against structural information from CT because the glucose part in the radiophar-
maceutical rushes to regions in the body such as the myocardium which have high
metabolic activity. Physicians require the myocardium dataset in a standard orienta-
tion and scale. Current techniques that estimate cardiac orientation [18] need a good
initial mask around the myocardium otherwise, liver and other nearby organs having
high uptake contribute to a biased estimate of the orientation and size.

Detection of Left ventricle in amedical volume of size 128×128×34 using object
appearance-based classifier at all possible locations and scales [18] is extremely
compute-intensive. Myocardium in PET has increased uptake value because of high
metabolic activity. One way to solve the problem of high computation is using this
high uptake principle. Setting a high SUV threshold gives a rough initial estimate
of the heart location. But we also observed large number of false positives due to
noise, liver, and other organs Table1. Also, such a simple threshold does not give any
estimate of the size in each dimension. Exploring alternatives, we observed that left
ventricular region can be considered salient because of the high entropy and unique-
ness of its pixel intensity distribution compared to its immediate surroundings. In
order to leverage that property, we propose to use 3D saliency seek as a preprocessing
step to identify tentative candidates having left ventricle. The candidates would then
be further processed for location and cardiac orientation estimation. This two-step
approach eliminates false positives, effectively improving the accuracy and reducing

Table 1 Comparison of saliency seek versus intensity-based thresholding

Method Recall Rate (for 20 detections) Final precision (using Hu moments)

Threshold 15/32 = 46% N.A∗

Saliency Seek 29/32 = 91% 25/32

*The intensity thresholding method does not give scale information so it cannot be used for further
Hu-based detection
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compute time. We apply the saliency seek algorithm on an initial sparse seed point
grid distributed uniformly across the volume at multiple initial scales. Once these
points converge to local saliency maxima, we pick the top 20 having high pdf dif-
ference w.r.t surrounding. We observed that one of the top 20 detections is a true
positive in 29 of the 32 volumes dataset giving us a recall rate of 91%.

In order to increase the precision, i.e., to identify the true positives among the
tentative candidates, we used Hu moments [19]. These central moments have been
carefully designed to be invariant to translation, rotation, scale and so they serve as a
good choice for describing local appearance. We evaluated the set of seven invariant
Hu moments on the center slice of a heart template forming a seven-dimensional
training feature vector. For each test volume, we then compute the seven-dimensional
Hu-moment test vectors on five slices about the central slice for each detection. The
detection which minimizes the average Euclidean distance with the template across
the five slices is chosen as the most accurate estimate for that volume. We used a test
dataset of 32 PET volumes having a combination of “rest” and “stress” acquisitions,
each of size 128×128×34. The number of initial seed points was chosen to be 400.
Also the average number of iterations for convergence was 10. We are able to detect
the left ventricle by minimizing the distance in 25 volumes accurately. The average
Jaccard index between ground truths and successful detections is as high as 41.36%.
See Fig. 4. Since we have to search for the ventricle structure throughout the PET

Fig. 4 Results for LV detection on PET volumes. The figures show 2D axial slices for 16 PET
volumes along with the final ellipsoids. The LV is correctly detected in all but two cases
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volume, the algorithm is computationally intensive. To detect the left ventricle in a
reasonable amount of time, we use the Nvidia Tesla C2050 GPU as an accelerator to
speed up the saliency seek algorithm. This GPU has 14 multiprocessors each having
32 cuda cores, resulting in a total of 448 cuda cores. The cores are clocked at 1.15
GHz. Each multiprocessor has 48 KB of shared memory and 32k registers. The GPU
device has 3 GB of device memory. With the parallelization scheme as described in
the previous section, the saliency seek algorithm is able to detect the left ventricle in
4.1 s which is 10 times faster as compared to a sequential implementation.

3.2 Brain Tumor Quantification in MR

In this section, we introduce the concept of user-defined saliency and demonstrate
its accuracy in localizing brain tumor in MR volumes. In brain MRI, the accurate
location of tumor and edema is essential for minimizing the damage to healthy tissue.
In Fluid Attenuated Inversion Recovery (FLAIR) sequences, even subtle lesions
stand out against attenuated csf fluids making this modality conducive for tumor
detection, i.e., lesions can be distinguished based on intensity values alone and can
be considered salient at the right window-level setting. Medical images like CT,
MR, and PET have high dynamic ranges and different tissue types in the body lie in
mutually exclusive intensity ranges [20, 21]. For example in CT, lung tissue ranges
between −400 and −600 hounsfield units, fat tissue between −60 and −100, soft
tissue lies between 40 and 80 HU, and bone from 400 to 1000 [22]. In such cases,
the range of intensities defined by the window-level setting to be used is determined
by anatomy of interest and the application at hand. We consulted a few clinical
experts and found out the specific window-level setting used in FLAIR sequences
to illustrate malignant lesions. Entropy evaluated over complete dynamic range of
MR gave us unwanted regions straddling bone–tissue and air–tissue boundaries. We
noticed much more relevant entropy values when the entropy is computed on the
constrained intensity range coming from tumor specific window level. This new
entropy quantifies the variation in the distribution of pixels falling in the relevant
window level (Fig. 5).

We use the proposed saliency seek algorithm to locate tumors present in suchMR
volumes. However, we incorporated the new entropy evaluation as discussed above,
using only a constrained intensity range. We found empirical evidence showing this
idea of application specific saliency improving the detection accuracy significantly.
We present the preliminary results of our evaluation of this concept on MR datasets.
Brain tumor image data used in this work were obtained from [23]. The challenge
database [23] contains fully anonymized imageswithmanually labeled tumor ground
truth. This dataset consists volumes of size 256 × 256 × 176. We used the saliency
seek algorithm in 15 such volumes and were able to successfully localize the tumor
in all the 15 volumes with an average Jaccard index of 31.66%.
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Fig. 5 The four views (from top to bottom, left to right) represent the 3D, axial, coronal, and
sagittal views of the PET volumes with LV ventricle detected by the final ellipsoid

In order to compare our results with the state of the art, we chose to apply a
modified version of the Itti–Koch approach on axial 2D projections of the brain MR
images. The modified algorithm considers only pixels in the constrained intensity
range in constructing the saliencymaps. In Fig. 6 the first row shows 2D slices from 3
MR volumes with a tumor. The second row isolates the tumor in each of the volume.
The third row consists of the saliency maps obtained using the modified Itti–Koch
algorithm. The fourth row consists of the set of detections obtained from the saliency
seek algorithm. As can be seen from the figure, the Itti–Koch algorithm is not able to
identify the tumor as a salient region in all the cases,whereas saliency seek employing
the metrics of entropy and pdf difference is successfully able to localize the tumor.
Since saliency seek in this case consists of searching for the tumor from numerous
seed points scattered in a large-sized MR volume, the acceleration due to GPUs
becomes important for detection in a reasonable amount of time. The number of
initial seed points in this case was 700 with the average number of iterations 12.
We use the Tesla C2050 GPU as described in Sect. 3.1 and are able to successfully
localize the tumor in 7.8 s. We obtain a speedup of around 80x over the sequential
CPU implementation.
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Fig. 6 The first row shows
2D slices from 3 MR
volumes with a tumor. The
second row isolates the
tumor in each of the volume.
Third row shows the output
of modified Itti–Koch
algorithm. The fourth row
consists of the set of
detections obtained from the
saliency seek algorithm

4 Conclusion

In this paper, we showed that in the vicinity of a salient region, entropy is a monoton-
ically increasing function of the degree of overlap of a candidate window with the
salient region and proposed two iterative approaches to locate salient regions from
a sparse grid of seed points. The first used a four-quadrant approach to find entropy
maximizing moves. The second used mean shift tracking framework using a uniform
target distribution inmean shift iterations for seeking high entropy regions.We devel-
oped an efficient GPU implementation of the proposed algorithm for quickly detect-
ing salient regions in 3D and showed promising results for Myocardium detection in
PET volumes and tumor quantification in brain MR sequences. The framework can
be easily extended for visual tracking by using the converged salient regions from
previous frames. Also incorporating target specific feature information within the
saliency shift iterations would be another interesting extension.
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