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Abstract

We study the problem of decision-making under uncertainty in the bandit setting. This

thesis goes beyond the well-studied multi-armed bandit model to consider structured bandit

settings and their applications. In particular, we learn to make better decisions by leverag-

ing the application-specific problem-structure in the form of features or graph information.

We investigate the use of structured bandits in two practical applications: online recom-

mender systems with an available network of users and viral marketing in social networks.

For each of these applications, we design efficient bandit algorithms and theoretically char-

acterize their performance. We experimentally evaluate the efficiency and effectiveness of

these algorithms on real-world datasets. For applications that require modelling complex

non-linear feature-reward relationships, we propose a bootstrapping approach and estab-

lish theoretical regret bounds for it. Furthermore, we consider the application of multi-class

classification with bandit feedback as a test-bed for evaluating our bootstrapping approach.
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Lay Summary

Making decisions under partial or incomplete information is important in applications rang-

ing from clinical trials to computational advertising and marketing. This work maps modern

applications such as recommender systems and viral marketing in social networks to the

traditional framework for decision-making under uncertainty. It leverages the application-

specific problem-structure in order to design scalable and theoretically sound algorithms.

These algorithms provably learn to make better decisions by repeated interaction with the

system at hand. We also experimentally demonstrate the effectiveness and efficiency of our

approach. Beyond these specific applications, we propose and analyse general algorithms

that enable us to make better decisions in complex scenarios that require the expressivity

of modern machine learning models.
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Chapter 1

Introduction

Numerous applications require making a sequence of decisions under partial or incomplete

information. For example, consider a rover exploring the surface of Mars. Such a rover does

not have complete information about the Mars terrain and needs to make decisions about

its navigation on the planet. In the classic decision-making under uncertainty framework,

the rover is referred to as the agent making decisions, the Mars surface corresponds to

the environment in which decisions are made and the actuators or controls used in the

navigation are termed as actions. Let us assume that the aim of the rover is to find water

on Mars and it needs to make a sequence of decisions about its navigation (for example:

turn left, walk ahead 10 steps) to achieve this. After each decision, the rover receives

feedback from the environment using its sensors; for instance, it can detect if it is in the

vicinity of a potential water source or if it has moved too close to a crater. This interaction

consisting of a decision and its corresponding feedback is referred to as a round. In this

framework, the agent’s decision is associated with a reward model. In our example, the

agent receives a high reward if it finds a potential source of water, detects methane in the

atmosphere or even explores the Mars surface safely. The aim of the agent is to maximize

its cumulative reward across rounds by making decisions based on the history of actions,

feedback and rewards.

An important special case of the above framework is known as the bandit setting and

encompasses applications such as clinical trials (Thompson, 1933), A/B testing (Agarwal

et al., 2016), advertisement placement (Tang et al., 2013), recommender systems (Li et al.,

2010) and network routing (Gai et al., 2012). For instance, in a clinical trial, the aim is

1



to infer the “best” drug (for example, one that has the least side-effects) amongst a set of

available drugs. Let us map a clinical trial to the above framework; the agent corresponds

to the clinician running the trial whereas the environment consists of the set of patients to

which the drugs will be administered. In this case, a patient arrives in each round and the

action consists of administering a particular drug to them. The feedback is the effectiveness

of the drug in curing a patient and what side-effects it leads to. The cumulative reward

across rounds corresponds to the number of patients that were cured without any major

side-effects. The bandit setting and its applications will be the main focus of this thesis

and we describe it in detail in the next section.

1.1 Multi-armed Bandits

The multi-armed bandit (MAB) framework (Lai and Robbins, 1985; Bubeck and Cesa-

Bianchi, 2012; Auer, 2002; Auer et al., 2002) consists of arms that correspond to different

decisions or actions. These may be different treatments in a clinical trial or different

products that can be recommended to a user of an online service. The generic protocol

followed in a MAB framework can be summarized in Algorithm 1. The protocol consists

of T rounds. In each round, the agent uses a bandit algorithm in order to select an arm to

“pull”. Pulling an arm is equivalent to taking the action corresponding to that arm.

Once an arm is pulled, the agent observes a reward and corresponding feedback from

the environment. A key feature of the bandit framework is that we observe the feedback

only for the arm(s) that have been pulled in a given round. Finally, the agent updates

its estimate of the arm’s reward or the action’s utility. An example of a simple bandit

algorithm would be the “greedy” strategy where the agent selects the arm with the highest

reward obtained thus far. In the clinical trial example, the estimated mean reward for a

drug can be the proportion of people that were cured by using that particular drug.

Algorithm 1 Generic Bandit Framework

1: for t = 1 to T do
2: SELECT: Use the bandit algorithm to decide which arm(s) to pull.
3: OBSERVE: Pull the selected arm(s) and observe the reward and associated feed-

back.
4: UPDATE: Update the estimated reward for the arms(s).

As explained before, the aim of the agent is to select and pull the arms that maximize

2



the cumulative reward across the T rounds. We now describe the above protocol in detail.

Depending on the assumptions about the reward, the MAB framework can be classi-

fied into the stochastic (Auer et al., 2002) or adversarial setting (Auer et al., 1995). In

this thesis, we exclusively focus on stochastic multi-armed bandits. In the stochastic set-

ting, each arm has an associated reward distribution and every pull of an arm corresponds

to sampling its corresponding distribution. The mean of this distribution is equal to the

expected reward or utility of pulling that arm. The stochastic MAB setting models ran-

dom independent but identically distributed fluctuations in an arm’s mean reward. For

example, in a clinical trial, the patients are independent of each other and assumed to be

homogeneous. The reward from each pull of an arm (administration of a drug) can thus be

modelled as an independent random variable from an underlying distribution. Similarly,

in a recommender system, the reward for pulling an arm (equivalent to recommending the

corresponding product to a user) is equal to the rating it receives from the user.

Notice that if we had complete information about each arm’s expected utility, the op-

timal decision is to always pull the arm with highest expected utility, thus maximizing the

cumulative reward in expectation. In the absence of this information, the agent learns to

infer the utility of the arms by repeatedly interacting with the system in the trial-and-error

fashion described in Algorithm 1. Note that the MAB framework can be generalized to

account for some auxiliary feedback from the pulled arm. For example, in the recommender

system scenario, a user review can be viewed as such auxiliary feedback. This additional

feedback can be used to better discriminate the “good” (with higher rewards) arms from

the “bad” sub-optimal ones.

The agent’s aim of maximizing the cumulative reward across rounds results in an

exploration-exploitation trade-off. Here, exploration means choosing an arm to gain more

information about it, while exploitation corresponds to choosing the arm with the high-

est reward given the agent’s past observations. For example, in the context of news-

recommendation, exploration seeks to learn more about a user’s preferences on a topic

of news they haven’t encountered before, while exploitation means recommending the news

topic that the system believes (given the user’s past history) that they will like the most.

We now give a formal problem definition of the stochastic MAB problem. We denote

the number of arms by K and index them with j. The expected reward on pulling the

arm j is given by µj . We denote the index of the arm pulled in round t as jt. After

pulling this arm, the agent receives a reward rt sampled from the arm’s underlying reward
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distribution, in particular, E[rt|jt = j] = µj . We define the best or optimal arm as the one

with the highest expected reward. The objective is to maximize the expected cumulative

reward - the reward accumulated across rounds in expectation. An equivalent objective is

to minimize the expected cumulative regret. The cumulative regret R(T ) is the cumulative

loss in the reward across T rounds because of the lack of knowledge of the optimal arm. In

the MAB setting, the expected cumulative regret is defined as follows:

E[R(T )] = T max
j
µj −

T∑
t=1

µjt (1.1)

1.2 Structured Bandits

The MAB framework assumes the arms to be independent of each other and can not share

information between them. This assumption is often too restrictive in practical applications

where the number of arms can be large. For example, in the context of a recommender

system where each arm corresponds to a product that can be recommended, it is useful

to use the feedback for a recommended item to infer the user’s preference on a similar

item (arm) that was not recommended. Consequently, substantial recent research (Dani

et al., 2008; Li et al., 2010; Filippi et al., 2010b; Riquelme et al., 2018) considers additional

information in the form of features for the arms. These features might describe additional

information about a drug’s constituents or can correspond to the description of a product

to be recommended. The similarity between arms can then be captured by their proximity

in the feature space.

Previous work uses a parametric model to map the arms’ features to their expected

rewards. Most of this work (Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010;

Abbasi-Yadkori et al., 2011; Li et al., 2010; Agrawal and Goyal, 2013b) considers the linear

bandit setting. This setting assumes that the expected reward for an arm is given by the

inner product of the arm’s features and an underlying unknown parameter vector. Formally,

if d is the dimensionality of the feature space and xj ∈ Rd are the features corresponding

to arm j, then its expected reward is given as: µj = 〈xj , θ∗〉. Here, θ∗ is the unknown

d-dimensional vector mapping the features to the reward and needs to be inferred from

the past observations. Alternatively, the linear bandit setting corresponds to a Gaussian

reward distribution with mean µj and a known variance σ2. If d = K and the features are
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standard basis vectors, then this framework becomes equivalent to the traditional MAB

setting considered in the previous section.

For linear bandits, the definition of the best-arm and the cumulative regret is the same

as in the MAB case. In particular, the expected cumulative regret E[R(T )] is given as:

E[R(T )] = T max
j

[〈xj , θ∗〉]−
T∑
t=1

〈xjt , θ∗〉 (1.2)

The above setting can be generalized to the contextual bandit setting (Langford and

Zhang, 2008; Li et al., 2017; Chu et al., 2011) in which the arms’ feature vectors can

vary across the rounds. The contextual bandit setting can be used to model the news-

recommendation scenario. The varying features correspond to the content of constantly

changing news articles and the underlying vector θ∗ can be used to model a particular

user’s preferences for different news categories. In this setting, the best-arm also varies

with the round and depends on the set of arm features in that particular round. We refer

to this set of features as context vectors and denote it by Ct = [x1,t,x2,t, . . .xK,t]. Given

this definition, the expected cumulative regret can be given as:

E[R(T )] =
T∑
t=1

[
max
x∈Ct

(〈θ∗,x〉)− 〈θ∗,xjt,t〉

]
(1.3)

Another generalization of the linear bandit setting involves using complex non-linear

mappings in order to model the feature-reward relationship. For example, expressive non-

linear mappings such as neural networks can better capture the relationship between the

expected reward and the content in product descriptions or news articles. Filippi et al.

(2010a) use generalized linear models, McNellis et al. (2017) consider decision trees and

recently, Riquelme et al. (2018) used deep neural networks in order to model the feature-

reward function. In this setting, the expected reward of pulling arm j is given as: µj =

m(xj , θ
∗). Here the function m(·, ·) : Rd × Rd → R is referred to as the model class and

may refer to a neural network or a generalized linear model.

Note that the lower bound on the achievable cumulative regret for the MAB setting

is Ω(
√
KT ) (Auer et al., 2002) whereas it is of the order of Ω(

√
dT ) in the linear bandit

setting (Dani et al., 2008) where d is the feature dimension. In Section 1.3, we survey

bandit algorithms that achieve this lower bound on the regret.
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We now consider the UPDATE step in the generic Algorithm 1. Given that we have

had t rounds of interaction, we need to maintain the estimated mean reward for each

of the arms. In the MAB case, the estimated mean reward for an arm is simply the

average of the rewards observed when that particular arm has been pulled thus far. For

structured bandits, let us first consider the update in the general non-linear case. At round

t, the history of interactions can be described by the set of features (corresponding to

the pulled arms) and the feedback obtained thus far. In particular, let xi be the features

corresponding to the arm pulled at round i and let yi be its corresponding scalar reward1.

Let Dt = {(x1, y1), (x2, y2), . . . , (xt, yt)} be the set of features and rewards obtained until

round t.

Assuming the generative model from features to rewards is parametrized by the vector

θ, the log-likelihood of observing the data Dt is given by Lt(θ) =
∑

i∈Dt log [P(yi|xi, θ)]
where P(yi|xi, θ) is the probability of observing label yi given the feature vector xi, under

the model parameters θ. In the MAB case without features, the probability of observing

yi (for all i ∈ [t]) is simply given by P(yi|θ). The maximum likelihood estimator (MLE)

for the observed data is defined as θ̂t ∈ arg maxθ Lt(θ). If m(·, ·) is the model class, the

estimated mean reward at round t for an arm with feature vector x is given as m(x, θ̂t).

In the linear bandit case, the MLE θ̂t can be computed in a closed form. If Xt is the

t × d matrix of features and yt is the t-dimensional vector of observations obtained until

round t, then θ̂t is given by:

θ̂t = (XT
t Xt)

−1XT
t yt (1.4)

In this case, the estimated mean reward for an arm with features x is equal to the inner

product 〈x, θ̂t〉.
In the next section, we consider the SELECT phase of Algorithm 1 and briefly survey

the bandit algorithms that trade off exploration and exploitation.

1.3 Algorithms

For both the MAB and contextual bandit settings, there are three main strategies for

addressing the exploration-exploitation tradeoff: (i) ε-greedy (Langford and Zhang, 2008)

1We use the notation xi to refer to the features for point i in the history and xj to denote the features
for arm j. These are used mutually exclusively and should be clear from the context.
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(ii) Optimism in the Face of-Uncertainty (Auer, 2002; Abbasi-Yadkori et al., 2011) and (iii)

Thompson sampling (Agrawal and Goyal, 2013b). We briefly describe these algorithms in

the linear bandit setting since MAB is a special case of this setting.

• ε-Greedy explicitly differentiates between the rounds in which to either explore or

exploit. In each round, the algorithm chooses to explore with probability equal to ε.

In an exploration round, the agent chooses an action uniformly at random. While

exploiting, it chooses the action with the maximum estimated mean reward at that

round. This can be expressed formally in the linear bandit setting as follows:

jt ∼ Uniform{1, 2, . . .K} (With probability ε)

jt = arg max
j
〈xj , θ̂t〉 (With probability 1− ε)

If the parameter ε is chosen correctly, ε-Greedy results in a sub-linear but sub-optimal

O(T 2/3) regret bound (Langford, 2007). In practice, it is difficult to set the ε param-

eter and the algorithm’s performance is sensitive to this choice.

• Optimism in the Face of Uncertainty (OFU) based algorithms (Auer et al.,

2002) (Abbasi-Yadkori et al., 2011) address the exploration-exploitation trade-off in

an optimistic fashion by choosing the arm that maximizes the upper confidence bound.

As the name suggests, the upper confidence bound (UCB) is an upper bound on the

expected reward for an arm in a particular round. Mathematically, it can be written

as a non-negative linear combination of the estimated mean reward and its standard

deviation. Formally, in the linear bandit case, the algorithm chooses the arm jt

according to the following rule:

jt = arg max
j

[
〈xj , θ̂t〉+ c ·

√
xT
jM
−1
t xj

]
(1.5)

Here Mt is the d-dimensional covariance matrix equal to XT
t Xt. The first term cor-

responds to the mean reward in round t, the second term is the standard deviation

and c (≥ 0) is the trade-off parameter. Maximizing the first term corresponds to

exploitation whereas the second term is large for arms that haven’t been explored

enough. The trade-off parameter c is determined theoretically and decreases with t,

thus favouring exploitation after all the arms have been explored sufficiently. If c is
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chosen appropriately, UCB has been proved to attain the near-optimal Õ(
√
T ) regret

in the MAB (Auer et al., 2002), linear bandit (Dani et al., 2008; Abbasi-Yadkori

et al., 2011) and generalized linear bandit (Filippi et al., 2010b) settings. Here, the

Õ(·) notation suppresses additional log factors.

• Thompson sampling (Thompson, 1933) is a bandit algorithm popularly used in

practice. The algorithm assumes a prior distribution on the parameters θ and forms

the posterior distribution P(θ|Dt) given the observations until round t. It obtains

a sample θ̃ from the posterior and then chooses the arm maximizing the reward

conditioned on this sample. Formally, Thompson sampling (TS) can be described as

follows:

θ̃ ∼ P(θ|Dt)

jt = arg max
j
〈xj , θ̃〉 (1.6)

In the linear bandit case, both the prior and the posterior distributions are Gaussian

and obtaining the sample θ̃ is computationally efficient. TS uses the variance in the

sampling procedure to induce exploration and has been shown to attain an Õ(d
√
T )

regret in the MAB (Agrawal and Goyal, 2012a), linear (Agrawal and Goyal, 2012b)

and generalized linear (Abeille and Lazaric, 2016) bandit settings.

1.4 Summary of contributions

In this work, we focus on the applications of structured bandits to problems in viral mar-

keting in social networks and recommender systems. Our list of contributions is as follows:

• Chapter 2: We show how the linear bandit framework can be used for viral marketing

in social networks. We focus on the problem of influence maximization (IM) in which

an agent aims to learn the set of “best influencers” in a social network online while

repeatedly interacting with it.

In the first part of this chapter, we study this problem under the popular independent

cascade model of information diffusion in a network. Under a specific feedback model,

we propose and analyse a computationally efficient upper confidence bound -based

algorithm. Our theoretical bounds on the cumulative regret achieve near-optimal
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dependence on the number of interactions and reflect the topology of the network

and the activation probabilities of its edges, thereby giving insights on the problem

complexity. To the best of our knowledge, these are the first such results.

In the second part of this chapter, we propose a novel reparametrization for the

above problem that enables our framework to be agnostic to the underlying model of

diffusion. It also allows us to use a weaker model of feedback from the network, while

retaining the ability to learn in a statistically efficient manner. We design an upper

confidence bound algorithm and theoretically analyse it. Experimentally, we show

that our framework is robust to the underlying diffusion model and can efficiently

learn a near-optimal solution.

• Chapter 3: We show how to leverage the contextual bandit framework and addi-

tional side-information in the form of a social network in an online content-based

recommender system. We exploit a connection to Gaussian Markov Random Fields

in order to make our approach scalable and practically viable for large real-world net-

works. We prove regret bounds for variants of the ε-greedy and Thompson sampling

algorithms. We show the effectiveness of our approach by systematic experiments on

real-world datasets.

• Chapter 4: We propose to use bootstrapping for addressing the exploration-exploitation

trade-off for complex non-linear feature-reward mappings. We first show that the

commonly used non-parametric bootstrapping procedure can be provably inefficient

and establish a near-linear lower bound on the regret incurred by it under the bandit

model with Bernoulli rewards. As an alternative, we propose a weighted bootstrap-

ping (WB) procedure. We show that for both Bernoulli and Gaussian rewards, WB

is mathematically equivalent to Thompson sampling and results in near-optimal re-

gret bounds. These are the first theoretical results for bootstrapping in the context

of bandits. Beyond these special cases, we show that WB leads to better empirical

performance than TS for several reward distributions bounded on [0, 1]. For the con-

textual bandit setting, we give practical guidelines that make bootstrapping simple

and efficient to implement. We show that it results in good empirical performance on

a multi-class classification task with bandit feedback.

Chapters 2- 4 have corresponding appendices that contain full proofs of the theoretical
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results and additional experimental results. In Chapter 5, we discuss some future directions

and extensions of the work in this thesis.
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Chapter 2

Influence Maximization

In this chapter, we consider the application of linear bandits to the problem of influence

maximization in social networks.

2.1 Introduction

Social networks have become increasingly important as media for spreading information,

ideas and influence. For instance, social media campaigns play a significant role in promot-

ing and publicizing movies, concerts or recently released products. These campaigns rely on

viral marketing to spread awareness about a specific product via word-of-mouth propaga-

tion over a social network. There have been numerous studies (Kempe et al., 2003; Easley

and Kleinberg, 2010; Myers and Leskovec, 2012; Gomez-Rodriguez and Schölkopf, 2012;

Gomez Rodriguez et al., 2013) characterizing the factors influencing information diffusion

in such networks.

A particular setting in viral marketing is the influence maximization (IM) (Kempe et al.,

2003; Chen et al., 2013a) problem. In this setting, marketers aim to select a fixed number

of influential users (called seeds) and provide them with free products or discounts. They

assume that these users will influence their neighbours and, transitively, other users in the

social network to adopt the product. This will result in information propagating across

the network as more users adopt or become aware of the product. The marketer has a

budget on the number of free products that can be given. They must thus choose seeds

strategically in order to maximize the influence spread, which is the expected number of
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users that become aware of the product.

Existing solutions (Chen et al., 2009; Leskovec et al., 2007; Goyal et al., 2011b,a; Tang

et al., 2014, 2015b) to the IM problem require as input, the social network and the under-

lying diffusion model that describes how information propagates through the network. The

social network is modelled as a directed graph with the nodes representing users, and the

edges representing relations (e.g., friendships on Facebook, followers on Twitter) between

them. The IM problem has been studied under various probabilistic diffusion models such

as the Independent Cascade (IC) and Linear Threshold (LT) models (Kempe et al., 2003).

These common models are parametrized by influence probabilities that correspond to the

edge weights of the corresponding graph. In other words, each directed edge (i, j) is asso-

ciated with an influence probability that models the strength of influence that user i has

on user j.

Knowledge of the underlying diffusion model and its parameters is essential for the ex-

isting IM algorithms to perform well. For instance, in (Goyal et al., 2011a), the authors

showed that even when the diffusion model is known, correct knowledge of the model pa-

rameters is critical to choosing “good” set of seeds that result in a large spread of influence.

In many practical scenarios, however, the influence probabilities are unknown. Some papers

set these heuristically (Chen et al., 2010; Yadav et al., 2017) while others try to learn these

parameters from past propagation data (Saito et al., 2008; Goyal et al., 2010; Netrapalli and

Sanghavi, 2012). However in practice, such data is difficult to obtain and the large num-

ber of parameters (of the order of network size) makes this learning challenging. Another

challenge is the choice of the model that best captures the characteristics of the underlying

diffusion. In practice, it is not clear how to choose from amongst the increasing number

of plausible diffusion models (Kempe et al., 2003; Gomez Rodriguez et al., 2012; Li et al.,

2013). Furthermore, in (Du et al., 2014), the authors empirically showed that misspecifi-

cation of the diffusion model can lead to choosing highly sub-optimal seeds, consequently

making the IM campaign ineffective.

These concerns motivate the learning framework of IM bandits (Vaswani et al., 2015;

Valko, 2016; Chen et al., 2016a). In this framework, the marketer conducts independent

influence maximization campaigns across multiple rounds. Each round corresponds to a

campaign for the same or similar products. The aim of the marketer is to learn the factors

influencing the diffusion and use this knowledge to design more effective marketing cam-

paigns. For example, this trial and error procedure might reveal that a particular product
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is not popular among certain demographics; the marketer can then correct for this in sub-

sequent IM campaigns. This problem can be mapped to the generic bandit framework of

Algorithm 1 as follows: the agent corresponds to the marketer, the environment to the

network and a possible action corresponds to choosing a set of users as seeds. In each

round, the marketer chooses a seed set (SELECT), receives feedback (OBSERVE) from the

network and utilizes this information to better estimate (UPDATE) the diffusion process.

Depending on the feedback received about the diffusion, IM bandits (IMB) can be

classified as follows: (i) Full-bandit feedback, where only the number of influenced nodes is

observed; (ii) Node semi-bandit feedback, where the identity of influenced nodes is observed;

or (3) Edge semi-bandit feedback, where the identity of influenced edges (edges along which

the information diffused) is also observed. In this work, we will mainly consider the edge

semi-bandit feedback model and a relaxed version of it. We argue that it is reasonable to

obtain such feedback in practical scenarios; for example, it is easy for Facebook to infer

which of your friends influenced you to share a particular article. Similarly, E-commerce

companies can keep track of users that referred a particular product to their peers. In both

these cases, it is possible to trace the precise path along which information diffused.

Similar to the general bandit setting introduced in Chapter 1, the aim of the marketer

is to minimize the loss in the influence spread because of the lack of knowledge about the

diffusion process. Here, exploration consists of choosing seeds that improve the marketer’s

knowledge of the diffusion process; whereas exploitation corresponds to choosing a seed set

that is estimated to have a large expected spread.

From a bandits perspective, IMB combines two main challenges: first, the number of

actions (number of possible seed sets that can be selected) grows exponentially with the

cardinality of the set. Second, we only observe the influenced portion of the network. This

limits the feedback received in each round, making the learning problem difficult. In this

chapter, we address these challenges in two different settings. We first set up the necessary

notation and give a more formal problem definition in Section 2.2.

In Section 2.3, we study the IMB problem under the independent cascade model and

edge semi-bandit feedback. In Section 2.3.4, we identify complexity metrics that capture the

information-theoretic complexity for the IMB problem. We then propose ICLinUCB, a UCB-

like algorithm (Section 2.3.3) suitable for large-scale IM problems and bound its cumulative

regret in Section 2.3.4. Our regret bounds are polynomial in all quantities of interest and

have near-optimal dependence on the number of interactions. They reflect the structure and
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activation probabilities of the network and do not depend on inherently large quantities,

such as the reciprocal of the minimum probability of being influenced (unlike (Chen et al.,

2016a)) or the exponential size of the space of actions. Finally, we evaluate ICLinUCB

on several problems in Section 2.3.5. We perform experiments on simple representative

topologies and empirically show that the regret of ICLinUCB scales as suggested by our

topology-dependent regret bounds. We also show that ICLinUCB with linear generalization

can lead to low regret in real-world online influence maximization problems.

In Section 2.4, we first propose a novel parametrization for the IM problem that enables

our bandit framework to be agnostic to the underlying model of diffusion. This formulation

in Section 2.4.1 lets us relax the requirement for edge semi-bandit feedback to a weaker

notion which we term as pairwise reachability feedback.1 Under this feedback model, we

formulate IMB as a linear bandit problem, propose a scalable LinUCB-based algorithm

(Section 2.4.4) and bound its cumulative regret in Section 2.4.5. We show that our regret

bound has the optimal dependence on the time horizon, is linear in the cardinality of

the seed set, and has a better dependence on the size of the network as compared to the

previous literature. Finally, we give some implementation guidelines in Section 2.4.6. In

Section 2.4.7, we empirically evaluate our proposed algorithm on a real-world network and

show that it is statistically efficient and robust to the underlying diffusion model.

Finally, we survey the related work in Section 2.5 and conclude by giving some directions

for future work in Section 2.6.

2.2 Problem Formulation

Recall that the social network is modelled as directed graph G = (V, E) with the set V of

n = |V| nodes (users), the set E of m = |E| directed edges (user relations) and edge weights

(influence probabilities) given by function p : E → [0, 1]. Throughout this work, we use

p(e) and pu,v interchangeably to refer to the influence probability for the edge e between

nodes u and v. The IM problem is characterized by (G, p, C,D), where C is the collection of

feasible seed sets, and D is the underlying diffusion model. The collection of feasible seed

sets C is determined by a cardinality constraint on the sets and possibly some combinatorial

constraints (e.g. matroid constraints) that rule out some subsets of V. For simplicity, we

consider only the cardinality constraint, implying that C = {S ⊆ V : |S| ≤ K}, for some

1Note that pairwise reachability is still a stronger requirement than node semi-bandit feedback.
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K ≤ n. Since the seed nodes are the source of the diffusion, we alternatively refer to the

“seed set” as the set of “source nodes”.

The diffusion model D specifies the stochastic process under which influence is propa-

gated across the social network once the seed set S is selected. Without loss of generality,

we assume that all stochasticity in D is encoded in a random vector, referred to as the

diffusion random vector. Note that each diffusion instance corresponds to an independent

sample of the diffusion random vector from an underlying probability distribution P specific

to the diffusion model. We denote an instantiation of the diffusion random vector by w

and use D(w) to refer to the corresponding diffusion instance under the model D. Note

that D(w) is deterministic conditioned on w.

The quantity f(S, p) refers to the expected number of nodes influenced by choosing

the seed set S when the influence probabilities are given by the function p. Here, the

expectation is over the possible instantiations of the random diffusion vector. Formally,

f(S, p) ∆
= Ew∼P [f(S,w)] where f(S,w) is a deterministic quantity equal to the number of

influenced nodes under the diffusion D(w).

We now instantiate the above framework for the independent cascade (IC) model that

will be the focus of Section 2.3. For the IC model, at the beginning, all nodes in S are

activated; subsequently, every activated node u can activate its inactive neighbour v with

probability pu,v once, independently of the history of the process. This process continues

until no activations are possible. In this case, the distribution P is parametrized by m

influence probabilities, one for each edge and w is binary and is obtained by independently

sampling a Bernoulli random variable w(e) ∼ Bern (p(e)) for each edge e ∈ E . In this case,

we use w(e) ∈ {0, 1} to refer to the status of edge e in the diffusion instance D(w). A

diffusion instance thus corresponds to a deterministic unweighted graph; with the set of

nodes V and the set of edges {e ∈ E|w(e) = 1}. We say that a node v is reachable from a

node u under w if there is a directed path from u to v in the above deterministic graph. Note

that notion of reachability in the deterministic graph and influence are equivalent for the

IC model. In other words, for a given source node set S ⊆ V and w, we say that node v ∈ V
is influenced if v is reachable from at least one source node in S under the deterministic

graph induced by w. By definition, the nodes in S are always influenced. Similarly, for the

alternate linear threshold model (LT) of diffusion, w is also an m-dimensional vector and

P is parametrized by the influence probabilities. For the LT model, the sum of influence

probabilities corresponding to the incoming edges to any node is upper-bounded by 1. In
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this case, the procedure to obtain a sample w is as follows: for every node, choose one of

its incoming edges with probability equal to the influence probability of that edge. This

procedure results in the corresponding deterministic unweighted graph for the LT model.

Formally, the aim of the IM problem is to find the seed set S that maximizes f(S, p)
subject to the constraint S ∈ C, i.e., to find S∗ ∈ arg maxS∈C f(S, p). Although IM is

an NP-hard problem in general, under common diffusion models such as IC and LT, the

objective function f(S, p) is monotone and submodular in S, and thus, a near-optimal

solution can be computed in polynomial time using the greedy algorithm (Nemhauser et al.,

1978). In this paper, we refer to such an algorithm as an ORACLE to distinguish it from

the learning algorithms discussed in following sections. Let SG = ORACLE(G,K, p) be the

(possibly random) solution of an oracle ORACLE. For any α, γ ∈ [0, 1], we say that ORACLE

is an (α, γ)-approximation oracle for a given (G,K) if for any p, f(SG, p) ≥ γf(S∗, p) with

probability at least α. Notice that this further implies that E [f(SG, p)] ≥ αγf(S∗, p). We

say an oracle is exact if α = γ = 1. For the state of the art IM algorithm (Tang et al.,

2015b), γ = 1− 1
e and α = 1− 1

m .

IMB is also characterized by (G,D,K, p), but p (and possibly the diffusion model D)

is unknown to the agent. The agent interacts with the IMB problem for T rounds. At

each round t = 1, 2, . . . , T , the agent first adaptively chooses a source node set St ⊆ V with

cardinality K based on its prior information and past observations. Then the environment

independently samples a diffusion random vector w ∼ P. Note that the reward in round

t is equal to the influenced nodes in the diffusion and is completely determined by St and

D(w).

The agent’s objective is to maximize the expected cumulative reward or equivalently

minimize the cumulative regret (defined below) over the T steps. We benchmark the per-

formance of an IMB algorithm by comparing its spread against the attainable influence

assuming perfect knowledge of D and p. Since it is NP-hard to compute the optimal seed

set even with perfect knowledge, similar to (Chen et al., 2016b), we measure the perfor-

mance of an IMB algorithm by scaled cumulative regret. Specifically, if St is the seed set

selected by the IM bandit algorithm at round t, for any η ∈ (0, 1), the η-scaled cumulative

regret Rη(T ) in the first T rounds is defined as

Rη(T ) =
T∑
t=1

E [Rηt ] = T · f(S∗)− 1

η
E

[
T∑
t=1

f(St)]

]
. (2.1)
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When η = 1, Rη(n) reduces to the standard expected cumulative regret R(n). In our case,

η = αγ because of the inexact oracle described above.

2.3 IM Bandits under the IC model

In this section, we focus on the IMB problem under the IC model and edge semi-bandit

feedback. We describe the feedback model in Section 2.3.1 and present the algorithm and

its analysis in Sections 2.3.3 and 2.3.4 respectively. We present experimental results in

Section 2.3.5.

2.3.1 Feedback Model

In the edge semi-bandit feedback model, the agent observes the path along which the diffu-

sion has travelled from the source nodes to every activated node in the network. Formally,

for any edge e = (u, v) ∈ E , the agent observes the realization of wt(e) if and only if the

start node u of the directed edge e is influenced under the realization wt .

2.3.2 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient

and deployable learning algorithms, we assume that there exists a linear-generalization

model for the probability weight function p. Specifically, each edge e ∈ E is associated with

a known feature vector xe ∈ <d, where d is the dimension of the feature vector, and there

is an unknown coefficient vector θ∗ ∈ <d such that for all e ∈ E , p(e) is well approximated

by 〈xe, θ∗〉. Formally, we assume that the quantity maxe∈E |p(e)− 〈xe, θ∗〉| is small.

Without loss of generality, we assume that ‖xe‖2 ≤ 1 for all e ∈ E . Moreover, we use

X ∈ <m×d to denote the feature matrix, i.e., the row of X associated with edge e is xT
e.

Note that if the agent does not have sufficient information to construct good features, it

can always choose the näıve feature matrix X = I ∈ <m×m. We refer to the special case

of X = I ∈ <m×m as the tabular case. In the tabular case, we assume no generalization

model across edges.

17



Algorithm 2 ICLinUCB: Independent Cascade LinUCB

Input: graph G, source node set cardinality K, ORACLE, feature vector xe’s, and algo-
rithm parameters σ, c > 0,

Initialization: b0 ← 0 ∈ <d, M0 ← I ∈ <d×d

for t = 1, 2, . . . , T do
1. set θt−1 ← σ−2M−1

t−1bt−1 and the UCBs as

Ut(e)← Proj[0,1]

(
xT
eθt−1 + c

√
xT
eM
−1
t−1xe

)
for all e ∈ E

2. choose St ∈ ORACLE(G,K, Ut), and observe the edge semi-bandit feedback
3. update statistics:

(a) initialize Mt ←Mt−1 and bt ← bt−1

(b) for all observed edges e ∈ E , update Mt ←Mt + σ−2xex
T
e and bt ← bt + xewt(e)

2.3.3 ICLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (ICLinUCB), is detailed in

Algorithm 2. Notice that ICLinUCB represents its past observations as a positive-definite

matrix (Gram matrix ) Mt ∈ <d×d and a vector bt ∈ <d. Specifically, let Xt be a matrix

whose rows are the feature vectors of all the observed edges in the t preceding rounds. Let

Yt be a binary column vector encoding the realizations of these observed edges in the t

rounds. Then Mt = I + σ−2XT
tXt and bt = XT

tYt. Here σ is the standard deviation of the

noise in the observations.

At each round t, ICLinUCB operates in three steps: First, it computes an upper confi-

dence bound Ut(e) for each edge e ∈ E . Note that Proj[0,1](·) projects a real number into

interval [0, 1] to ensure that it is a probability. Second, it chooses a set of source nodes

based on the given ORACLE with Ut as its input set of probabilities. Finally, it receives the

edge semi-bandit feedback and uses it to update Mt and bt.

Note that ICLinUCB is computationally efficient as long as ORACLE is computationally

efficient. Specifically, at each round t, the computational complexities of both Step 1 and 3

of ICLinUCB are O
(
md2

)
. Notice that in a practical implementation, we store M−1

t instead

of Mt. Moreover, Mt ←Mt+σ−2xex
T
e is equivalent to M−1

t ←M−1
t −

M−1
t xexTeM

−1
t

xTeM
−1
t xe+σ2

by the

Sherman-Morrison formula.

It is worth pointing out that in the tabular case, ICLinUCB reduces to the CUCB algorithm

in the previous work(Chen et al., 2013b), in the sense that the confidence radii in ICLinUCB
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are the same as those in CUCB, up to logarithmic factors. That is, CUCB can be viewed as a

special case of ICLinUCB with X = I.

2.3.4 Analysis

In this section, we give a regret bound for ICLinUCB for the case when p(e) = xT
eθ
∗ for all

e ∈ E , i.e., the linear generalization is perfect. Our main contribution is a regret bound that

scales with a new complexity metric, maximum observed relevance, which depends on both

the topology of G and the probability weight function p. We highlight this as most known

results for this problem are worst case, and some of them do not depend on probability

weight function at all.

Complexity metric: Maximum observed relevance

We start by defining some terminology. For given directed graph G = (V, E) and source

node set S ⊆ V, we say an edge e ∈ E is relevant to a node v ∈ V \ S under S if there

exists a path p from a source node s ∈ S to v such that (1) e ∈ p and (2) p does not

contain another source node other than s. Notice that with a given S, whether or not a

node v ∈ V \ S is influenced only depends on the binary weights w on its relevant edges.

For any edge e ∈ E , we define NS,e as the number of nodes in V \ S it is relevant to, and

define PS,e as the conditional probability that e is observed given S,

NS,e
∆
=
∑

v∈V\S 1 {e is relevant to v under S} and PS,e
∆
= P (e is observed | S) . (2.2)

Notice that NS,e only depends on the topology of G, while PS,e depends on both the topology

of G and the probability weight function p. The maximum observed relevance C∗ is defined

as the maximum (over S) square of NS,e’s weighted by PS,e’s,

C∗
∆
= maxS: |S|=K

√∑
e∈E N

2
S,ePS,e. (2.3)

Note that C∗ also depends on both the topology of G and the probabilities p. However, C∗

can be bounded from above only based on the topology of G or the size of the problem, i.e.,

n = |V| and m. Specifically, by defining CG
∆
= maxS: |S|=K

√∑
e∈E N

2
S,e, we have

C∗ ≤ CG = maxS: |S|=K

√∑
e∈E N

2
S,e ≤ (n−K)

√
m = O (n

√
m) = O

(
n2
)
, (2.4)
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(a) (b) (c) (d)

Figure 2.1: a. Bar graph on 8 nodes. b. Star graph on 4 nodes. c. Ray graph on 10
nodes. d. Grid graph on 9 nodes. Each undirected edge denotes two directed
edges in opposite directions.

topology CG (worst-case C∗) Rαγ(T ) for general X Rαγ(T ) for X = I

bar graph O(
√
K) Õ

(
dK
√
T/(αγ)

)
Õ
(
n
√
KT/(αγ)

)
star graph O(n

√
K) Õ

(
dn

3
2

√
KT/(αγ)

)
Õ
(
n2
√
KT/(αγ)

)
ray graph O(n

5
4

√
K) Õ

(
dn

7
4

√
KT/(αγ)

)
Õ
(
n

9
4

√
KT/(αγ)

)
tree graph O(n

3
2 ) Õ

(
dn2
√
T/(αγ)

)
Õ
(
n

5
2

√
T/(αγ)

)
grid graph O(n

3
2 ) Õ

(
dn2
√
T/(αγ)

)
Õ
(
n

5
2

√
T/(αγ)

)
complete graph O(n2) Õ

(
dn3
√
T/(αγ)

)
Õ
(
n4
√
T/(αγ)

)

Table 2.1: CG and worst-case regret bounds for different graph topologies.

where CG is the maximum/worst-case (over p) C∗ for the directed graph G, and the maxi-

mum is obtained by setting p(e) = 1 for all e ∈ E . Since CG is worst-case, it might be very

far away from C∗ if the influence probabilities are small. Indeed, this is what we expect in

typical real-world situations (Goyal et al., 2010). Notice also that if maxe∈E p(e)→ 0, then

PS,e → 0 for all e /∈ E(S) and PS,e = 1 for all e ∈ E(S), where E(S) is the set of edges with

start node in S, hence we have C∗ → C0
G

∆
= maxS: |S|=K

√∑
e∈E(S)N

2
S,e. In particular, if K

is small, C0
G is much less than CG in many topologies. For example, in a complete graph

with K = 1, CG = Θ(n2) while C0
G = Θ(n

3
2 ). Finally, it is worth pointing out that there

exist situations (G, p) such that C∗ = Θ(n2). One such example is when G is a complete

graph with n nodes and p(e) = n/(n+ 1) for all edges e in this graph.

To give more intuition about this quantity, we illustrate how CG , the worst-case C∗,
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varies with four graph topologies in Figure 2.1: bar, star, ray, and grid, as well as two

other topologies: general tree and complete graph. The bar graph (Figure 2.1a) is a graph

where nodes i and i + 1 are connected when i is odd. The star graph (Figure 2.1b) is a

graph where node 1 is central and all remaining nodes i ∈ V \ {1} are connected to it. The

distance between any two of these nodes is 2. The ray graph (Figure 2.1c) is a star graph

with k =
⌈√

n− 1
⌉

arms, where node 1 is central and each arm contains either d(n− 1)/ke
or b(n−1)/kc nodes connected in a line. The distance between any two nodes in this graph

is O(
√
n). The grid graph (Figure 2.1d) is a classical non-tree graph with O(n) edges.

To see how CG varies with the graph topology, we start with the simplified case when

K = |S| = 1. In the bar graph (Figure 2.1a), only one edge is relevant to a node v ∈ V \ S
and all the other edges are not relevant to any nodes. Therefore, CG ≤ 1. In the star

graph (Figure 2.1b), for any s, at most one edge is relevant to at most n − 1 nodes and

the remaining edges are relevant to at most one node. In this case, CG ≤
√
n2 + n =

O(n). In the ray graph (Figure 2.1c), for any s, at most O(
√
n) edges are relevant to

n − 1 nodes and the remaining edges are relevant to at most O(
√
n) nodes. In this case,

CG = O(

√
n

1
2n2 + nn) = O(n

5
4 ). Finally, recall that for all graphs we can bound CG by

O(n
√
m), regardless of K. Hence, for the grid graph (Figure 2.1d) and general tree graph,

CG = O(n
3
2 ) since m = O(n); for the complete graph CG = O(n2) since m = O(n2).

Clearly, CG varies widely with the topology of the graph. The second column of Table 2.1

summarizes how CG varies with the above-mentioned graph topologies for general K = |S|.

Regret guarantees

We obtain the following regret guarantees for ICLinUCB in terms of the complexity metric

C∗.

Theorem 1. Assume that (1) p(e) = xT
eθ
∗ for all e ∈ E and (2) ORACLE is an (α, γ)-

approximation algorithm. Let D be a known upper bound on ‖θ∗‖2, if we apply ICLinUCB

with σ = 1 and

c =

√
d log

(
1 +

Tm

d

)
+ 2 log (T (n+ 1−K)) +D, (2.5)
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then we have

Rαγ(T ) ≤ 2cC∗
αγ

√
dTm log2

(
1 +

Tm

d

)
+ 1 = Õ

(
dC∗
√
mT/(αγ)

)
(2.6)

≤Õ
(
d(n−K)m

√
T/(αγ)

)
. (2.7)

Moreover, if the feature matrix X = I ∈ <m×m (i.e., the tabular case), we have

Rαγ(T ) ≤ 2cC∗
αγ

√
Tm log2 (1 + T ) + 1 = Õ

(
mC∗

√
T/(αγ)

)
(2.8)

≤Õ
(

(n−K)m
3
2

√
T/(αγ)

)
. (2.9)

Please refer to Appendix A.1 for the proof of Theorem 1, that we outline below. We

now briefly comment on the regret bounds in Theorem 1.

Topology-dependent bounds: Since C∗ is topology-dependent, the regret bounds in

Equations 2.6 and 2.8 are also topology-dependent. Table 2.1 summarizes the regret bounds

for each topology2 discussed above. Since the regret bounds in Table 2.1 are the worst-case

regret bounds for a given topology, more general topologies have larger regret bounds. For

instance, the regret bounds for a tree are larger than their counterparts for star and ray,

since star and ray are special cases of a tree. The grid and tree can also be viewed as special

cases of complete graphs by setting p(e) = 0 for some e ∈ E , hence complete graph has

larger regret bounds. As explained earlier, in practice we expect C∗ to be far smaller due

to influence probabilities.

Tighter bounds in tabular case and under exact oracle: Notice that for the tabular

case with feature matrix X = I and d = m, Õ(
√
m) tighter regret bounds are obtained

in Equations 2.8 and 2.9. Also notice that the Õ(1/(αγ)) factor is due to the fact that

ORACLE is an (α, γ)-approximation oracle. If ORACLE solves the IM problem exactly (i.e.,

α = γ = 1), then Rαγ(T ) = R(T ).

Tightness of our regret bounds: First, note that our regret bound in the bar case

with K = 1 matches the regret bound of the classic LinUCB algorithm. Specifically, with

perfect linear generalization, this case is equivalent to a linear bandit problem with n arms

and feature dimension d. From Table 2.1, our regret bound in this case is Õ
(
d
√
T
)

,

2The regret bound for bar graph is based on Theorem 8 in the appendix, which is a stronger version of
Theorem 1 for disconnected graph.
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which matches the known regret bound of LinUCB that can be obtained by the technique

of (Abbasi-Yadkori et al., 2011). Second, we briefly discuss the tightness of the regret

bound in Equation 2.7 for a general graph with n nodes and m edges. Note that the

Õ(
√
T )-dependence on time is near-optimal, and the Õ(d)-dependence on feature dimension

is standard in linear bandits (Abbasi-Yadkori et al., 2011; Wen et al., 2015a), since Õ(
√
d)

results are only known for impractical algorithms. The Õ(n − K) factor is due to the

fact that the reward in this problem is from K to n, rather than from 0 to 1. To explain

the Õ(m) factor in this bound, notice that one Õ(
√
m) factor is due to the fact that at

most Õ(m) edges might be observed at each round (see Theorem 1), and is intrinsic to the

problem similar to combinatorial semi-bandits (Kveton et al., 2015c); another Õ(
√
m) factor

is due to linear generalization (see Lemma 7) and might be removed by better analysis. We

conjecture that our Õ
(
d(n−K)m

√
T/(αγ)

)
regret bound in this case is at most Õ(

√
md)

away from being tight.

Proof sketch

We now outline the proof of Theorem 1. For each round t ≤ T , we define the favourable

event ξt−1 = {|xT
e(θτ−1−θ∗)| ≤ c

√
xT
eM
−1
τ−1xe, ∀e ∈ E , ∀τ ≤ t}, and the unfavourable event

ξt−1 as the complement of ξt−1. If we decompose E[Rαγt ], the (αγ)-scaled expected regret

at round t, over events ξt−1 and ξt−1, and bound Rαγt on event ξt−1 using the näıve bound

Rαγt ≤ n−K, then,

E[Rαγt ] ≤ P (ξt−1)E [Rαγt |ξt−1] + P
(
ξt−1

)
[n−K].

By choosing c as specified by Equation 2.5, we have P
(
ξt−1

)
[n−K] < 1/T (see Lemma 3

in the appendix). On the other hand, notice that by definition of ξt−1, p(e) ≤ Ut(e), ∀e ∈ E
under event ξt−1. Using the monotonicity of the spread f in the probabilities, and the fact

that ORACLE is an (α, γ)-approximation algorithm, we have

E [Rαγt |ξt−1] ≤ E [f(St, Ut)− f(St, p)|ξt−1] /(αγ).

The next observation is that, from the linearity of expectation, the gap f(St, Ut) −
f(St, p) decomposes over nodes v ∈ V \ St. Specifically, for any source node set S ⊆ V, any

probability weight function p : E → [0, 1], and any node v ∈ V, we define f(S, p, v) as the
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probability that node v is influenced if the source node set is S and the probability weight

function is p. Hence, we have

f(St, Ut)− f(St, p) =
∑

v∈V\St [f(St, Ut, v)− f(St, p, v)] .

In the appendix, we show that under any weight function, the diffusion process from the

source node set St to the target node v can be modeled as a Markov chain. Hence, weight

function Ut and p give us two Markov chains with the same state space but different

transition probabilities. f(St, Ut, v) − f(St, p, v) can be recursively bounded based on the

state diagram of the Markov chain under weight function p. With some algebra, Theorem 9

in Appendix A.1 bounds f(St, Ut, v)− f(St, p, v) by the edge-level gap Ut(e)− p(e) on the

observed relevant edges for node v,

f(St, Ut, v)− f(St, p, v) ≤
∑

e∈ESt,v
E [1 {Ot(e)} [Ut(e)− p(e)]|Ht−1,St] , (2.10)

for any t, any set of past observations and St such that ξt−1 holds, and any v ∈ V \ St,
where ESt,v is the set of edges relevant to v and Ot(e) is the event that edge e is observed at

round t. Based on Equation 2.10, we can prove Theorem 1 using the standard linear-bandit

techniques (see Appendix A.1).

2.3.5 Experiments

In this section, we present a synthetic experiment in order to empirically validate our upper

bounds on the regret. Next, we evaluate our algorithm on a real-world Facebook subgraph.

Stars and rays

In the first experiment, we evaluate ICLinUCB on undirected stars and rays (Figure 2.1)

and validate that the regret grows with the number of nodes n and the maximum observed

relevance C∗ as shown in Table 2.1. We focus on the tabular case (X = I) with K = |S| = 1,

where the IM problem can be solved exactly. We vary the number of nodes n; and edge

weight p(e) = ω, which is the same for all edges e. We run ICLinUCB for T = 104 steps and

verify that it converges to the optimal solution in each experiment. We report the T -step

regret of ICLinUCB for 8 ≤ n ≤ 32 in Figure 2.2a. Recall that from Table 2.1, R(T ) = Õ(n2)

for star and R(T ) = Õ(n
9
4 ) for ray.
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(a) Stars and rays: The log-log plots of the T -step regret of
ICLinUCB in two graph topologies after T = 104 steps. We vary
the number of nodes n and the mean edge weight ω.
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Figure 2.2: Experimental results for (a) Representative graph topologies (b) Sub-
graph of the Facebook network. The regret for ray and star graphs scales as
suggested by our theoretical regret bounds. For the Facebook subgraph, we
observe that the linear generalization across edges results in lower cumulative
regret as compared to CUCB that considers each edge independently.

We numerically estimate the growth of regret in n, the exponent of n, in the log-log

space of n and regret. In particular, since log(f(n)) = p log(n) + log(c) for any f(n) = cnp

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For

star graphs with ω = 0.8 and ω = 0.7, our estimated growths are respectively O(n2.040) and

O(n2.056), which are close to the expected Õ(n2). For ray graphs with ω = 0.8 and ω = 0.7,

our estimated growth are respectively O(n2.488) and O(n2.467), which are again close to

the expected Õ(n
9
4 ). This shows that maximum observed relevance C∗ is a reasonable

complexity metric for these two topologies.

Subgraph of the Facebook network

In the second experiment, we demonstrate the potential performance gain of ICLinUCB in

real-world influence maximization semi-bandit problems by exploiting linear generalization

across edges. Specifically, we compare ICLinUCB with CUCB in a subgraph of the Facebook

network from (Leskovec and Krevl, 2014). The subgraph has n = |V| = 327 nodes and

m = |E| = 5038 directed edges. Since the true probability weight function p is not available,

we independently sample p(e)’s from the uniform distribution U(0, 0.1) and treat them as
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ground-truth. Note that this range of probabilities is guided by empirical evidence in (Goyal

et al., 2010; Barbieri et al., 2013). We set T = 5000 and K = 10 in this experiment. For

ICLinUCB, we choose d = 10 and generate edge feature xe’s as follows: we first use the

node2vec algorithm (Grover and Leskovec, 2016) to generate a node feature in <d for

each node v ∈ V; then for each edge e, we generate xe as the element-wise product of

node features of the two nodes connected to e. Note that the linear generalization in this

experiment is imperfect in the sense that minθ∈<d maxe∈E |p(e)− xTe θ| > 0. For both CUCB

and ICLinUCB, we choose ORACLE as the state-of-the-art offline IM algorithm proposed

in (Tang et al., 2014). To compute the cumulative regret, we compare against a fixed seed

set S∗ obtained by using the true set of probabilities as input to the oracle proposed in (Tang

et al., 2014). We average the empirical cumulative regret over 10 independent runs, and

plot the results in Figure 2.2b. The experimental results show that compared with CUCB,

ICLinUCB can significantly reduce the cumulative regret by exploiting linear generalization

across p(e)’s. This shows that the influence probability for an edge depends on its local

graph neighbourhood and that we can use graph representation learning techniques to

exploit this underlying structure in order to learn more efficiently.

2.4 Model-Independent IM Bandits

In the previous section, we tackled the IMB problem under the specific IC model of diffu-

sion. In practical scenarios, it is not clear how to choose a “good” model of diffusion that

explains the observed data. In this section, we develop a model-agnostic solution to the

IMB problem. We first propose a model-independent parametrization and the correspond-

ing surrogate objective in Section 2.4.1. In Section 2.4.2, we describe the feedback model.

We present the algorithm and its analysis in Sections 2.4.4 and 2.4.5 respectively. We de-

scribe the implementation details in Section 2.4.6 and present the experimental results in

Section 2.4.7.

2.4.1 Surrogate Objective

Let us first define some useful notation: we use the indicator 1
(
S, v,D(w)

)
∈ {0, 1} to

denote whether or not the node v is influenced under the seed set S and the particular

realization D(w). For a given (G,D), once the seed set S ⊆ C is chosen, for each v ∈ V, we
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use f(S, v) to denote the probability that node v is influenced under the seed set S,

f(S, v) = Ew

[
1
(
S, v,D(w)

)∣∣S] (2.11)

Note that the expected spread is given as: f(S) =
∑

v∈V f(S, v) and recall that the set

S∗ ⊆ C maximizes it.

We now introduce the notion of pairwise reachability : for every pair of nodes u, v ∈ V, we

define the pairwise reachability qu,v from u to v as the probability that v will be influenced, if

u is the only seed node under graph G and diffusion model D, implying that qu,v = f({u}, v).

Given q, we define the maximal pairwise reachability from the source set S to the target

node v as follows:

f̃(S, v, q) = maxu∈S qu,v (2.12)

We define the surrogate objective function in terms of these maximal pairwise reacha-

bilities as follows:

f̃(S, q) =
∑
v∈V

f̃(S, v, q) (2.13)

Let S̃ be the solution to the following problem:

S̃ ∈ arg maxS∈C f̃(S, q) (2.14)

Note that for all q and irrespective of the diffusion model D, f̃(S, q) is always monotone

and submodular in S (Krause and Golovin, 2012) and can be maximized using the greedy

algorithm in (Nemhauser et al., 1978).

To quantify the quality of the surrogate, we assume that D is any diffusion model

satisfying the following monotonicity assumption:

Assumption 1. The spread f(S, v) is monotone in S, implying that for any v ∈ V and

any subsets S1 ⊆ S2 ⊆ V, f(S1, v) ≤ f(S2, v).

Note that all progressive diffusion models (Kempe et al., 2003; Gomez Rodriguez et al.,

2012; Li et al., 2013) where an influenced user can not become inactive again satisfy As-

sumption 1.

We define the surrogate approximation factor as ρ = f̃(S̃, q)/f(S∗). The next theorem,
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(proved in Appendix A.4) obtains the following upper and lower bounds on ρ:

Theorem 2. For any graph G, seed set S ∈ C, and diffusion model D satisfying Assump-

tion 1,

1 f̃(S, q) ≤ f(S),

2 Furthermore, if f(S) is submodular in S, then 1/K ≤ ρ ≤ 1.

The above theorem implies that for any diffusion model satisfying Assumption 1, max-

imizing f̃(S, q) is equivalent to maximizing a lower-bound on the true spread f(S). For

the common independent cascade and linear threshold models, f(S) is both monotone and

submodular in S, and the approximation factor can be no worse than 1/K. In Section 2.4.7,

we observe that in cases of practical interest, f̃(S, q) is a good approximation to f(S) and

that ρ is typically much larger than 1/K.

In this section, we use ORACLE to refer to the algorithm for solving the maximization

problem in Equation 2.14. Let Ŝ ∆
= ORACLE(G, C, p) be the seed set output by the oracle.

For any α ∈ [0, 1], we say that ORACLE is an α-approximation algorithm if for all q : V×V →
[0, 1], f̃(Ŝ, q) ≥ αf̃(S̃, q). For our particular case, since f̃(S, q) is submodular, the greedy

algorithm gives an α = 1 − 1/e approximation (Nemhauser et al., 1978). Hence, given

the knowledge of q, we can obtain a ρα-approximate solution to the IM problem without

knowledge of the underlying diffusion model D.

2.4.2 Feedback Model

We now describe the IM semi-bandit feedback model referred to as pairwise influence feed-

back. Under this feedback model, at the end of each round t, the agent observes the quantity

1
(
{u}, v,D(wt)

)
for all u ∈ St and all v ∈ V. In other words, they observe whether or not

node v would have been influenced, if the agent had selected {u} as the seed set under the

diffusion instance D(wt). Note that this assumption is strictly weaker than (and is implied

by) the edge semi-bandit feedback model in the previous section: from edge semi-bandit

feedback, we can identify the edges along which the diffusion travelled, and thus, determine

whether a particular source node is responsible for activating a target node. However, from

pairwise feedback, it is impossible to infer a unique edge level feedback.

28



2.4.3 Linear Generalization

The proposed parametrization in terms of reachability probabilities results in O(n2) pa-

rameters that need to be learned. Without any additional assumptions, this becomes in-

tractable for large networks. To develop statistically efficient algorithms for large-scale IM

semi-bandits, we make a linear generalization assumption similar to the previous section.

Specifically, we assume that each node v ∈ V is associated with two vectors of dimension d,

the seed (source) weight vector θ∗v ∈ <d and the target feature vector xv ∈ <d. We assume

that the target feature xv is known, whereas θ∗v is unknown and needs to be learned. The

linear generalization assumption is stated as:

Assumption 2. For all u, v ∈ V, qu,v can be well approximated by the inner product of θ∗u

and xv, i.e.,

qu,v = 〈θ∗u,xv〉
∆
= x>v θ

∗
u

Note that for the tabular case (the case without generalization across qu,v), we can

always choose xv = ev ∈ <n and θ∗u = [qu,1, . . . , qu,n]T , where ev is an n-dimensional

indicator vector with the v-th element equal to 1 and all other elements equal to 0. We

discuss an approach to construct features based on the unweighted graph Laplacian in

Section 2.4.6. We use the matrix X ∈ <d×n to encode the target features. Specifically, for

v = 1, . . . , n, the v-th column of X is set as xv. Note that X = I ∈ <n×n in the tabular

case.

Finally, note that under Assumption 2, estimating the reachability probabilities becomes

equivalent to estimating n (one for each source) d-dimensional weight vectors. This implies

that Assumption 2 reduces the number of parameters to learn from O(n2) to O(dn), and

thus, is important for developing statistically efficient algorithms for large-scale problems.

2.4.4 Algorithm

In this section, we propose a LinUCB-based IM semi-bandit algorithm, called diffusion-

independent LinUCB (DILinUCB), whose pseudocode is in Algorithm 3. As its name sug-

gests, DILinUCB is applicable to IM semi-bandits with any diffusion model D satisfying

Assumption 1. The only requirement to apply DILinUCB is that the IM semi-bandit pro-

vides the pairwise influence feedback described earlier.
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Algorithm 3 Diffusion-Independent LinUCB (DILinUCB)

1: Input: G = (V, E), C, oracle ORACLE, target feature matrix X ∈ Rd×n, algorithm
parameters c, λ, σ > 0

2: Initialize Σu,0 ← λId, bu,0 ← 0, θ̂u,0 ← 0 for all u ∈ V, and UCB qu,v ← 1 for all
u, v ∈ V

3: for t = 1 to T do
4: Choose St ← ORACLE (G, C, q)
5: for u ∈ St do
6: Get pairwise influence feedback yu,t
7: bu,t ← bu,t−1 +Xyu,t
8: Σu,t ← Σu,t−1 + σ−2XXT

9: θ̂u,t ← σ−2Σ−1
u,tbu,t

10: qu,v ← Proj[0,1]

[
〈θ̂u,t,xv〉+ c‖xv‖Σ−1

u,t

]
, ∀v ∈ V

11: for u 6∈ St do
12: bu,t = bu,t−1

13: Σu,t = Σu,t−1

The inputs to DILinUCB include the network topology G, the collection of the feasible

sets C, the optimization algorithm ORACLE, the target feature matrix X, and three algo-

rithm parameters c, λ, σ > 0. The parameter λ is a regularization parameter, whereas σ is

proportional to the noise in the observations and hence controls the learning rate. For each

source node u ∈ V and round t, we define the Gram matrix Σu,t ∈ <d×d, and bu,t ∈ <d as

the vector summarizing the past propagations from u. The vector θ̂u,t is the source weight

estimate for node u at round t. The mean reachability probability from u to v is given by

〈θ̂u,t,xv〉, whereas its variance is given as ‖xv‖Σ−1
u,t

=
√

xTv Σ−1
u,txv. Note that Σu and bu

are sufficient statistics for computing UCB estimates qu,v for all v ∈ V. The parameter c

trades off the mean and the standard deviation in the UCB estimates and thus controls the

“degree of optimism” of the algorithm.

All the Gram matrices are initialized to λId, where Id denotes the d-dimensional identity

matrix whereas the vectors bu,0 and θu,0 are set to d-dimensional all-zeros vectors. At each

round t, DILinUCB first uses the existing UCB estimates to compute the seed set St based on

the given oracle ORACLE (line 4 of Algorithm 3). Then, it observes the pairwise reachability

vector yu,t for all the selected seeds in St. The vector yu,t is an n-dimensional column

vector such that yu,t(v) = 1 ({u}, v,D(wt)) indicating whether node v is reachable from
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the source u at round t. Finally, for each of the K selected seeds u ∈ St, DILinUCB updates

the sufficient statistics (lines 7 and 8 of Algorithm 3) and the UCB estimates (line 10 of

Algorithm 3). Here, Proj[0,1][·] projects a real number onto the [0, 1] interval.

2.4.5 Regret Bound

In this section, we derive a regret bound for DILinUCB, under (1) Assumption 1, (2) perfect

linear generalization i.e. qu,v = 〈θ∗u,xv〉 for all u, v ∈ V, and (3) the assumption that

||xv||2 ≤ 1 for all v ∈ V. Notice that (2) is the standard assumption for linear bandit

analysis (Dani et al., 2008), and (3) can always be satisfied by rescaling the target features.

Our regret bound is stated below:

Theorem 3. For any λ, σ > 0, any feature matrix X, any α-approximation oracle ORACLE,

and any c satisfying

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log (n2T ) +

√
λmax
u∈V
‖θ∗u‖2, (2.15)

if we apply DILinUCB with input (ORACLE, X, c, λ, σ), then its ρα-scaled cumulative regret

is upper-bounded as

Rρα(T ) ≤ 2c

ρα
n

3
2

√
dKT log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (2.16)

For the tabular case X = I, we obtain a tighter bound

Rρα(T ) ≤ 2c

ρα
n

3
2

√
KT log

(
1 + T

λσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (2.17)

Recall that ρ specifies the quality of the surrogate approximation. Notice that if we

choose λ = σ = 1, and choose c such that the inequality in 2.15 is tight, then our regret

bound is Õ(n2d
√
KT/(αρ)) for general feature matrix X, and Õ(n2.5

√
KT/(αρ)) in the

tabular case. Here the Õ hides log factors. We now briefly discuss the tightness of our

regret bounds. First, note that the O(1/ρ) factor is due to the surrogate objective approx-

imation discussed in Section 2.4.1, and the O(1/α) factor is due to the fact that ORACLE is

an α-approximation algorithm. Second, note that the Õ(
√
T )-dependence on time is near-
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optimal, and the Õ(
√
K)-dependence on the cardinality of the seed sets is standard in the

combinatorial semi-bandit literature (Kveton et al., 2015d). Third, for general X, notice

that the Õ(d)-dependence on feature dimension is standard in linear bandit literature (Dani

et al., 2008; Wen et al., 2015b). To explain the Õ(n2) factor in this case, notice that one

O(n) factor is due to the magnitude of the reward (the reward is from 0 to n, rather than 0

to 1), whereas one Õ(
√
n) factor is due to the statistical dependence of the pairwise reach-

abilities. Assuming statistical independence between these reachabilities (similar to Chen

et al. (2016b)), we can shave off this Õ(
√
n) factor. However, this assumption is unrealistic

in practice. Another Õ(
√
n) is due to the fact that we learn one θ∗u for each source node

u (i.e. there is no generalization across the source nodes). Finally, for the tabular case

X = I, the dependence on d no longer exists, but there is another Õ(
√
n) factor due to the

fact that there is no generalization across target nodes.

We conclude this section by sketching the proof for Theorem 3 (the detailed proof is

available in Appendix A.5 and Appendix A.6). We define the “good event” as

F = {|xTv (θ̂u,t−1 − θ∗u)| ≤ c‖xv‖Σ−1
u,t−1

∀u, v ∈ V, t ≤ T},

and the “bad event” F as the complement of F . We then decompose the ρα-scaled regret

Rρα(T ) over F and F , and obtain the following inequality:

Rρα(T ) ≤ 2c

ρα
E

{
T∑
t=1

∑
u∈St

∑
v∈V
‖xv‖Σ−1

u,t−1

∣∣∣∣∣F
}

+
P (F)

ρ
nT,

where P (F) is the probability of F . The regret bounds in Theorem 3 are derived based

on worst-case bounds on
∑T

t=1

∑
u∈St

∑
v∈V ‖xv‖Σ−1

u,t−1
(Appendix A.5.2), and a bound on

P (F) based on the “self-normalized bound for matrix-valued martingales” developed in

Appendix A.6.

2.4.6 Practical Implementation

In this section, we briefly discuss how to implement our proposed algorithm, DILinUCB, in

practical semi-bandit IM problems. Specifically, we will discuss how to construct features

in Section 2.4.6, how to enhance the practical performance of DILinUCB based on Laplacian

regularization in Section 2.4.6, and how to implement DILinUCB efficiently in real-world

problems in Section 2.4.6.
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Target Feature Construction

Although DILinUCB is applicable with any target feature matrix X, in practice, its per-

formance is highly dependent on the “quality” of X. In this subsection, we motivate and

propose a systematic feature construction approach based on the unweighted Laplacian

matrix of the network topology G. For all u ∈ V, let qu ∈ <n be the vector encoding the

reachabilities from the seed u to all the target nodes v ∈ V. Intuitively, qu tends to be a

smooth graph function in the sense that target nodes close to each other (e.g., in the same

community) tend to have similar reachabilities from u. From (Belkin et al., 2006; Valko

et al., 2014), we know that a smooth graph function (in this case, the reachability from a

source) can be expressed as a linear combination of eigenvectors of the weighted Laplacian

of the network. In our case, however, the edge weights correspond to influence probabilities

and are unknown. However, we use the above intuition to construct target features based

on the unweighted Laplacian of G. Specifically, for a given d = 1, 2, . . . , n, we set the feature

matrix X to be the bottom d eigenvectors (associated with the smallest d eigenvalues) of

the unweighted Laplacian of G. Other approaches to construct target features include the

neighbourhood preserving node-level features as described in (Grover and Leskovec, 2016;

Perozzi et al., 2014). We leave the investigation of other feature construction approaches

to future work.

Laplacian Regularization

One limitation of the proposed DILinUCB algorithm is that it does not share information

across the seed nodes u. Specifically, it needs to learn the source node feature θ∗u for

each source node u independently, which might be inefficient for large-scale IM problems.

Similar to target features, the source features also tend to be smooth in the sense that

‖θ∗u1
− θ∗u2

‖ is “small” if nodes u1 and u2 are close to each other in the graph. We use

this idea to design a prior which ties together the source features for different nodes, and

hence transfers information between them. This idea of Laplacian regularization has been

used in multi-task learning (Evgeniou et al., 2005) and for contextual-bandits in (Cesa-

Bianchi et al., 2013; Vaswani et al., 2017b). Specifically, at each round t, we compute θ̂u,t
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by minimizing the following objective:

θ̂u,t = arg min
θu

 t∑
j=1

∑
u∈St

(yu,j −XT θu)2 + λ2

∑
(u1,u2)∈E

||θu1 − θu2 ||22


where λ2 ≥ 0 is the regularization parameter. Further implementation details for this

Laplacian regularization scheme are provided in Appendix A.3.

Computational Complexity

We now characterize the computational complexity of DILinUCB, and discuss how to imple-

ment it efficiently. Note that at each time t, DILinUCB needs to first compute a solution St
based on ORACLE, and then update the UCBs. Since Σu,t is positive semi-definite, the linear

system in line 9 of Algorithm 3 can be solved using conjugate gradient in O(κd2) time, where

κ is the number of conjugate gradient iterations. It is straightforward to see the computa-

tional complexity to update the UCBs is O(Knd2). The computational complexity to com-

pute St is dependent on ORACLE. For the classical setting in which C = {S ⊆ V : |S| ≤ K}
and ORACLE is the greedy algorithm, the computational complexity is O(Kn). To speed this

up, we use the idea of lazy evaluations for submodular maximization proposed in (Minoux,

1978; Leskovec et al., 2007).

2.4.7 Experiments

In this section, we first empirically verify the quality of the surrogate objective and then

evaluate the performance of DILinUCB on a real-world dataset.

Empirical Verification of Surrogate Objective

In this subsection, we empirically verify that the proposed surrogate f̃(S, q) is a good

approximation to the true IM objective f(S). We conduct our tests on random Kronecker

graphs, which are known to capture many properties of real-world social networks (Leskovec

et al., 2010). Specifically, we generate a social network instance (G,D) as follows: we

randomly sample G as a Kronecker graph with n = 256 and sparsity equal to 0.03 (Leskovec

et al., 2005).3 We choose D as the IC model and sample each of its influence probabilities

3Based on the sparsity of typical social networks.
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Figure 2.3: Experimental verification of surrogate objective.

independently from the uniform distribution U(0, 0.1). Note that this range of influence

probabilities is guided by the empirical evidence in (Goyal et al., 2010; Barbieri et al., 2013).

Note that all the results are averaged over 10 randomly generated instances.

We first numerically estimate the pairwise reachabilities q for each of the 10 instances

based on social network simulation. In a simulation, we randomly sample a seed set S
with cardinality K between 1 and 35, and record the pairwise influence indicator yu(v)

from each source u ∈ S to each target node v in this simulation. The reachability qu,v is

estimated by averaging the yu(v) values across 50k such simulations.

Based on the estimated values of q, we compare f̃(S, q) and f(S) as K, the seed set

cardinality, varies from 2 to 35. For each K and each social network instance, we randomly

sample 100 seed sets S with cardinality K. Then, we evaluate f̃(S, q) based on the esti-

mated q; and numerically evaluate f(S) by averaging results of 500 influence simulations

(diffusions). For each K, we average both f(S) and f̃(S, q) across the random seed sets in

each instance as well as across the 10 instances. We plot the average f(S) and f̃(S, q) as a

function of K in Figure 2.3a. The plot shows that f̃(S) is a good lower bound on the true

expected spread f(S), especially for low K.

Finally, we empirically quantify the surrogate approximation factor ρ. As before, we

vary K from 2 to 35 and average across 10 instances. Let α = 1−e−1. For each instance and

each K, we first use the estimated q and the greedy algorithm to find an α-approximation

solution S̃g to the surrogate problem in Equation 2.14. We then use the state-of-the-art IM

35



algorithm (Tang et al., 2014) to compute an α-approximation solution S∗g to the IM problem

maxS f(S). Since f(S∗g ) ≥ αf(S∗) (Nemhauser et al., 1978), UB
∆
= f(S∗g )/α is an upper

bound on f(S∗). From Theorem 2, LB
∆
= f(S∗g )/K ≤ f(S∗)/K is a lower bound on f̃(S̃, q).

We plot the average values (over 10 instances) of f(S∗g ), f̃(S̃g, q), UB and LB against K in

Figure 2.3b. We observe that the difference in spreads does not increase rapidly with K.

Although ρ is lower-bounded with 1
K , in practice for all K ∈ [2, 35], ρ ≥ αf̃(S̃g ,q)

f(S∗g ) ≥ 0.55.

This shows that in practice, our surrogate approximation is reasonable even for large K.

This can be explained as follows: because of the low influence probabilities in real-world

networks, the probability that a node is influenced by a distant (in terms of graph distance)

source node is extremely small and taking the max amongst the source nodes serves as a

good approximation. This justifies the effectiveness of our surrogate approximation for

real-world networks.

Performance of DILinUCB
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Figure 2.4: Comparing DILinUCB and CUCB on the Facebook subgraph with K = 10.

We now demonstrate the performance of variants of the DILinUCB algorithm and com-

pare them with the state of the art. We choose the social network topology G as a subgraph

of the Facebook network available at (Leskovec and Krevl, 2014), which consists of n = 4k

nodes and m = 88k edges. Since the true diffusion model is unavailable, we assume the

diffusion model D is either the independent cascade (IC) model or the linear threshold
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(LT) model, and sample the edge influence probabilities independently from the uniform

distribution U(0, 0.1). We also choose T = 5k rounds.

We compare DILinUCB against the CUCB algorithm (Chen et al., 2016b) in both the

IC model and the LT model, with K = 10. CUCB (referred to as CUCB(K) in plots)

assumes the IC model, edge-level feedback and learns the influence probability for each

edge independently. We demonstrate the performance of three variants of DILinUCB - the

tabular case with X = I, independent estimation for each source node using target features

(Algorithm 3) and Laplacian regularized estimation with target features (Section 2.4.6).

In the subsequent plots, to emphasize the dependence on K and d, these are referred

to as TAB(K), I(K,d) and L(K,d) respectively. We construct features as described in

Section 2.4.6. Similar to spectral clustering (Von Luxburg, 2007), the gap in the eigenvalues

of the unweighted Laplacian can be used to choose the number of eigenvectors d. In our

case, we choose the bottom d = 50 eigenvectors for constructing target features and show

the effect of varying d in the next experiment. Similar to (Gentile et al., 2014), all hyper-

parameters for our algorithm are set using an initial validation set of 500 rounds. The best

validation performance was observed for λ = 10−4 and σ = 1.

We now briefly discuss the performance metrics used in this section. For all S ⊆ V and

all t = 1, 2 . . ., we define rt(S) =
∑

v∈V I (S, v,D(wt)), which is the realized reward at time

t if S is chosen at that time. One performance metric is the per-step reward. Specifically,

in one simulation, the per-step reward at time t is defined as
∑t
s=1 rs
t . Another performance

metric is the cumulative regret. Since it is computationally intractable to derive S∗, our

regret is measured with respect to S∗g , the α-approximation solution. In each simulation,

the cumulative regret at round t is defined as R(t) =
∑t

s=1

[
rs(S∗g )− rs(Ss)

]
. All the

subsequent results are averaged across 5 independent simulations.

Figures 2.4a and 2.4b show the cumulative regret when the underlying diffusion model

is IC and LT, respectively. We have the following observations: (i) As compared to CUCB,

the cumulative regret increases at a slower rate for all variants of DILinUCB, under both the

IC and LT models, and for both the tabular case and the case with features. (ii) Exploiting

target features (linear generalization) in DILinUCB leads to a much smaller cumulative

regret. (iii) CUCB is not robust to model misspecification: it has a near linear cumulative

regret under LT model. (iv) Laplacian regularization has little effect on the cumulative

regret in these two cases. These observations clearly demonstrate the two main advantages

of DILinUCB: it is both statistically efficient and robust to diffusion model misspecification.
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Figure 2.5: Effects of varying d or K.

To explain (iv), we argue that the current combination of T , K, d and n results in sufficient

feedback for independent estimation to perform well and hence it is difficult to observe

any additional benefit of Laplacian regularization. We provide additional evidence for this

argument in the next experiment.

In Figure 2.5a, we quantify the effect of varying d when the underlying diffusion model

is IC and make the following observations: (i) The cumulative regret for both d = 10 and

d = 100 is higher than that for d = 50. (ii) Laplacian regularization leads to observably

lower cumulative regret when d = 100. Observation (iii) implies that d = 10 does not

provide enough expressive power for linear generalization across the nodes of the network,

whereas it is relatively difficult to estimate 100-dimensional θ∗u vectors within 5k rounds.

Observation (iv) implies that tying source node estimates together imposes an additional

bias which becomes important while learning higher dimensional coefficients. This shows

the potential benefit of using Laplacian regularization for larger networks, where we will

need higher d for linear generalization across nodes. We obtain similar results under the

LT model.

In Figures 2.5b and 2.5c, we show the effect of varying K on the per-step reward. We

compare CUCB and the independent version of our algorithm when the underlying model

is IC and LT. We make the following observations: (i) For both IC and LT, the per-step

reward for all methods increases with K. (ii) For the IC model, the per-step reward for

our algorithm is higher than CUCB when K = {5, 10, 20}, but the difference in the two

spreads decreases with K. For K = 50, CUCB outperforms our algorithm. (iii) For the

LT model, the per-step reward of our algorithm is substantially higher than CUCB for all
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K. Observation (i) is readily explained since both IC and LT are progressive models, and

satisfy Assumption 1. To explain (ii), note that CUCB is correctly specified for the IC model.

As K becomes higher, more edges become active and CUCB observes more feedback. It is

thus able to learn more efficiently, leading to a higher per-step reward compared to our

algorithm when K = 50. Observation (iii) again demonstrates that CUCB is not robust to

diffusion model misspecification, while DILinUCB is.

2.5 Related Work

The IMB problem has been studied in several recent papers (Wang and Chen, 2017; Chen

et al., 2016b; Vaswani et al., 2015; Carpentier and Valko, 2016). In (Chen et al., 2016b),

Chen et al studied it under edge semi-bandit feedback and the IC diffusion model. They

formulated it as a combinatorial multi-armed bandit problem and proposed the CUCB al-

gorithm. However, their bounds on the cumulative regret depend on the reciprocal of the

minimum observation probability of the edges and can be exponentially high. For example,

consider a line graph with m edges where all edge weights are 0.5. Then the minimum

observation probability is 2m−1. In contrast, our derived regret bounds are polynomial in

all quantities of interest.

A recent result of Wang and Chen (Wang and Chen, 2017) removes this dependence on

the minimum observation probability in the tabular case. They present a worst-case bound

of Õ(nm
√
T ), which in the case of a complete graph, improves our result by Õ(n). Unlike

us, their analysis does not depend on the structural properties of the network. Moreover,

both Chen et al. (2016a) and Wang and Chen (2017) do not consider generalization across

edges or nodes, and therefore their proposed algorithms are unlikely to be practical for real-

world social networks. Vaswani et al (Vaswani et al., 2015) address the IMB problem under

the more challenging node semi-bandit feedback model but they do not give any theoretical

guarantees. Moreover, all of the above work assumes the independent cascade model of

diffusion. In contrast, we also consider a model-agnostic setting for the IMB problem.

Carpentier and Valko (Carpentier and Valko, 2016) give a minimax optimal algorithm

for IM bandits under a local model of influence where only the immediate neighbours

of a seed node can be influenced. In the related work on networked bandits (Fang and

Tao, 2014), the learner chooses a node and its reward is the sum of the rewards of the

chosen node and its immediate neighbourhood. In (Lei et al., 2015), Lei et alconsider the
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related, but different problem of maximizing the number of unique activated nodes across

multiple rounds. The algorithms do not have theoretical guarantees and do not consider

any generalization model across nodes or edges. Lagrée et al (Lagrée et al., 2017) consider

a persistent extension of IM bandits when some nodes become persistent over the rounds

and no longer yield rewards. Singla et al. (2015) considers the IM setting with additional

observability constraints, where we face a restriction on which nodes we can choose at each

round. This setting is related to the volatile multi-armed bandits where the set of possible

arms changes (Bnaya et al., 2013) across rounds.

Furthermore the IMB problem is also a generalization and extension of recent work

on cascading bandits (Kveton et al., 2015a,b), since cascading bandits can be viewed as

variants of online influence maximization problems with special topologies (chains).

2.6 Conclusion and Future Work

In the first part of this chapter, we studied the IMB problem under the independent cas-

cade model and edge semi-bandit feedback. In the second part, we developed a novel

parametrization for IMB that enables our framework to be agnostic to the underlying

model of diffusion. This parametrization allows us to use a weaker model of feedback from

the network, while retaining the ability to learn in a statistically efficient manner. For

each of these settings, we proposed a UCB-based algorithm, analysed it theoretically and

empirically verified its effectiveness.

Our IMB framework can be easily extended to the contextual bandit setting where the

activation probabilities depend on the context of the product being marketed. In the future,

it would be interesting to experiment with alternate bandit algorithms such Thompson

sampling, and feedback models such as the node semi-bandit feedback in Vaswani et al.

(2015). We also plan to conduct an extensive empirical study to test the effectiveness of

the algorithms proposed in this chapter on large real-world datasets.
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Chapter 3

Content-based Recommendation

In this chapter, we use the contextual bandit framework for content-based recommendation

in the presence of a user-user network.

3.1 Introduction

Let us consider a newly established recommender system that has little or no information

about the preferences of its users. Since it has not collected enough rating data from the

users, it is unable to use traditional collaborative filtering based methods (Su and Khosh-

goftaar, 2009) to infer the users’ preferences in order to make good recommendations. Such

a scenario, known as the cold-start problem in the recommender system (RS) literature, is

especially common for newly formed E-commerce or social media companies. One approach

for addressing this problem is to adopt the bandit framework (Li et al., 2010), wherein the

new system attempts to learn the users’ preferences while simultaneously making recom-

mendations to them.

Let us first map this problem to the generic bandit framework described in Algorithm 1.

In this case, the RS is the agent making decisions about recommendations, the environment

consists of the system’s users and a possible action is recommending an item to a particular

target user. The feedback consists of the rating given by the user to the recommended

product. The agent chooses an item to recommend (SELECT), receives a corresponding

rating from the user (OBSERVE) and revises its estimation of the user’s preferences (UP-

DATE). In this case, exploration consists of recommending items that have not been rated
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or seen by a particular user in order to better learn their preferences. At the same time,

the RS should recommend “relevant” items that will be liked by and elicit higher ratings

from its users and this constitutes exploitation.

Since the number of available items (arms in this case) is large, it is useful to share infor-

mation to quickly infer a user’s preferences for similar items. To model this, we assume that

each item can be described by its content; for example, a set of tags or keywords describing

a news article or a movie. An additional complication in the scenario of personalized news

recommendation or in recommending trending Facebook posts is that the set of available

items is not fixed but changing continuously. To handle these challenges, previous work

in (Li et al., 2010) (Li et al., 2011) makes use of the contextual bandit framework described

in Chapter 1.

However, this framework assumes that users interact with the RS in an isolated man-

ner, when in fact the RS might have an associated social component. This has become

increasingly common and popular sites such as Goodreads, Quora and Facebook are a few

examples where a recommender system has an associated social network of users. Instead of

learning the preferences of the large number of users in isolation, the basic idea is to leverage

the relationships between them in order to facilitate learning with fewer interactions.

A recent approach that leverages a social network of users to improve recommendations

is the gang of bandits (GOB) model (Cesa-Bianchi et al., 2013). In particular, the GOB

model exploits the homophily effect (McPherson et al., 2001) that suggests users with simi-

lar preferences are more likely to form links in a social network. It models the social network

as a graph where the nodes correspond to users and the edges correspond to relationships

(friendship on Facebook or “following” on Twitter). Given this graph, homophily implies

that user preferences vary smoothly across the social graph and tend to be similar for users

connected with each other. This assumption allows us to transfer information between

users implying that we can learn about a user from his or her friends’ ratings. However,

the recommendation algorithm proposed in (Cesa-Bianchi et al., 2013) has a computational

complexity quadratic in the number of nodes and thus can only be used for networks with

a small number of users. Several recent works have tried to improve the scaling of the

GOB model by clustering the users into groups (Gentile et al., 2014; Nguyen and Lauw,

2014), but this approach limits the flexibility of the model and loses the ability to model

individual users’ preferences.

In Section 3.2, we cast the problem in the framework of Gaussian Markov random
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fields (GMRFs). This connection enables us to scale the GOB framework to much larger

graphs, while retaining the ability to model individual users. Specifically, we interpret the

GOB model as the optimization of a Gaussian likelihood on the users’ observed ratings

and interpret the user-user graph as the prior inverse-covariance matrix of a GMRF. From

this perspective, we can efficiently estimate the users’ preferences by performing MAP es-

timation in a GMRF. In Section 3.3, we propose a Thompson sampling algorithm that

exploits the recent sampling-by-perturbation idea from the GMRF literature (Papandreou

and Yuille, 2010) to scale to even larger problems. This idea is fairly general and might

be of independent interest in the efficient implementation of Thompson sampling meth-

ods. We establish regret bounds for Thompson sampling as well as an ε-greedy strategy.

Our theoretical bounds show that using the user-user graph can provably lead to a lower

cumulative regret. Experimental results in Section 3.4 indicate that our methods are as

good as or significantly better than approaches which ignore the graph or those that clus-

ter the nodes. Finally, when the graph of users is not available, we propose a heuristic

for learning the graph and user preferences simultaneously in an alternating minimization

framework detailed in Appendix B. We conclude this chapter by surveying the related work

in Section 3.5 and giving some ideas for future research in Section 3.6.

3.2 Scaling up Gang of Bandits

In this section, we first describe the general GOB framework, then discuss the relationship

to GMRFs, and finally show how this leads to more scalable method. In this chapter, Tr(A)

denotes the trace of matrix A, A⊗B denotes the Kronecker product of matrices A and B,

Id refers to the d-dimensional identity matrix, and vec(A) is the operation of stacking the

columns of a matrix A into a vector.

3.2.1 Gang of Bandits Framework

Recall that in the contextual bandit framework, a set of features Ct = [x1,t,x2,t . . .xK,t]

becomes available in each round t. In the recommendation setting, the set Ct refers to

the features for the available items at round t. These might be features corresponding to

movies released in a particular week, news articles published on a particular day, or trending

stories on Facebook. For ease of notation, when the round is fixed and implied, we use xj

to refer to the feature vector for item j in round t. We denote the number of users by n
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and assume that |Ct| = K for all t. Furthermore, we denote the (unknown) ground-truth

vector of preferences for user i as θ∗i ∈ Rd. The user to whom a recommendation is being

made in round t is referred to as the target user and is denoted by it.
1

Given the target user it, the RS recommends an available item jt ∈ Ct to them. The

user it then provides feedback on the recommended item jt in the form of a rating rit,jt .

Based on this feedback, the estimated preference vector for user it is updated. In this case,

the cumulative regret measures the loss in recommendation performance due to lack of

knowledge of the users’ preferences. In particular, the expected cumulative regret E[R(T )]

after T rounds is given by:

E[R(T )] =
T∑
t=1

[
max
xj∈Ct

〈θ∗it ,xj〉 − 〈θ
∗
it ,xjt,t〉

]
. (3.1)

We make the following assumptions for our analysis:

Assumption 3. The `2-norms of the true preference vectors and item feature vectors are

bounded from above. Without loss of generality we assume that ||xj ||2 ≤ 1 for all j and

||θ∗i ||2 ≤ 1 for all i. Also without loss of generality, we assume that the ratings are in the

range [0, 1].

Assumption 4. The true ratings can be given by a linear model (Li et al., 2010), meaning

that ri,j = 〈θ∗i ,xj〉+ ηi,j for some noise term ηi,j.

These are standard assumptions in the literature. We denote the history of observations

until round t as Ht−1 = {(iτ , jτ , riτ ,jτ )}τ=1,2···t−1 and the union of the set of available items

until round t along with their corresponding features as Ct−1.

Assumption 5. The noise ηi,j is conditionally sub-Gaussian (Agrawal and Goyal, 2012b)(Cesa-

Bianchi et al., 2013) with zero mean and bounded variance, meaning that E[ηi,j | Ct−1,Ht−1] =

0 and that there exists a σ > 0 such that for all γ ∈ R, we have E[exp(γηi,j) | Ht−1,Ct−1] ≤
exp(γ

2σ2

2 ).

This assumption implies that for all i and j, the conditional mean is given by E[ri,j |Ct−1,Ht−1] =

〈θ∗i ,xj〉 and that the conditional variance satisfies V[ri,j |Ct−1,Ht−1] ≤ σ2.

In the GOB framework, we assume access to a (fixed) graph G = (V, E) of users in

the form of a social network (or a “trust graph”). Here, the nodes V correspond to users,

1Throughout the paper, we assume there is only a single target user per round. It is straightforward
extend our results to multiple target users.
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whereas the edges E correspond to friendships or trust relationships. The homophily effect

implies that the true user preferences vary smoothly across the graph, so we expect the

preferences of users connected in the graph to be close to each other. Specifically, we make

the following assumption:

Assumption 6. The true user preferences vary smoothly according to the given graph, in

the sense that we have a small value of the quantity∑
(i1,i2)∈E

||θ∗i1 − θ
∗
i2 ||

2.

In other words, we assume that the graph acts as a correctly-specified prior on the

users’ true preferences. Note that this assumption implies that nodes in dense subgraphs

will have a higher similarity than those in sparse subgraphs (since they will have a larger

number of neighbours).

This assumption can be violated in some datasets. For example, in our experiments we

consider one dataset in which the available graph is imperfect, in that user preferences do not

seem to vary smoothly across all graph edges. Intuitively, we might think that transferring

information between users might be harmful in this case (compared to ignoring the graph

structure). However, in our experiments, we observe that even in these cases, the GOB

approach still lead to results as good as ignoring the graph.

The GOB model in (Cesa-Bianchi et al., 2013) solves a contextual bandit problem

for each user, where the mean vectors in the different problems are related according to

the Laplacian of the graph. If A is the adjacency matrix for the graph G and D is the

diagonal matrix of node degrees in the graph, then the normalized Laplacian L = Id −
D−1/2AD−1/2. In practice, to ensure invertibility, we add the identity matrix In to the

normalized Laplacian.

Let θi,t be the preference vector estimate for user i at round t. Let θt and θ∗ ∈ Rdn

(respectively) be the concatenation of the vectors θi,t and θ∗i across all users. Note that

Assumption 6 implies that the term θT(L ⊗ Id)θ should be small. The GOB model thus

solves the following regression problem to estimate the mean preference vector at round t,

θt = arg min
θ

[ n∑
i=1

∑
k∈Mi,t

(〈θi,xk〉 − ri,k)2 + λθT(L⊗ Id)θ
]
, (3.2)
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where Mi,t is the set of items rated by user i up to round t.

The first term is a data-fitting term and models the observed ratings. The second term is

the Laplacian regularization equal to
∑

(i,j)∈E λ||θi,t− θj,t||22. This term models smoothness

across the graph and λ > 0 is a tunable hyper-parameter that controls the strength of this

regularization. Note that the same objective function has also been explored for graph-

regularized multi-task learning in (Evgeniou and Pontil, 2004).

3.2.2 Connection to GMRFs

Unfortunately, for the approach proposed in (Cesa-Bianchi et al., 2013), solving Equa-

tion 3.2 has a computational complexity of O(d2n2). To solve it more efficiently, we now

show that the above optimization problem can be interpreted as performing MAP estima-

tion in a GMRF. This will allow us to apply the GOB model to much larger datasets, and

lead to an even more scalable algorithm based on Thompson sampling (Section 3.3).

Consider the following generative model for the ratings ri,j and the user preference

vectors θi,

ri,j ∼ N (〈θi,xj〉, σ2), θ ∼ N (0, (λL⊗ Id)−1).

This GMRF model assumes that the ratings ri,j are independent given θi and xj , which

is the standard regression assumption. Under this assumption, the first term in Equa-

tion 3.2 is equal to the negative log-likelihood for all of the observed ratings rt at time t,

logP(rt | θ,xt, σ), up to an additive constant and assuming σ = 1. Similarly, the negative

log-prior P(θ | λ, L) in this model gives the second term in Equation 3.2 (again, up to an

additive constant that does not depend on θ). Thus, by Bayes rule minimizing the objective

in Equation 3.2 is equivalent to maximizing the posterior in this GMRF model.

To characterize the posterior, it is helpful to introduce the notation φi,j ∈ Rdn to

represent the “global” feature vector corresponding to recommending item j to user i. In

particular, let φi,j be the concatenation of n d-dimensional vectors where the ith vector

is equal to xj and the others are zero. The rows of the t × dn dimensional matrix Φt

correspond to these “global” features for all the recommendations made until time t. Under

this notation, the posterior p(θ | rt, θ,Φt) is given by a N (θt,Σ
−1
t ) distribution with Σt =

1
σ2 ΦT

tΦt+λ(L⊗Id) and θt = 1
σ2 Σ−1

t bt with bt = ΦT
t rt. We can view the approach in (Cesa-

Bianchi et al., 2013) as explicitly constructing the dense dn×dn matrix Σ−1
t , leading to an

O(d2n2) memory requirement. A new recommendation at round t is thus equivalent to a
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rank-1 update to Σt, and even with the Sherman-Morrison formula this leads to an O(d2n2)

time requirement in each iteration.

3.2.3 Scalability

Rather than treating Σt as a general matrix, we propose to exploit its structure to scale up

the GOB framework to problems where n is very large. In particular, solving Equation 3.2

corresponds to finding the mean vector of the GMRF, which corresponds to solving the

linear system Σtθ = bt. Since Σt is positive-definite, the linear system can be solved

using conjugate gradient (Hestenes and Stiefel, 1952). Conjugate gradient notably does

not require Σ−1
t , but instead uses matrix-vector products Σtv = (ΦT

tΦt)v + λ(L⊗ Id)v for

vectors v ∈ Rdn. Note that ΦT
tΦt is block diagonal and has only O(nd2) non-zeroes. Hence,

ΦT
tΦtv can be computed in O(nd2) time. For computing (L ⊗ Id)v, we use the fact that

(BT ⊗ A)v = vec(AV B), where V is an n × d matrix such that vec(V ) = v. This implies

(L ⊗ Id)v can be written as V LT which can be computed in O(d · nnz(L)) time, where

nnz(L) is the number of non-zeroes in L and is equal to the number of edges in the graph.

This approach thus has a memory requirement of O(nd2 + nnz(L)) and a time complexity

of O(κ(nd2 +d ·nnz(L))) per mean estimation. Here, κ is the number of conjugate gradient

iterations which depends on the condition number of the matrix (we used warm-starting by

the solution in the previous round for our experiments, which meant that κ = 5 was enough

for convergence). Thus, the algorithm scales linearly in n and in the number of edges of

the network (which tends to be linear in n due to the sparsity of social relationships). This

enables us to scale to large networks, of the order of 50K nodes and millions of edges.

3.3 Alternative Bandit Algorithms

The above structure can be used to speed up the mean estimation for any algorithm in

the GOB framework. However, the LINUCB-like algorithm in (Cesa-Bianchi et al., 2013)

needs to estimate the confidence intervals
√
φT
i,jΣ

−1
t φi,j for each available item j in the set

Ct. Using the above scalability idea, estimating these requires O(|Ct|κ(nd2 + d · nnz(L)))

time since we need solve the linear system with |Ct| right-hand sides, one for each available

item. But this becomes impractical when the number of available items in each round is

large.

We propose two approaches for mitigating this: first, in this section we adapt the Epoch-
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greedy (Langford and Zhang, 2008) algorithm to the GOB framework. We also propose a

GOB variant of Thompson sampling (Li et al., 2010) and further exploit the connection to

GMRFs to scale it to even larger problems by using the recent sampling-by-perturbation

trick (Papandreou and Yuille, 2010). This GMRF connection and scalability trick might

be of independent interest for Thompson sampling in other large-scale problems.

3.3.1 Epoch-Greedy

Epoch-greedy (Langford and Zhang, 2008) is a variant of the popular ε-greedy algorithm

that explicitly differentiates between exploration and exploitation rounds. In this case, an

“exploration” round consists of recommending a random item from Ct to the target user

it. The feedback from these exploration rounds is used to learn θ∗. An “exploitation”

round consists of choosing the available item ĵt which maximizes the expected rating, jt =

arg maxj∈Ct θ̂
T

tφit,j . Epoch-greedy proceeds in epochs, where each epoch q consists of 1

exploration round and sq exploitation rounds.

Scalability: The time complexity for Epoch-Greedy is dominated by the exploitation

rounds that require computing the mean and estimating the expected rating for all the

available items. Given the mean vector, this estimation takes O(d|Ct|) time. The overall

time complexity per exploitation round is thus O(κ(nd2 + d · nnz(L)) + d|Ct|).
Regret: We assume that we incur a maximum regret of 1 in an exploration round,

whereas the regret incurred in an exploitation round depends on how well we have learned

θ∗. The attainable regret is thus proportional to the generalization error for the class

of hypothesis functions mapping the context vector to an expected rating (Langford and

Zhang, 2008). In our case, the class of hypotheses is a set of linear functions (one for each

user) with Laplacian regularization. We characterize the generalization error in the GOB

framework in terms of its Rademacher complexity (Maurer, 2006), and use this to bound

the expected regret. For ease of exposition in the regret bounds, we suppress the factors

that don’t depend on either n, L, λ or T . The complete bound is stated in Appendix B.

Theorem 4. Under the additional assumption that (a) ||θt||2 ≤ 1 for all rounds t and that

(b) the regularization parameter λ is a constant that can not depend on the horizon T , the

expected regret obtained by epoch-greedy in the GOB framework is given as:

R(T ) = Õ

(
n1/3

(
Tr(L−1)

λn

) 1
3

T
2
3

)
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Proof Sketch. Let H be the class of valid hypotheses of linear functions (the preference

vector for each user i) coupled with Laplacian regularization (because of the network struc-

ture). Let Err(q,H) be the generalization error for H after obtaining q unbiased samples

in the exploration rounds. We adapt Corollary 3.1 from (Langford and Zhang, 2008) to our

context:

Lemma 1. If sq =

⌊
1

Err(q,H)

⌋
and QT is the smallest Q such that Q +

∑Q
q=1 sq ≥ T , the

regret obtained by Epoch-Greedy can be bounded as R(T ) ≤ 2QT .

We use the result in (Maurer, 2006) to bound the generalization error of our class of

hypotheses in terms of its empirical Rademacher complexity R̂nq (H). With probability 1−δ,

Err(q,H) ≤ R̂nq (H) +

√
9 ln(2/δ)

2q
. (3.3)

Using Theorem 2 in (Maurer, 2006) and Theorem 12 from (Bartlett and Mendelson, 2003),

we obtain

R̂nq (H) ≤ 2
√
q

√
12Tr(L−1)

λ
. (3.4)

Using (3.3) and (3.4) we obtain

Err(q,H) ≤

[
2
√

12Tr(L−1)/λ+

√
9 ln(2/δ)

2

]
√
q

. (3.5)

The theorem follows from (3.5) along with Lemma 1.

Note that this theorem assumes that preference vectors θ are smooth according to the

given graph structure. The effect of the graph in the regret bound is reflected through

the term Tr(L−1). For a connected graph, we have the following upper-bound Tr(L−1)
n ≤

(1−1/n)
ν2

+ 1
n (Maurer, 2006). Here, ν2 is the second smallest eigenvalue of the Laplacian.

The value ν2 represents the algebraic connectivity of the graph (Fiedler, 1973). For a more

connected graph, ν2 is higher, the value of Tr(L−1)
n is lower, resulting in a smaller regret.

Note that although this result leads to a sub-optimal dependence on T (T
2
3 instead of T

1
2 ),
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our experiments incorporate a small modification that gives similar performance to the

more-expensive algorithm in (Cesa-Bianchi et al., 2013).

3.3.2 Thompson sampling

A common alternative to LINUCB and Epoch-Greedy is Thompson sampling (TS). In this

case, each iteration TS uses a sample θ̃t from the posterior distribution at round t, θ̃t ∼
N (θt,Σ

−1
t ). It then selects the item based on the obtained sample, jt = arg maxj∈Ct θ̃

T

tφit,j .

We show below that the GMRF connection makes TS scalable, but unlike Epoch-Greedy

it also achieves the optimal regret.

Scalability: The conventional approach for sampling from a multivariate Gaussian

posterior involves forming the Cholesky factorization of the posterior covariance matrix.

But in the GOB model the posterior covariance matrix is a dn-dimensional matrix where the

fill-in from the Cholesky factorization can lead to a computational complexity ofO(d2n2). In

order to implement Thompson sampling for large networks, we adapt the recent sampling-

by-perturbation approach (Papandreou and Yuille, 2010) to our setting, and this allows

us to sample from a Gaussian prior and then solve a linear system to sample from the

posterior.

Let θ̃0 be a sample from the prior distribution and let r̃t be the perturbed (with standard

normal noise) rating vector at round t, meaning that r̃t = rt + yt for yt ∼ N (0, It). In

order to obtain a sample θ̃t from the posterior, we can solve the linear system

Σtθ̃t = (L⊗ Id)θ̃0 + ΦT
t r̃t. (3.6)

Let S be the Cholesky factor of L so that L = SST . Note that L⊗ Id = (S ⊗ Id)(S ⊗ Id)T .

If z ∼ N (0, Idn), we can obtain a sample from the prior by solving (S ⊗ Id)θ̃0 = z. Since

S tends to be sparse (using for example (Davis, 2005; Kyng and Sachdeva, 2016)), this

equation can be solved efficiently using conjugate gradient. We can pre-compute and store

S and thus obtain a sample from the prior in timeO(d·nnz(L)). Using that ΦT
t r̃t = bt+ΦT

t yt

in (3.6) and simplifying we obtain

Σtθ̃t = (L⊗ Id)θ̃0 + bt + ΦT
t yt (3.7)

As before, this system can be solved efficiently using conjugate gradient. Note that solv-
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ing (3.7) results in an exact sample from the dn-dimensional posterior. Computing ΦT
t yt

has a time complexity of O(dt). Thus, this approach is faster than the original GOB frame-

work whenever t < dn2. Since we focus on the case of large graphs, this condition will tend

to hold in our setting.

We now describe an alternative method for constructing the right side of Equation 3.7

that doesn’t depend on t. Observe that computing ΦT
t yt is equivalent to sampling from the

distribution N (0,ΦT
t Φt). To sample from this distribution, we maintain the Cholesky factor

Pt of ΦT
t Φt. Recall that the matrix ΦT

t Φt is block diagonal (one block for every user) for

all rounds t. Hence, its Cholesky factor Pt also has a block diagonal structure and requires

O(nd2) storage. In each round, we make a recommendation to a single user and thus make

a rank-1 update to only one d × d block of Pt. This is an order O(d2) operation. Once

we have an updated Pt, sampling from N (0,ΦT
t Φt) and constructing the right side of (3.7)

is an O(nd2) operation. The per-round computational complexity for our TS approach is

thus O(min{nd2, dt} + d · nnz(L)) for forming the right side in (3.7), O(nd2 + d · nnz(L))

for solving the linear system in (3.7) as well as for computing the mean, and O(d · |Ct|) for

selecting the item. Thus, our proposed approach has a complexity linear in the number of

nodes and edges and can scale to large networks.

Regret: To analyze the regret with TS, observe that TS in the GOB framework is

equivalent to solving a single dn-dimensional contextual bandit problem, but with a mod-

ified prior covariance equal to (λL ⊗ Id)−1 instead of Idn. We obtain the result below by

following a similar argument to Theorem 1 in (Agrawal and Goyal, 2012b). The main chal-

lenge in the proof is to make use of the available graph to bound the variance of the arms.

We first state the result and then sketch the main differences from the original proof.

Theorem 5. Under the following additional technical assumptions: (a) log(K) < (dn −
1) ln(2), (b) λ < dn, and (c) log

(
3+T/λdn

δ

)
≤ log(KT ) log(T/δ), with probability 1− δ, the

regret obtained by Thompson Sampling in the GOB framework is given as:

R(T ) = Õ

(
dn
√
T√
λ

√
log

(
3 Tr(L−1)

n
+

Tr(L−1)T

λdn2σ2

))

Proof Sketch. To make the notation cleaner, for the round t and target user it under con-

sideration, we use j to index the available items. Let the index of the optimal item at

51



round t be j∗t whereas the index of the item chosen by our algorithm is denoted jt. Let

st(j) be the standard deviation in the estimated rating of item j at round t. It is given as

st(j) =
√
φT

jΣ−1
t−1φj . Further, let lt =

√
dn log

(
3+t/λdn

δ

)
+
√

3λ. Let Eµ(t) be the event

such that for all j,

Eµ(t) : |〈θt,φj〉 − 〈θ
∗,φj〉| ≤ ltst(j)

We first prove that, for δ ∈ (0, 1), p(Eµ(t)) ≥ 1− δ.
Define gt =

√
4 log(tK)ρt + lt, where ρt =

√
9d log

(
t
δ

)
. Let γ = 1

4e
√
π

. Given that

the event Eµ(t) holds with high probability, we follow an argument similar to Lemma 4

of (Agrawal and Goyal, 2012b) and obtain the following bound:

R(T ) ≤ 3gT
γ

T∑
t=1

st(jt) +
2gT
γ

T∑
t=1

1

t2
+

6gT
γ

√
2T ln 2/δ (3.8)

To bound the variance of the selected items,
∑T

t=1 st(jt), we extend the analysis in (Dani

et al., 2008; Wen et al., 2015b) to include the prior covariance term. We thus obtain the

following inequality:

T∑
t=1

st(jt) ≤
√
dnT ×

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)

where C = 1

λ log
(

1+ 1
λσ2

) . Substituting this into (3.8) completes the proof.

Note that this theorem assumes that preference vectors θ are smooth according to

the given graph structure, implying that the Laplacian term serves as a correctly speci-

fied prior. Also, observe that since n is large in our case, assumption (a) for the above

theorem is reasonable. Assumptions (b) and (c) define the upper and lower bounds on

the regularization parameter λ. Similar to Epoch-greedy, transferring information across

the graph reduces the regret by a factor dependent on Tr(L−1). Note that compared to

epoch-greedy, the regret bound for Thompson sampling has a worse dependence on n, but

its Õ(
√
T ) dependence on T is optimal. If L = Idn, we match the Õ(dn

√
T ) regret bound

for a dn-dimensional contextual bandit problem (Abbasi-Yadkori et al., 2011). Note that

we have a dependence on d and n similar to the original GOB paper (Cesa-Bianchi et al.,
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2013) and that this method performs similarly in practice in terms of regret. However, as

will see, our algorithm is much faster.

3.4 Experiments

3.4.1 Experimental Setup

Data: We first test the scalability of various algorithms using synthetic data and then

evaluate their regret performance on two real datasets. For synthetic data we generate

random d-dimensional context vectors and ground-truth user preferences, and generate

the ratings according to the linear model. We generated a random Kronecker graph with

sparsity 0.005 (which is approximately equal to the sparsity of our real datasets). It is well

known that such graphs capture many properties of real-world social networks (Leskovec

et al., 2010).

For the real data, we use the Last.fm and Delicious datasets which are available as part

of the HetRec 2011 workshop. Last.fm is a music streaming website where each item corre-

sponds to a music artist and the dataset consists of the set of artists each user has listened

to. The associated social network consists of 1.8K users (nodes) and 12.7K friendship re-

lations (edges). Delicious is a social bookmarking website, where an item corresponds to a

particular URL and the dataset consists of the set of websites bookmarked by each user. Its

corresponding social network consists of 1.8K users and 7.6K user-user relations. Similar

to (Cesa-Bianchi et al., 2013), we use the set of associated tags to construct the TF-IDF

vector for each item and reduce the dimension of these vectors to d = 25. An artist (or

URL) that a user has listened to (or has bookmarked) is said to be “liked” by the user.

In each round, we select a target user uniformly at random and make the set Ct consist of

25 randomly chosen items such that there is at least 1 item liked by the target user. An

item liked by the target user is assigned a reward of 1 whereas other items are assigned a

zero reward. We use a total of T = 50 thousand recommendation rounds and average our

results across 3 runs.

Algorithms: We denote our graph-based epoch-greedy and Thompson sampling algo-

rithms as G-EG and G-TS, respectively. For epoch-greedy, although the analysis suggests

that we update the preference estimates only in the exploration rounds, we observed better

performance by updating the preference vectors in all rounds (we use this variant in our

53



experiments). We use 10% of the total number of rounds for exploration, and we “exploit”

in the remaining rounds. Similar to (Gentile et al., 2014), all hyper-parameters are set

using an initial validation set of 5 thousand rounds. The best validation performance was

observed for λ = 0.01 and σ = 1. To control the amount of exploration for Thompson

sampling, we the use posterior reshaping trick (Chapelle and Li, 2011) which reduces the

variance of the posterior by a factor of 0.01.

(a) (b)

Figure 3.1: Synthetic network: Runtime (in seconds/iteration) vs (a) Number of
nodes (b) Dimension

Baselines: We consider two variants of graph-based UCB-style algorithms: GOBLIN

is the method proposed in the original GOB paper (Cesa-Bianchi et al., 2013) while we use

GOBLIN++ to refer to a variant that exploits the fast mean estimation strategy we develop

in Section 3.2.3. Similar to (Cesa-Bianchi et al., 2013), for both variants we discount the

confidence bound term by a factor of α = 0.01.

We also include baselines which ignore the graph structure and make recommendations

by solving independent linear contextual bandit problems for each user. We consider 3

variants of this baseline: the LINUCB-IND proposed in (Li et al., 2010), an epoch-greedy

variant of this approach (EG-IND), and a Thompson sampling variant (TS-IND). We also

compared to a baseline that does no personalization and simply considers a single bandit

problem across all users (LINUCB-SIN). Finally, we compared against the state-of-the-

art online clustering-based approach proposed in (Gentile et al., 2014), denoted CLUB.
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(a) Last.fm (b) Delicious

Figure 3.2: Regret Minimization

This method starts with a fully connected graph and iteratively deletes edges from the

graph based on UCB estimates. CLUB considers each connected component of this graph

as a cluster and maintains one preference vector for all the users belonging to a cluster.

Following the original work, we make CLUB scalable by generating a random Erdos-Renyi

graph Gn,p with p = 3logn
n .2 In all, we compare our proposed algorithms G-EG and G-TS

with 7 reasonable baseline methods.

3.4.2 Results

Scalability: We first evaluate the scalability of the various algorithms with respect to

the number of network nodes n. Figure 3.1a shows the runtime in seconds/iteration when

we fix d = 25 and vary the size of the network from 16 thousand to 33 thousand nodes.

Compared to GOBLIN, our proposed GOBLIN++ is more efficient in terms of both time

(almost 2 orders of magnitude faster) and memory. Indeed, the existing GOBLIN method

runs out of memory even on very small networks and thus we do not plot it for larger

networks. Further, our proposed G-EG and G-TS methods scale even more gracefully in

the number of nodes and are much faster than GOBLIN++ (although not as fast as the

2We reimplemented CLUB. Note that one of the datasets from our experiments was also used in that
work and we obtain similar performance to that reported in the original paper.
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clustering-based CLUB or methods that ignore the graph).

We next consider scalability with respect to d. Figure 3.1b fixes n = 1024 and varies d

from 10 to 500. In this figure it is again clear that our proposed GOBLIN++ scales much

better than the original GOBLIN algorithm. The EG and TS variants are again even faster,

and other key findings from this experiment are (i) it was not faster to ignore the graph

and (ii) our proposed G-EG and G-TS methods scale better with d than CLUB.

Regret Minimization: We follow (Gentile et al., 2014) in evaluating recommendation

performance by plotting the ratio of cumulative regret incurred by the algorithm divided

by the regret incurred by a random selection policy. Figure 3.2a plots this measure for the

Last.fm dataset. In this dataset we see that treating the users independently (LINUCB-

IND) takes a long time to drive down the regret (we do not plot EG-IND and TS-IND

as they had similar performance) while simply aggregating across users (LINUCB-SIN)

performs well initially (but eventually stops making progress). We see that the approaches

exploiting the graph help learn the user preferences faster than the independent approach

and we note that on this dataset our proposed G-TS method performed similar to or slightly

better than the state of the art CLUB algorithm.

Figure 3.2b shows performance on the Delicious dataset. On this dataset personalization

is more important and we see that the independent method (LINUCB-IND) outperforms the

non-personalized (LINUCB-SIN) approach. The need for personalization in this dataset also

leads to worse performance of the clustering-based CLUB method, which is outperformed

by all methods that model individual users. On this dataset the advantage of using the

graph is less clear, as the graph-based methods perform similar to the independent method.

Thus, these two experiments suggest that (i) the scalable graph-based methods do no worse

than ignoring the graph in cases where the graph is not helpful and (ii) the scalable graph-

based methods can do significantly better on datasets where the graph is helpful. Similarly,

when user preferences naturally form clusters our proposed methods perform similarly to

CLUB, whereas on datasets where individual preferences are important our methods are

significantly better.

3.5 Related Work

Social Regularization: Using social information to improve recommendations was first

introduced by Ma et al. (Ma et al., 2011). They used matrix factorization to fit existing
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rating data but constrained a user’s latent vector to be similar to their friends in the social

network. Other methods based on collaborative filtering followed (Rao et al., 2015; Delporte

et al., 2013), but these works assume that we already have rating data available. Thus,

these methods do not address the exploration-exploitation trade-off faced by a new RS that

we consider.

Several graph-based methods to model dependencies between the users have been ex-

plored in the (non-contextual) multi-armed bandit framework (Caron et al., 2012; Mannor

and Shamir, 2011; Alon et al., 2014; Maillard and Mannor, 2014), but the GOB model

of Cesa-Bianchi et al. (Cesa-Bianchi et al., 2013) is the first to exploit the network be-

tween users in the contextual bandit framework. They proposed a UCB-style algorithm

and showed that using the graph leads to lower regret from both a theoretical and prac-

tical standpoint. However, their algorithm has a time complexity that is quadratic in the

number of users. This makes it infeasible for typical RS that have tens of thousands (or

even millions) of users.

To scale up the GOB model, several recent works propose to cluster the users and assume

that users in the same cluster have the same preferences (Gentile et al., 2014; Nguyen and

Lauw, 2014). But this solution loses the ability to model individual users’ preferences,

and indeed our experiments indicate that in some applications clustering significantly hurts

performance. In contrast, we want to scale up the original GOB model that learns more

fine-grained information in the form of a preference-vector specific to each user.

Another interesting approach to relax the clustering assumption is to cluster both items

and users (Li et al., 2016), but this only applies if we have a fixed set of items. Some works

consider item-item similarities to improve recommendations (Valko et al., 2014; Kocák et al.,

2014), but this again requires a fixed set of items while we are interested in RS where the set

of items may constantly be changing. There has also been work on solving a single bandit

problem in a distributed fashion (Korda et al., 2016), but this differs from our approach

where we are solving an individual bandit problem on each of the n nodes. Finally, we

note that all of the existing graph-based works consider relatively small RS datasets (∼ 1k

users), while our proposed algorithms can scale to much larger RS.
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3.6 Discussion

This work draws a connection between the GOB framework and GMRFs, and uses this to

scale up the existing GOB model to much larger graphs. We also proposed and analyzed

Thompson sampling and epoch-greedy variants. Our experiments on recommender systems

datasets indicate that the Thompson sampling approach in particular is much more scalable

than existing GOB methods, obtains theoretically optimal regret, and performs similar to

or better than other existing scalable approaches.

In many practical scenarios we do not have an explicit graph structure available. In the

appendix, we consider a variant of the GOB model where we use L1-regularization to learn

the graph on the fly. Our experiments there show that this approach works similarly to or

much better than approaches which use the fixed graph structure. It would be interesting

to explore the theoretical properties of this approach.
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Chapter 4

Bootstrapping for Bandits

In the previous chapters, we have seen the effectiveness of the linear bandit framework

for recommender systems and social networks. However, applications with rich structured

data such as images or text require modelling complex non-linear feature-reward map-

pings. For example, each product (arm) in a recommender system might be associated

with an unstructured text review that is useful to infer the arm’s expected reward. The

common bandit algorithms studied in the literature are not effective or efficient in these

complex settings. In this chapter, we propose a bootstrapping based approach to address

the exploration-exploitation trade-off for complex non-linear models.

4.1 Introduction

We first highlight the difficulties of the common bandit algorithms in addressing the exploration-

exploitation trade-off for non-linear feature-reward mappings. As explained in Chapter 1,

the ε-greedy (EG) algorithm is simple to implement and can be directly used with any non-

linear function from feature to rewards. However, its performance heavily relies on choosing

the right exploration parameter and the strategy for annealing it. The Optimism-in-the-

Face-of-Uncertainty (OFU) based strategies are statistically optimal and computationally

efficient in the bandit (Auer et al., 2002) and linear bandit (Abbasi-Yadkori et al., 2011)

settings. However, in the non-linear setting, we can construct only approximate confidence

sets (Filippi et al., 2010b; Li et al., 2017; Zhang et al., 2016; Jun et al., 2017) that re-

sult in over-conservative uncertainty estimates (Filippi et al., 2010b) and consequently in
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worse empirical performance. Similarly, Thompson sampling (TS), which requires drawing

a sample from the Bayesian posterior is computationally efficient when we have a closed-

form posterior like in the case of Bernoulli or Gaussian rewards. For reward distributions

beyond those admitting conjugate priors or for complex non-linear feature-reward map-

pings, it is not possible to have a closed form posterior or obtain exact samples from it.

In these cases, we need to resort to computationally-expensive approximate sampling tech-

niques (Riquelme et al., 2018).

To address the above difficulties, bootstrapping (Efron, 1992) has been used in the

bandit (Baransi et al., 2014; Eckles and Kaptein, 2014), contextual bandit (Tang et al.,

2015a; McNellis et al., 2017) and deep reinforcement learning (Osband and Van Roy, 2015;

Osband et al., 2016) settings. This previous work uses the classic non-parametric boot-

strapping procedure (detailed in Section 4.3.1) as an approximation to TS. As opposed

to maintaining the entire posterior distribution for TS, bootstrapping requires computing

only point-estimates (such as the maximum likelihood estimator). Bootstrapping thus has

two major advantages over other existing strategies: (i) Unlike OFU and TS, it is simple

to implement and does not require designing problem-specific confidence sets or efficient

sampling algorithms. (ii) Unlike EG, it is not overly sensitive to hyper-parameter tuning.

In spite of its advantages and good empirical performance, bootstrapping for bandits is

not well understood theoretically, even under special settings such as the K-armed bandit

problem with Bernoulli or Gaussian rewards. Indeed, to the best of our knowledge, McNel-

lis et al. (2017) is the only work that attempts to theoretically analyze the non-parametric

bootstrapping (referred to as NPB) procedure. For the bandit setting with Bernoulli re-

wards and a Beta prior (henceforth referred to as the Bernoulli bandit setting), they prove

that both TS and NPB will take similar actions as the number of rounds increases. However,

they do not provide any explicit regret bounds for NPB.

In this chapter, we first show that the NPB procedure used in the previous work can

be provably inefficient in the Bernoulli bandit setting (Section 4.3.2). In particular, we

establish a near-linear lower bound on the incurred regret. In Section 4.3.3, we show that

NPB with an appropriate amount of forced exploration, typically done in practice in (Mc-

Nellis et al., 2017; Tang et al., 2015a), can result in a sub-linear upper bound on the regret,

which nevertheless remains suboptimal. As an alternative to NPB, we propose the weighted

bootstrapping (abbreviated as WB) procedure. For Bernoulli (or more generally categori-

cal) rewards, we prove that WB with multiplicative exponential weights is mathematically
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equivalent to TS and thus results in near-optimal regret. Note that this connection was

made independently in the earlier work of Osband and Van Roy (2015). However, unlike

us, they do not experimentally evaluate the effectiveness of the weighted bootstrapping

algorithm in the bandit setting. Moreover, we also show that for Gaussian rewards, WB

with additive Gaussian weights is equivalent to TS with an uninformative prior and also

attains near-optimal regret.

In Section 4.5, we first experimentally compare the performance of WB, NPB and TS in

the the multi-armed bandit setting. We show that for several reward distributions on [0, 1],

WB (and NPB) outperforms a modified TS procedure proposed in (Agrawal and Goyal,

2013b). In the contextual bandit setting, we experimentally evaluate the bootstrapping

procedures with several parametric models and real-world datasets. In this setting, we

give practical guidelines for making computationally efficient updates to the model and for

initializing the bootstrapping procedure.

For computational efficiency, prior work (Eckles and Kaptein, 2014; McNellis et al.,

2017; Tang et al., 2015a) approximated the bootstrapping procedure by making incremen-

tal updates to an ensemble of models. Such an approximation requires additional hyper-

parameter tuning, such as choosing the size of the ensemble; or problem-specific heuristics,

for example McNellis et al. (2017) use a lazy update procedure specific to decision trees.

In contrast, we find that with appropriate stochastic optimization, bootstrapping (with-

out any approximation) for parametric models is computationally efficient and simple to

implement.

Another design decision involves the initialization of the bootstrapping procedure. Prior

work (Eckles and Kaptein, 2014; McNellis et al., 2017; Tang et al., 2015a) uses forced

exploration at the beginning of bootstrapping. For this, the work in (Eckles and Kaptein,

2014) uses pseudo-examples in order to simulate a Beta prior before starting the NPB

procedure for the MAB problem. In the contextual bandit setting, both McNellis et al.

(2017); Tang et al. (2015a) initialize the bootstrapping procedure by pulling each arm a

minimum number of times or by generating a “sufficient” number of pseudo-examples. It

is not clear how to generate pseudo-examples in this setting; for example, McNellis et al.

(2017) recommend using features of the context vector in the first round for generating the

pseudo-examples. However, we observe that such a procedure results in under-exploration

and worse performance.

In Section 4.5, we propose a simple method for generating such examples. We empir-
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ically validate that both NPB and WB in conjunction with this initialization results in

consistently good performance. Our contributions result in a simple and efficient imple-

mentation of the bootstrapping procedure that has theoretical guarantees in the simple

Bernoulli and Gaussian MAB setting.

4.2 Background

In this section, we give the necessary background on bootstrapping and then explain its

adaptation to bandits in Section 4.2.2.

4.2.1 Bootstrapping

Bootstrapping is typically used to obtain uncertainty estimates for a model fit to data.

The general bootstrapping procedure consists of two steps: (i) Formulate a bootstrapping

log-likelihood function L̃(θ, Z) by injecting stochasticity into the log-likelihood function L(·)
via the random variable Z such that EZ

[
L̃(θ, Z)

]
= L(θ). (ii) Given Z = z, generate a

bootstrap sample θ̃ as: θ̃ ∈ arg maxθ L̃(θ, z). In the offline setting (Friedman et al., 2001),

these steps are repeated B (usually B = 104) times to obtain the set {θ̃1, θ̃2, . . . θ̃B}. The

variance of these samples is then used to estimate the uncertainty in the model parameters

θ̂. Unlike a Bayesian approach that requires characterizing the entire posterior distribution

in order to compute uncertainty estimates, bootstrapping only requires computing point-

estimates (maximizers of the bootstrapped log-likelihood functions). In Sections 4.3 and 4.4,

we discuss two specific bootstrapping procedures.

4.2.2 Bootstrapping for Bandits

Algorithm 4 Bootstrapping for contextual bandits

1: Input: K arms, Model class m
2: Initialize history: ∀j ∈ [K], Dj = {}
3: for t = 1 to T do
4: Observe context vector xt
5: For all j, compute bootstrap sample θ̃j (According to Sections 4.3 and 4.4)

6: Select arm: jt = arg maxj∈[K]m(xt, θ̃j)
7: Observe reward rt
8: Update history: Djt = Djt ∪ {xt, rt}
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In the bandit setting, the work in (Eckles and Kaptein, 2014; Tang et al., 2015a; McNellis

et al., 2017) uses bootstrapping as an approximation to Thompson sampling (TS). The

basic idea is to compute one bootstrap sample and treat it as a sample from an underlying

posterior distribution in order to emulate TS. In Algorithm 4, we describe the procedure

for the contextual bandit setting. At every round t, the set Dj consists of the features and

observations obtained on pulling arm j in the previous rounds. The algorithm (in line 5)

uses the set Dj to compute a bootstrap sample θ̃j for each arm j. Given the bootstrap

sample for each arm, the algorithm (similar to TS) selects the arm jt maximizing the reward

conditioned on this bootstrap sample (line 6). After obtaining the observation (line 7), the

algorithm updates the set of observations for the selected arm (line 8). In the subsequent

sections, we instantiate the procedures for generating the bootstrap sample θ̃j and analyze

the performance of the algorithm in these settings.

4.3 Non-parametric Bootstrapping

We first describe the non-parametric bootstrapping (NPB) procedure in Section 4.3.1. We

show that NPB used in conjunction with Algorithm 4 (Eckles and Kaptein, 2014) can be

provably inefficient and establish a near-linear lower bound on the regret incurred by it in

the Bernoulli bandit setting (Section 4.3.2). In Section 4.3.3, we show that NPB with an

appropriate amount of forced exploration can result in an O(T 2/3) regret in this setting.

4.3.1 Procedure

In order to construct the bootstrap sample θ̃j in Algorithm 4, we first construct a new

dataset D̃j by sampling with replacement, |Dj | points from the set Dj . The bootstrapped

log-likelihood is equal to the log-likelihood of observing D̃j . Formally,

L̃(θ) =
∑
i∈D̃j

log [P(yi|xi, θ)] (4.1)

The bootstrap sample is computed as θ̃j ∈ arg maxθ L̃(θ). Observe that the sampling

with replacement procedure is the source of randomness for the bootstrapping and that

E[D̃j ] = Dj .
For the special case of Bernoulli rewards without features, a common practice is to
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use Laplace smoothing where we generate positive (1) or negative (0) pseudo-examples to

be used in addition to the observed rewards. Laplace smoothing is associated with two

non-negative integers α0, β0, where α0 (and β0) is the pseudo-count, equal to the number

of positive (or negative) pseudo-examples. These pseudo-counts are used to “simulate” the

prior distribution Beta(α0, β0). For the NPB procedure with Bernoulli rewards, generating

θ̃j is equivalent to sampling from a Binomial distribution Bin(n, p) where n = |Dj | and the

success probability p is equal to the fraction of positive observations in Dj . Formally, if the

number of positive observations in Dj is equal to α, then

A ∼ Bino

(
n+ α0 + β0,

α0 + α

n+ α0 + β0

)
and θ̃j =

A

n+ α0 + β0
(4.2)

4.3.2 Inefficiency of Non-Parametric Bootstrapping

In this subsection, we formally show that Algorithm 4 used with NPB might lead to an

Ω(T γ) regret with γ arbitrarily close to 1. Specifically, we consider a simple 2-arm bandit

setting, where at each round t, the reward of arm 1 is independently drawn from a Bernoulli

distribution with mean µ1 = 1/2, and the reward of arm 2 is deterministic and equal to

1/4. Furthermore, we assume that the agent knows the deterministic reward of arm 2,

but not the mean reward for arm 1. Notice that this case is simpler than the standard

two-arm Bernoulli bandit setting, in the sense that the agent also knows the reward of arm

2. Observe that if θ̃1 is a bootstrap sample for arm 1 (obtained according to equation 4.2),

then the arm 1 is selected if θ̃1 ≥ 1/4. Under this setting, we prove the following lower

bound:

Theorem 6. If the NPB procedure is used in the above-described case with pseudo-counts

(α0, β0) = (1, 1) for arm 1, then for any γ ∈ (0, 1) and any T ≥ exp
[

2
γ exp

(
80
γ

)]
, we

obtain

E[R(T )] >
T 1−γ

32
= Ω(T 1−γ).

Proof. Please refer to Appendix C.1 for the detailed proof of Theorem 6. It is proved

based on a binomial tail bound (Proposition 2) and uses the following observation: un-

der a “bad history”, where at round τ NPB has pulled arm 1 for m times, but all of

these m pulls have resulted in a reward 0, NPB will pull arm 1 with probability less

than exp (−m log(m)/20) (Lemma 21). Hence, the number of times NPB will pull the
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suboptimal arm 2 before it pulls arm 1 again or reach the end of the T time steps fol-

lows a “truncated geometric distribution”, whose expected value is bounded in Lemma 22.

Based on Lemma 22, and the fact that the probability of this bad history is 2−m, we have

E [R(T )] ≥ 2−(m+3) min {exp (m log(m)/20) , T/4} in Lemma 23. Theorem 6 is proved by

setting m = dγ log(T )/2e.

Theorem 6 shows that in the Bernoulli bandit setting, when T is large enough, the NPB

procedure used in previous work (Eckles and Kaptein, 2014; Tang et al., 2015a; McNellis

et al., 2017) can incur an expected cumulative regret arbitrarily close to a linear regret

in the order of T . It is straightforward to prove a variant of this lower bound with any

constant (in terms of T ) number of pseudo-examples. Next, we show that NPB with forced

exploration that depends on the horizon T can result in sub-linear regret.

4.3.3 Forced Exploration

In this subsection, we show that NPB, when coupled with an appropriate amount of forced

exploration, can result in sub-linear regret in the Bernoulli bandit setting. In order to force

exploration, we pull each arm m times before starting Algorithm 4. Note that a similar

procedure for forcing exploration is used in the contextual bandit setting in (McNellis et al.,

2017; Tang et al., 2015a). The following theorem shows that for an appropriate value of m,

this strategy can result in an O(T 2/3) upper bound on the regret.

Theorem 7. In any 2-armed bandit setting, if each arm is initially pulled m =

⌈(
16 log T

T

) 1
3

⌉
times before starting Algorithm 4, then

E[R(T )] = O(T 2/3) .

Proof. The claim is proved in appendix C.2 based on the following observation: If the gap

of the suboptimal arm is large, the prescribed m steps are sufficient to guarantee that the

bootstrap sample of the optimal arm is higher than that of the suboptimal arm with a high

probability at any round t. On the other hand, if the gap of the suboptimal arm is small,

no algorithm can have high regret.

Although forced exploration is able to remedy the NPB procedure, we can prove only

a sub-optimal regret bound for this strategy. In the next section, we consider a simple
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weighted bootstrapping approach and show that it can lead to a near-optimal regret bound

in the Bernoulli bandit setting.

4.4 Weighted Bootstrapping

In this section, we propose weighted bootstrapping (WB) as an alternative to the non-

parametric bootstrap. We first describe the weighted bootstrapping procedure in Sec-

tion 4.4.1. For the bandit setting with Bernoulli rewards, we show the mathematical

equivalence between WB and TS, hence proving that WB attains near-optimal regret (Sec-

tion 4.4.2).

4.4.1 Procedure

In order to formulate the bootstrapped log-likelihood, we use a random transformation of

the labels in the corresponding log-likelihood function. First, consider the case of Bernoulli

observations where the labels yi ∈ {0, 1}. In this case, the log-likelihood function is given

by:

L(θ) =
∑
i∈Dj

yi log (g (〈xi, θ〉)) + (1− yi) log (1− g (〈xi, θ〉))

where the function g(·) is the inverse-link function. For each observation i, we sample a

random weight wi from an exponential distribution, specifically, for all i ∈ Dj , wi ∼ Exp(1).

We use the following transformation of the labels: yi :→ wi · yi and (1− yi) :→ wi · (1− yi).
Since we transform the labels by multiplying them with exponential weights, we refer to

this case as WB with multiplicative exponential weights. Given this transformation, the

bootstrapped log-likelihood function is defined as:

L̃(θ) =
∑
i∈Dj

wi [yi log (g (〈xi, θ〉)) + (1− yi) log (1− g (〈xi, θ〉))]︸ ︷︷ ︸
`i(θ)

=
∑
i∈Dj

wi · li(θ) (4.3)

Here `i is the log-likelihood of observing point i. As before, the bootstrap sample is com-

puted as: θ̃j ∈ arg maxθ L̃(θ).

In WB, the randomness for bootstrapping is induced by the weights w and that Ew[L̃(θ)] =

L(θ). Let us consider a special case, in the absence of features, when g (〈xi, θ〉) = θ for all
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i. Assuming α0 positive and β0 negative pseudo-counts and denoting n = |Dj | , we obtain

the following closed-form expression for computing the bootstrap sample:

θ̃ =

∑n
i=1[wi · yi] +

∑α0
i=1[wi]∑n+α0+β0

i=1 wi
(4.4)

Observe that the above transformation procedure extends the domain for the labels from

values in {0, 1} to those in R and does not result in a valid probability mass function.

However, this transformation has the following advantages: (i) Using equation 4.3, we can

interpret L̃(θ) as a random re-weighting (by the weights wi) of the observations. This

formulation is equivalent to the weighted likelihood bootstrapping procedure proposed and

proven to be asymptotically consistent in the offline case in (Newton and Raftery, 1994). (ii)

From an implementation perspective, computing θ̃j involves solving a weighted maximum

likelihood estimation problem. It thus has the same computational complexity as NPB and

can be solved by using black-box optimization routines. (iii) In the next section, we show

that using WB with multiplicative exponential weights has good theoretical properties in

the bandit setting. Furthermore, such a procedure of randomly transforming the labels

lends itself naturally to the Gaussian case and in Appendix C.3.2, we show that WB with

an additive transformation using Gaussian weights is equivalent to TS.

4.4.2 Equivalence to Thompson sampling

We now analyze the theoretical performance of WB in the Bernoulli bandit setting. In

the following proposition proved in appendix C.3.1, we show that WB with multiplicative

exponential weights is equivalent to TS.

Proposition 1. If the rewards yi ∼ Ber(θ∗), then weighted bootstrapping using the esti-

mator in equation 4.4 results in θ̃j ∼ Beta(α + α0, β + β0), where α and β is the number

of positive and negative observations respectively; α0 and β0 are the positive and negative

pseudo-counts. In this case, WB is equivalent to Thompson sampling under the Beta(α0, β0)

prior.

Since WB is mathematically equivalent to TS, the bounds in (Agrawal and Goyal,

2013a) imply near-optimal regret for WB in the Bernoulli bandit setting.

In Appendix C.3.1, we show that this equivalence extends to the more general categorical

(with C categories) reward distribution i.e. for yi ∈ {1, . . . C}. In appendix C.3.2, we prove
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that for Gaussian rewards, WB with additive Gaussian weights, i.e. wi ∼ N(0, 1) and

using the additive transformation yi :→ yi+wi, is equivalent to TS under an uninformative

N(0,∞) prior. Furthermore, this equivalence holds even in the presence of features, i.e. in

the linear bandit case. Using the results in (Agrawal and Goyal, 2013b), this implies that

for Gaussian rewards, WB with additive Gaussian weights achieves near-optimal regret.

4.5 Experiments

In Section 4.5.1, we first compare the empirical performance of bootstrapping and Thomp-

son sampling in the bandit setting. In Section 4.5.2, we describe the experimental setup for

the contextual bandit setting and compare the performance of different algorithms under

different feature-reward mappings.

4.5.1 Bandit setting

We consider K = 10 arms (refer to Appendix C.4 for results with other values of K), a hori-

zon of T = 104 rounds and average our results across 103 runs. We perform experiments for

four different reward distributions - Bernoulli, Truncated Normal, Beta and the Triangular

distribution (Kotz and Van Dorp, 2004), all bounded on the [0, 1] interval. In each run and

for each arm j, we choose the expected reward µj (mean of the corresponding distribution)

to be a uniformly distributed random number in [0, 1]. For the Truncated-Normal distri-

bution, we choose the standard deviation to be equal to 10−4 (we also experimented with

other values of the standard deviation and observed similar trends), whereas for the Beta

distribution, the shape parameters of arm j are chosen to be α = µj and β = 1 − µj . We

use the Beta(1, 1) prior for TS. In order to use TS on distributions other than Bernoulli,

we follow the procedure proposed in (Agrawal and Goyal, 2013a): for a reward in [0, 1]

we flip a coin with the probability of obtaining 1 equal to the reward, resulting in a bi-

nary “pseudo-reward”. This pseudo-reward is then used to update the Beta posterior as

in the Bernoulli case. For NPB and WB, we use the estimators in equations 4.2 and 4.4

respectively. For both of these, we use the pseudo-counts α0 = β0 = 1.

In the Bernoulli case, NPB obtains a higher regret as compared to both TS and WB

which are equivalent. For the other distributions, we observe that both WB and NPB (with

WB resulting in consistently better performance) obtain lower cumulative regret than the

modified TS procedure. This shows that for distributions that do not admit a conjugate
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(d) Triangular

Figure 4.1: Cumulative Regret vs Number of rounds for TS, NPB and WB in a
bandit setting with K = 10 arms for (a) Bernoulli (b) Truncated-Normal (c)
Beta (d) Triangular reward distributions bounded on the [0, 1] interval. WB
results in the best performance in each these experiments.

prior, WB (and NPB) can be directly used and results in good empirical performance as

compared to making modifications to the TS procedure.

4.5.2 Contextual bandit setting

We adopt the one-versus-all multi-class classification setting for evaluating contextual ban-

dits (Agarwal et al., 2014; McNellis et al., 2017; Riquelme et al., 2018). In this setting, arm

k corresponds to class k ∈ [K]. At time t, the algorithm observes context vector xt ∈ Rd×1

and then pulls an arm. It receives a reward of one if the pulled arm corresponds to the

correct class, and zero otherwise. Each arm maintains an independent set of statistics that

map xt to the observed binary reward. We use four multi-class datasets from (Riquelme

et al., 2018): Statlog (d = 9,K = 7), CovType (d = 54,K = 7), MNIST(d = 784, K = 10)

and Adult (d = 94,K = 14). We preprocess these datasets by adding a bias term and

69



10000 20000 30000 40000
Number of rounds

0.80

0.85

0.90

0.95

1.00

Pe
r-

st
ep

R
ew

ar
d EG-lin(1%)

EG-log(1%)
EG-nn(1%)
LinTS
NPB-lin
NPB-log
NPB-nn
WB-lin
WB-log
WB-nn

(a) Statlog

20000 30000 40000 50000
Number of rounds

0.64

0.66

0.68

0.70

0.72

Pe
r-

st
ep

R
ew

ar
d EG-lin(1%)

EG-log(1%)
EG-nn(1%)
LinTS
NPB-lin
NPB-log
NPB-nn
WB-lin
WB-log
WB-nn

(b) CovType

10000 20000 30000 40000 50000
Number of rounds

0.2

0.4

0.6

0.8

Pe
r-

st
ep

R
ew

ar
d

EG-lin(1%)
EG-log(1%)
EG-nn(1%)
LinUCB
NPB-lin
NPB-log
NPB-nn
WB-lin
WB-log
WB-nn

(c) MNIST

10000 20000 30000 40000
Number of rounds

0.10

0.15

0.20

0.25

0.30
Pe

r-
st

ep
R

ew
ar

d

EG-lin(1%)
EG-log(1%)
LinUCB
NPB-lin
NPB-log
WB-lin
WB-log

(d) Adult

Figure 4.2: Expected per-step reward vs Number of Rounds for (a) Statlog (b) Cov-
Type (c) MNIST (d) Adult datasets. Bootstrapping approaches with linear
regression consistently perform better than LinUCB, LinTS and Linear EG.
Whereas the performance of NPB and WB with non-linear models is close to
or better than that of the corresponding non-linear EG models.

standardizing the feature vectors.

The time horizon is T = 50000 steps and our results are averaged over 5 runs. We com-

pare the performance of non-parametric bootstrapping (NPB) and weighted bootstrapping

(WB) to LinUCB (Abbasi-Yadkori et al., 2011), linear TS (LinTS) (Agrawal and Goyal,

2013b), ε-greedy (EG) (Langford and Zhang, 2008). We also implemented GLM-UCB (Li

et al., 2017). GLM-UCB consistently over-explored and had worse performance that EG

or LinTS. Therefore, we do not report these results. We run EG, NPB and WB with three

70



classes of models: linear regression (suffix lin in plots), logistic regression (suffix log in

plots), and a single hidden-layer fully-connected neural network (suffix nn in plots); with

10 hidden neurons for the Statlog, CovType and Adult datasets and with 100 hidden neu-

rons for the MNIST dataset. We experimented with different exploration schedules in EG.

The best performing schedule across all three datasets was εt = b/t, where b is set to achieve

1% exploration in T steps. Note that this gives EG an unfair advantage, since such tuning

cannot be done for a new online problem.

For EG and the bootstrapping approaches, we solve the maximum likelihood estimation

(MLE) problem at each step using stochastic optimization, which is warm-started with the

solution from the previous step. For linear and logistic regression, we optimize until the

error drops below 10−3. For neural networks, we make one pass over the dataset at each

step. To ensure that our results do not depend on the specific choice of optimization, we use

publicly available optimization libraries. For linear and logistic regression, we use scikit-

learn (Buitinck et al., 2013) with stochastic optimization and its default options. For neural

networks, we use the Keras library (Chollet, 2015) with the ReLU non-linearity for the

hidden layer and a sigmoid output layer, along with SGD and its default configuration. This

is in contrast to (McNellis et al., 2017; Tang et al., 2015a), who approximate bootstrapping

by maintaining an ensemble of models. Our preliminary experiments suggested that our

procedure yields similar or better solutions than the method proposed in (McNellis et al.,

2017) with a better run time, and yields better solutions than (Tang et al., 2015a) without

any hyper-parameter tuning. We defer these comparison results to Appendix C.4.2. For

both NPB and WB, we use log(T )(≈ 4 for the datasets considered) pseudo-examples in all

our experiments. For the features corresponding to the pseudo-examples, we independently

sample each dimension from a standard normal distribution. We generate equal number

of positive (with label 1) and negative pseudo-examples (with label 0). We find this that

choice results in good empirical performance across model-classes and datasets.

Since we compare multiple bandit algorithms and model-classes simultaneously, we use

the expected per-step reward in T steps, E
∑T

t=1 rt/T , as our performance metric. The

expected per-step reward in all three datasets is reported in 4.2. We observe the following

trends: first, both linear methods, LinTS and LinUCB, perform the worst1. Second, linear

variants of both NPB and WB perform comparably to linear EG on the Statlog, CovType

and MNIST datasets. On the Adult dataset in fig. 4.2d, EG does not explore enough for

1To avoid clutter in the plots, we only plot the better performing method among LinTS and LinUCB.
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Dataset EG-log EG-nn NPB-log NPB-nn WB-log WB-nn

Statlog 0.15 0.11 0.035 0.093 0.032 0.10

CovType 0.30 0.19 0.062 0.14 0.061 0.14

MNIST 1.8 2.98 0.29 0.77 0.66 0.52

Adult 0.49 - 0.72 - 0.50 -

Table 4.1: Runtime in seconds/round for non-linear variants of EG, NPB and WB.

the relatively larger number of arms. In contrast, both WB and NPB explore enough and

perform well. Third, non-linear variants of EG, NPB and WB typically perform better than

their linear counterparts. The most expressive generalization model, the neural network,

outperforms logistic regression on the Statlog, CovType and MNIST datasets. This shows

that even for relatively simple datasets, like Statlog and CovType, a more expressive non-

linear model can lead to better performance. This effect is more pronounced for the MNIST

dataset in figure 4.2c. Finally, on the Adult dataset, the neural network, which we do not

plot, performs the worst. To investigated this further, we trained a neural network offline

for each arm with all available data. Even in this case, we observed that the neural network

performs worse than linear regression. We conclude that the poor performance is because

of the lack of training data for all the arms, and not because of the lack of exploration.

In order to showcase the computational efficiency of the bootstrapping approaches, we

present the run-times for the non-linear variants of EG, NPB and WB for the four datasets

in Table 4.1.

4.6 Discussion

We showed that the commonly used non-parametric bootstrapping procedure can be prov-

ably inefficient. As an alternative, we proposed the weighted bootstrapping procedure,

special cases of which become equivalent to TS for common reward distributions such as

Bernoulli and Gaussian. On the empirical side, we showed that the WB procedure has bet-

ter performance than a modified TS scheme for several bounded distributions in the bandit

setting. In the contextual bandit setting, we provided guidelines to make bootstrapping

simple and efficient to implement and showed that non-linear versions of bootstrapping have

good empirical performance. Our work raises several open questions: does bootstrapping

result in near-optimal regret for generalized linear models? Under what assumptions or
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modifications can NPB be shown to have good performance? On the empirical side, evalu-

ating bootstrapping across multiple datasets and comparing it against TS with approximate

sampling is an important future direction.
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Chapter 5

Discussion

In this thesis, we used the framework of structured bandits to address decision-making

under uncertainty for problems arising primarily in social networks and recommender sys-

tems. In Chapter 2, we addressed the influence maximization problem in social networks.

We shed light on the inherent complexity of the IM bandits problem. Furthermore, we

developed a learning framework that is independent of the underlying model of diffusion.

Our framework ensures that the diffusion model can be learnt efficiently, both from a sta-

tistical and computational point of view. We believe that our framework addresses some

key challenges in making influence maximization practical in the real-world.

Similarly, in Chapter 3, we addressed the problem of using additional network infor-

mation to make better recommendations in the contextual bandit setting. Our proposed

algorithms are able to scale to large-scale real-world problems and have regret guarantees

under reasonable assumptions. We hope that this work provides practical ideas and theo-

retical insight to better incorporate social information for addressing the cold-start problem

in recommender systems.

Finally, in Chapter 4, we attempted to relax the linear bandit assumption made in

the earlier chapters by turning to the classic notion of bootstrapping. We showed that

the common idea of non-parametric bootstrapping for bandit problems can be provably

inefficient and devised a weighted bootstrapping algorithm that has guarantees in simple

yet realistic settings. In our opinion, it is extremely important for the community to be

able to efficiently construct uncertainty estimates and develop principled ways of inducing

exploration with complex machine learning models. We hope that these techniques will have
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wide-spread applications to not only bandits, but also to active learning and reinforcement

learning.

All in all, we strongly believe that by making the right structural assumptions, it is

possible to devise scalable data-driven approaches that not only address important practical

problems, but are also principled from a theoretical point of view. To that end, we discuss

some future extensions of the work presented in this thesis. These are presented on a

chapter by chapter basis as follows:

• Chapter 2

– Alternative diffusion models: We have considered only discrete-time progres-

sive diffusion models in our bandit framework. It will be interesting to quan-

tify the exploration-exploitation trade-off for continuous-time diffusion mod-

els (Gomez Rodriguez et al., 2012; Du et al., 2013) or non-progressive models

where activated nodes can become inactive again (Lou et al., 2014).

– Adaptive IM bandits: It is important to study the effects of interventions

as the diffusion is taking place and adapt the seed-selection to it (Vaswani and

Lakshmanan, 2016; Han et al., 2018). Being able to model such effects brings the

framework of IM bandits closer to reinforcement learning since an intervention

changes the “state” of the diffusion. Such a setting has been recently studied in

the context of point processes (Upadhyay et al., 2018).

– Contextual bandits and feature construction: The proposed IMB frame-

work allows for any set of features that are predictive of the influence proba-

bilities. It can thus be used to model product-specific features (for instance,

topics (Aslay et al., 2014)) as context vectors in a contextual bandit framework

and also allow the probabilities to change across rounds (Bao et al., 2016).

Furthermore, one can exploit the recent advances in graph embeddings (Grover

and Leskovec, 2016; Kipf and Welling, 2016; Hartford et al., 2018) for construct-

ing better features that may results in a lower regret in practice. It might

be possible to learn these embeddings in an end-to-end manner for the precise

task of influence maximization. For the model-independent IMB framework in

Section 2.4, if we can obtain reasonable features for predicting the reachability
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probabilities, we do not even need to know the graph structure. This framework

can also be used to model dynamic graphs changing across the IM attempts.

• Chapter 3

– Theory for learning the graph: In Appendix B, we showed that it is pos-

sible to learn the graph on-the-fly within the bandit framework. An important

direction for future work would be to provide regret guarantees for this scheme

that learns both the user preferences and graph structure simultaneously.

– Semi supervised and Multi-task learning: The HOB framework can be

used beyond content-based recommendation. In particular, it could be useful in

the graph-based semi-supervised learning (Zhu, 2005) or multi-task learning (Ev-

geniou et al., 2005) in the bandit setting.

– Prior misspecification: Our regret guarantees in Chapter 3 assume that the

graph acts as a correctly specified prior, in that the user preferences are smooth

according to the given graph. An important extension of this work would be to

quantify the effect of prior misspecification on the cumulative regret (for example,

using the techniques in (Liu and Li, 2016)).

– User selection: We assume that the target user (to whom recommendations

are made) is chosen randomly in every round. Given a set of prospective users to

which recommendations can be made, is it possible to learn the user preferences

faster by considering interactions between this set of target users? Alternatively,

if some users are “available” for recommendation more often than others, is it

possible to use the graph to learn the preferences for all the users uniformly well?

– Combining with collaborative filtering: An important practical exten-

sion would be to have a systematic procedure for combining our framework

for content-based recommendation with traditional collaborative filtering ap-

proaches, for example using the approaches in (Rao et al., 2015; Gentile et al.,

2017).

• Chapter 4

– Scalability: The computational complexity for the proposed bootstrapping ap-

proaches is linear in the number of observations. An interesting future direction
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would be to exploit techniques such as Bag-of-Little-Bootstraps (Kleiner et al.,

2014) in order to approximate the non-parametric bootstrapping procedure, use

influence functions (Koh and Liang, 2017) in order to quickly estimate the boot-

strap estimator or use techniques for the online estimation of the MLE and still

provide regret guarantees (Jun et al., 2017).

– Provable algorithms for generalized linear models: We showed that the

proposed bootstrapping approaches have provable regret guarantees for the Bernoulli

MAB and linear bandit problems. An important future contribution would be

to show that the bootstrapping approaches can lead to provably better regret

as compared to the UCB or Thompson sampling approaches in the context of

generalized linear models.

– Uncertainty estimates in other applications: We have used bootstrapping

for estimating the uncertainty in order to trade-off exploration and exploitation

in the bandit setting. It will be interesting to use the proposed bootstrapping

approaches and their corresponding uncertainty estimates for active learning or

reinforcement learning (Osband et al., 2016).

• Further extensions: Finally, both the applications in Chapters 2 and 3 can benefit

from using more expressive non-linear models and using the bootstrapping approach

for trading off exploration and exploitation. We leave these extensions as important

practical directions to explore.

Other important future work includes studying the pure-exploration (Bubeck et al.,

2009; Soare et al., 2014; Chen et al., 2014) setting and be able to model safety or

other constraints (Wu et al., 2016; Kazerouni et al., 2017) in our bandit frameworks.
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stochastic bandits. In Advances in Neural Information Processing Systems, pages
2312–2320, 2011. → pages 4, 7, 8, 23, 52, 59, 70, 111, 112, 127, 128, 129, 144, 145

Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. arXiv preprint
arXiv:1611.06534, 2016. → page 8

Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E.
Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. In
Proceedings of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, pages 1638–1646, 2014. URL
http://jmlr.org/proceedings/papers/v32/agarwalb14.html. → page 69

Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford, Stephen
Lee, Jiaji Li, Dan Melamed, Gal Oshri, Oswaldo Ribas, et al. A multiworld testing
decision service. arxiv preprint. 2016. → page 1

Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed
bandit problem. In Proceeding of the 25th Annual Conference on Learning Theory,
pages 39.1–39.26, 2012a. → page 8

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. arXiv preprint arXiv:1209.3352, 2012b. → pages
8, 44, 51, 52, 138, 140, 145, 146

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for Thompson sampling.
In International Conference on Artificial Intelligence and Statistics, 2013a. → pages
67, 68

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 127–135, 2013b. URL
http://jmlr.org/proceedings/papers/v28/agrawal13.html. → pages 4, 7, 61, 68, 70

78

http://jmlr.org/proceedings/papers/v32/agarwalb14.html
http://jmlr.org/proceedings/papers/v28/agrawal13.html


Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and
Ohad Shamir. Nonstochastic multi-armed bandits with graph-structured feedback.
arXiv preprint arXiv:1409.8428, 2014. → page 57

R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution.
Bulletin of Mathematical Biology, 51(1):125–131, Jan 1989. ISSN 1522-9602. → page
153

Cigdem Aslay, Nicola Barbieri, Francesco Bonchi, and Ricardo A Baeza-Yates. Online
topic-aware influence maximization queries. 2014. → page 75

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3:397–422, 2002. → pages 2, 7

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In focs, page 322. IEEE,
1995. → page 3

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002. → pages 2, 3, 5, 7, 8, 59

Yixin Bao, Xiaoke Wang, Zhi Wang, Chuan Wu, and Francis C. M. Lau. Online influence
maximization in non-stationary social networks. In International Symposium on
Quality of Service, apr 2016. → page 75

Akram Baransi, Odalric-Ambrym Maillard, and Shie Mannor. Sub-sampling for
multi-armed bandits. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 115–131. Springer, 2014. → page 60

Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Topic-aware social influence
propagation models. Knowledge and information systems, 37(3):555–584, 2013. →
pages 26, 35

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. The Journal of Machine Learning Research, 3:463–482,
2003. → pages 49, 138

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples. Journal of
machine learning research, 7(Nov):2399–2434, 2006. → page 33

Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. Social network search as a volatile
multi-armed bandit problem. Human Journal, 2(2):84–98, 2013. → page 40

79



Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013. → page 159
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July 10-15, 2018, 2018. → page 75

Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving
linear systems, volume 49. 1952. → pages 47, 116

Cho-Jui Hsieh, Inderjit S Dhillon, Pradeep K Ravikumar, and Mátyás A Sustik. Sparse
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David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003. →
pages 11, 12, 27

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. → page 75

84



Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I Jordan. A scalable
bootstrap for massive data. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 76(4):795–816, 2014. → page 77
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Appendix A

Supplementary for Chapter 2

A.1 Proof of Theorem 1

In the appendix, we prove a slightly stronger version of Theorem 1, which also uses another

complexity metric E∗ defined as follows: Assume that the graph G = (V, E) includes m

disconnected subgraphs G1 = (V1, E1),G2 = (V2, E2), . . . ,Gm = (Vm, Em), which are in the

descending order based on the number of nodes |Ei|’s. We define E∗ as the number of edges

in the first min{m,K} subgraphs:

E∗ =

min{m,K}∑
i=1

|Ei|. (A.1)

Note that by definition, E∗ ≤ m. Based on E∗, we have the following slightly stronger

version of Theorem 1.

Theorem 8. Assume that (1) p(e) = xT
eθ
∗ for all e ∈ E and (2) ORACLE is an (α, γ)-

approximation algorithm. Let D be a known upper bound on ‖θ∗‖2. If we apply ICLinUCB

with σ = 1 and

c ≥

√
d log

(
1 +

TE∗
d

)
+ 2 log (T (n+ 1−K)) +D, (A.2)
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then we have

Rαγ(T ) ≤ 2cC∗
αγ

√
dTE∗ log2

(
1 +

TE∗
d

)
+ 1 = Õ

(
dC∗

√
E∗T/(αγ)

)
. (A.3)

Moreover, if the feature matrix is of the form X = I ∈ <m×m (i.e., the tabular case), we

have

Rαγ(T ) ≤ 2cC∗
αγ

√
Tm log2 (1 + T ) + 1 = Õ

(
mC∗

√
T/(αγ)

)
. (A.4)

Since E∗ ≤ m, Theorem 8 implies Theorem 1. We prove Theorem 8 in the remainder

of this section.

We now define some notation to simplify the exposition throughout this section.

Definition 1. For any source node set S ⊆ V, any probability weight function w : E → [0, 1],

and any node v ∈ V, we define f(S, w, v) as the probability that node v is influenced if the

source node set is S and the probability weight function is w.

Notice that by definition, f(S, w) =
∑

v∈V f(S, w, v) always holds. Moreover, if v ∈ S,

then f(S, w, v) = 1 for any w by the definition of the influence model.

Definition 2. For any round t and any directed edge e ∈ E, we define event

Ot(e) = {edge e is observed at round t}.

Note that by definition, an directed edge e is observed if and only if its start node is

influenced and observed does not necessarily mean that the edge is active.

A.1.1 Proof of Theorem 8

Proof. Let Ht be the history (σ-algebra) of past observations and actions by the end of

round t. By the definition of Rαγt , we have

E [Rαγt |Ht−1] =f(S∗, p)− 1

αγ
E [f(St, p)|Ht−1] , (A.5)

where the expectation is over the possible randomness of St, since ORACLE might be a

randomized algorithm. Notice that the randomness coming from the edge activation is
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already taken care of in the definition of f . For any t ≤ T , we define event ξt−1 as

ξt−1 =

{
|xT
e(θτ−1 − θ∗)| ≤ c

√
xT
eM
−1
τ−1xe, ∀e ∈ E , ∀τ ≤ t

}
, (A.6)

and ξt−1 as the complement of ξt−1. Notice that ξt−1 is Ht−1-measurable. Hence we have

E[Rαγt ] ≤ P (ξt−1)E [f(S∗, p)− f(St, p)/(αγ)|ξt−1] + P
(
ξt−1

)
[n−K].

Notice that under event ξt−1, p(e) ≤ Ut(e), ∀e ∈ E , for all t ≤ T , thus we have

f(S∗, p) ≤ f(S∗, Ut) ≤ max
S: |S|=K

f(S, Ut) ≤
1

αγ
E [f(St, Ut)|Ht−1] ,

where the first inequality follows from the monotonicity of f in the probability weight, and

the last inequality follows from the fact that ORACLE is an (α, γ)-approximation algorithm.

Thus, we have

E[Rαγt ] ≤ P (ξt−1)

αγ
E [f(St, Ut)− f(St, p)|ξt−1] + P

(
ξt−1

)
[n−K]. (A.7)

Notice that based on Definition 1, we have

f(St, Ut)− f(St, p) =
∑

v∈V\St

[f(St, Ut, v)− f(St, p, v)] .

Recall that for a given graph G = (V, E) and a given source node set S ⊆ V, we say an edge

e ∈ E and a node v ∈ V \ S are relevant if there exists a path p from a source node s ∈ S
to v such that (1) e ∈ p and (2) p does not contain another source node other than s. We

use ES,v ⊆ E to denote the set of edges relevant to node v under the source node set S,

and use VS,v ⊆ V to denote the set of nodes connected to at least one edge in ES,v. Notice

that GS,v
∆
= (VS,v, ES,v) is a subgraph of G, and we refer to it as the relevant subgraph

of node v under the source node set S.

Based on the notion of relevant subgraph, we have the following theorem, which bounds

f(St, Ut, v)−f(St, p, v) by edge-level gaps Ut(e)−p(e) on the observed edges in the relevant

subgraph GSt,v for node v;

Theorem 9. For any t, any history Ht−1 and St such that ξt−1 holds, and any v ∈ V \ St,
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we have

f(St, Ut, v)− f(St, p, v) ≤
∑

e∈ESt,v

E [1 {Ot(e)} [Ut(e)− p(e)]|Ht−1,St] ,

where ESt,v is the edge set of the relevant subgraph GSt,v.

Please refer to Section A.1.2 for the proof of Theorem 9. Notice that under favorable

event ξt−1, we have Ut(e)− p(e) ≤ 2c
√
xT
eM
−1
t−1xe for all e ∈ E . Therefore, we have

E[Rαγt ] ≤ 2c

αγ
P (ξt−1)E

 ∑
v∈V\St

∑
e∈ESt,v

1{Ot(e)}
√
xT
eM
−1
t−1xe

∣∣∣∣∣∣ξt−1

+ P
(
ξt−1

)
[n−K]

≤ 2c

αγ
E

 ∑
v∈V\St

∑
e∈ESt,v

1{Ot(e)}
√
xT
eM
−1
t−1xe

+ P
(
ξt−1

)
[n−K]

=
2c

αγ
E

∑
e∈E

1{Ot(e)}
√
xT
eM
−1
t−1xe

∑
v∈V\St

1 {e ∈ ESt,v}

+ P
(
ξt−1

)
[n−K]

=
2c

αγ
E

[∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe

]
+ P

(
ξt−1

)
[n−K], (A.8)

where NSt,e =
∑

v∈V\S 1 {e ∈ ESt,v} is defined in Equation 2.2. Thus we have

Rαγ(T ) ≤ 2c

αγ
E

[
T∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe

]
+ [n−K]

T∑
t=1

P
(
ξt−1

)
. (A.9)

In the following lemma, we give a worst-case bound on
∑T

t=1

∑
e∈E 1{Ot(e)}NSt,e

√
xT
eM
−1
t−1xe.

Lemma 2. For any round t = 1, 2, . . . , T , we have

T∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe ≤

√√√√( T∑
t=1

∑
e∈E

1{Ot(e)}N2
St,e

)
dE∗ log

(
1 + TE∗

dσ2

)
log
(
1 + 1

σ2

) ·
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Moreover, if X = I ∈ <m×m, then we have

T∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe ≤

√√√√( T∑
t=1

∑
e∈E

1{Ot(e)}N2
St,e

)
m log

(
1 + T

σ2

)
log
(
1 + 1

σ2

) ·
Please refer to Section A.1.3 for the proof of Lemma 2. Finally, notice that for any t,

E

[∑
e∈E

1{Ot(e)}N2
St,e

∣∣∣∣∣St
]

=
∑
e∈E

N2
St,eE [1{Ot(e)}|St] =

∑
e∈E

N2
St,ePSt,e ≤ C

2
∗ ,

thus taking the expectation over the possibly randomized oracle and Jensen’s inequality,

we get

E


√√√√ T∑

t=1

∑
e∈E

1{Ot(e)}N2
St,e

 ≤
√√√√ T∑

t=1

E

[∑
e∈E

1{Ot(e)}N2
St,e

]
≤

√√√√ T∑
t=1

C2
∗ = C∗

√
T .

(A.10)

Combining the above with Lemma 2 and (A.9), we obtain

Rαγ(T ) ≤ 2cC∗
αγ

√
dTE∗ log

(
1 + TE∗

dσ2

)
log
(
1 + 1

σ2

) + [n−K]
T∑
t=1

P
(
ξt−1

)
. (A.11)

For the special case when X = I, we have

Rαγ(T ) ≤ 2cC∗
αγ

√
Tm log

(
1 + T

σ2

)
log
(
1 + 1

σ2

) + [n−K]
T∑
t=1

P
(
ξt−1

)
. (A.12)

Finally, we need to bound the failure probability of upper confidence bound being wrong∑T
t=1 P

(
ξt−1

)
. We prove the following bound on P

(
ξt−1

)
:

Lemma 3. For any t = 1, 2, . . . , T , any σ > 0, any δ ∈ (0, 1), and any

c ≥ 1

σ

√
d log

(
1 +

TE∗
dσ2

)
+ 2 log

(
1

δ

)
+ ‖θ∗‖2,

we have P
(
ξt−1

)
≤ δ.
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Please refer to Section A.1.4 for the proof of Lemma 3. From Lemma 3, for a known up-

per boundD on ‖θ∗‖2, if we choose σ = 1 and c ≥
√
d log

(
1 + TE∗

d

)
+ 2 log (T (n+ 1−K))+

D, which corresponds to δ = 1
T (n+1−K) in Lemma 3, then we have

[n−K]

T∑
t=1

P
(
ξt−1

)
< 1.

This concludes the proof of Theorem 8.

A.1.2 Proof of Theorem 9

Recall that we use GSt,v = (VSt,v, ESt,v) to denote the relevant subgraph of node v under

the source node set St. Since Theorem 9 focuses on the influence from St to v, and by

definition all the paths from St to v are in GSt,v, thus, it is sufficient to restrict to GSt,v and

ignore other parts of G in this analysis.

We start by defining some useful notations.

Influence Probability with Removed Nodes: Recall that for any weight function

w : E → [0, 1], any source node set S ⊂ V and any target node v ∈ V, f(S, w, v) is the

probability that S will influence v under weight w (see Definition 1). We now define a

similar notation for the influence probability with removed nodes. Specifically, for

any disjoint node set V1,V2 ⊆ VSt,v ⊆ V, we define h(V1,V2, w) as follows:

• First, we remove nodes V2, as well as all edges connected to/from V2, from GSt,v, and

obtain a new graph G′.

• h(V1,V2, w) is the probability that V1 will influence the target node v in graph G′

under the weight (activation probability) w(e) for all e ∈ G′.

Obviously, a mathematically equivalent way to define h(V1,V2, w) is to define it as the

probability that V1 will influence v in GSt,v under a new weight w̃, defined as

w̃(e) =

{
0 if e is from or to a node in V2

w(e) otherwise

Note that by definition, f(St, w, v) = h(St, ∅, w). Also note that h(V1,V2, w) implicitly
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depends on v, but we omit v in this notation to simplify the exposition.

Edge Set E(V1,V2): For any two disjoint node sets V1,V2 ⊆ VSt,v, we define the edge set

E(V1,V2) as

E(V1,V2) = {e = (u1, u2) : e ∈ ESt,v, u1 ∈ V1, and u2 /∈ V2} .

That is, E(V1,V2) is the set of edges in GSt,v from V1 to VSt,v \ V2.

Diffusion Process: Note that under any edge activation realization w(e), e ∈ ESt,v,
on the relevant subgraph GSt,v, we define a finite-length sequence of disjoint node sets

S0,S1, . . . ,S τ̃ as

S0 ∆
=St

Sτ+1 ∆
=
{
u2 ∈ VSt,v : u2 /∈ ∪ττ ′=0Sτ

′
and ∃e = (u1, u2) ∈ ESt,v s.t. u1 ∈ Sτ and w(e) = 1

}
,

(A.13)

∀τ = 0, . . . , τ̃ − 1. That is, under the realization w(e), e ∈ ESt,v, Sτ+1 is the set of nodes

directly activated by Sτ . Specifically, any node u2 ∈ Sτ+1 satisfies u2 /∈
⋃τ
τ ′=0 Sτ

′
(i.e. it

was not activated before), and there exists an activated edge e from Sτ to u2 (i.e. it is

activated by some node in Sτ ). We define S τ̃ as the first node set in the sequence s.t. either

S τ̃ = ∅ or v ∈ S τ̃ , and assume this sequence terminates at S τ̃ . Note that by definition,

τ̃ ≤ |VSt,v| always holds. We refer to each τ = 0, 1, . . . , τ̃ as a diffusion step in this section.

To simplify the exposition, we also define S0:τ ∆
=
⋃τ
τ ′=0 S

τ ′ for all τ ≥ 0 and S0:−1 ∆
= ∅.

Since w is random, (Sτ )τ̃τ=0 is a stochastic process, which we refer to as the diffusion

process. Note that τ̃ is also random; in particular, it is a stopping time.

Based on the shorthand notations defined above, we have the following lemma for the

diffusion process (Sτ )τ̃τ=0 under any weight function w:

Lemma 4. For any weight function w : E → [0, 1], any step τ = 0, 1, . . . , τ̃ , any Sτ and
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S0:τ−1, we have

h
(
Sτ ,S0:τ−1, w

)
=


1 if v ∈ Sτ

0 if Sτ = ∅
E
[
h
(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]

otherwise

,

where the expectation is over Sτ+1 under weight w. Note that the tuple (Sτ ,S0:τ−1) in the

conditional expectation means that Sτ is the source node set and nodes in S0:τ−1 have been

removed.

Proof. Notice that by definition, h
(
Sτ ,S0:τ−1, w

)
= 1 if v ∈ Sτ and h

(
Sτ ,S0:τ−1, w

)
= 0

if Sτ = ∅. Also note that in these two cases, τ̃ = τ .

Otherwise, we prove that h
(
Sτ ,S0:τ−1, w

)
= E

[
h
(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]
. Recall

that by definition, h
(
Sτ ,S0:τ−1, w

)
is the probability that v will be influenced conditioning

on

source node set Sτ and removed node set S0:τ−1, (A.14)

that is

h
(
Sτ ,S0:τ−1, w

)
= E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1)
]

(A.15)

Let w(e), ∀e ∈ E(Sτ ,S0:τ ) be any possible realization. Now we analyze the probability

that v will be influenced conditioning on

source node set Sτ , removed node set S0:τ−1, and w(e) for all e ∈ E(Sτ ,S0:τ ). (A.16)

Specifically, conditioning on Equation A.16, we can define a new weight function w′ as

w′(e) =

{
w(e) if e ∈ E(Sτ ,S0:τ )

w(e) otherwise
(A.17)

then h
(
Sτ ,S0:τ−1, w′

)
is the probability that v will be influenced conditioning on Equa-

tion A.16. That is,

h
(
Sτ ,S0:τ−1, w′

)
= E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1),w(e) ∀e ∈ E(Sτ ,S0:τ )
]
, (A.18)

for any possible realization of w(e), ∀e ∈ E(Sτ ,S0:τ ). Notice that on the lefthand of Equa-
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tion A.18, w′ encodes the conditioning on w(e) for all e ∈ E(Sτ ,S0:τ ) (see Equation A.17).

From here to Equation A.20, we focus on an arbitrary but fixed realization of w(e),

∀e ∈ E(Sτ ,S0:τ ) (or equivalently, an arbitrary but fixed w′). Based on the definition of

Sτ+1, conditioning on Equation A.16, Sτ+1 is deterministic and all nodes in Sτ+1 can also

be treated as source nodes. Thus, we have

h
(
Sτ ,S0:τ−1, w′

)
= h

(
Sτ ∪ Sτ+1,S0:τ−1, w′

)
,

conditioning on Equation A.16.

On the other hand, conditioning on Equation A.16, we can treat any edge e ∈ E(Sτ ,S0:τ )

with w(e) = 0 as having been removed. Since nodes in S0:τ−1 have also been removed, and

v /∈ Sτ , then if there is a path from Sτ to v, then it must go through Sτ+1, and the last

node on the path in Sτ+1 must be after the last node on the path in Sτ (note that the path

might come back to Sτ for several times). Hence, conditioning on Equation A.16, if nodes

in Sτ+1 are also treated as source nodes, then Sτ is irrelevant for influence on v and can

be removed. So we have

h
(
Sτ ,S0:τ−1, w′

)
= h

(
Sτ ∪ Sτ+1,S0:τ−1, w′

)
= h

(
Sτ+1,S0:τ , w

)
. (A.19)

Note that in the last equation we change the weight function back to w since edges in

E(Sτ ,S0:τ ) have been removed. Thus, conditioning on Equation A.16, we have

h
(
Sτ+1,S0:τ , w

)
=h

(
Sτ ,S0:τ−1, w′

)
=E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1),w(e) ∀e ∈ E(Sτ ,S0:τ )
]
. (A.20)

Notice again that Equation A.20 holds for any possible realization of w(e), ∀e ∈ E(Sτ ,S0:τ ).

Finally, we have

h
(
Sτ ,S0:τ−1, w

) (a)
= E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1)
]

(b)
= E

[
E
[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1),w(e)∀e ∈ E(Sτ ,S0:τ )
]∣∣(Sτ ,S0:τ−1)

]
(c)
= E

[
h
(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]
, (A.21)

where (a) follows from Equation A.15, (b) follows from the tower rule, and (c) follows from
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Equation A.20. This concludes the proof.

Consider two weight functions U,w : E → [0, 1] s.t.U(e) ≥ w(e) for all e ∈ E . The

following lemma bounds the difference h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
in a recursive

way.

Lemma 5. For any two weight functions w,U : E → [0, 1] s.t. U(e) ≥ w(e) for all e ∈ E,

any step τ = 0, 1, . . . , τ̃ , any Sτ and S0:τ−1, we have

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
= 0

if v ∈ Sτ or Sτ = ∅; and otherwise

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
≤

∑
e∈E(Sτ ,S0:τ )

[U(e)− w(e)]

+E
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]
,

where the expectation is over Sτ+1 under weight w. Recall that the tuple (Sτ ,S0:τ−1) in the

conditional expectation means that Sτ is the source node set and nodes in S0:τ−1 have been

removed.

Proof. First, note that if v ∈ Sτ or Sτ = ∅, then

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
= 0

follows directly from Lemma 4. Otherwise, to simplify the exposition, we overload the

notation and use w(Sτ+1) to denote the conditional probability of Sτ+1 conditioning on

(Sτ ,S0:τ−1) under the weight function w, and similarly for U(Sτ+1). That is

w(Sτ+1)
∆
= Prob

[
Sτ+1

∣∣(Sτ ,S0:τ−1);w
]

U(Sτ+1)
∆
= Prob

[
Sτ+1

∣∣(Sτ ,S0:τ−1);U
]
, (A.22)

where the tuple (Sτ ,S0:τ−1) in the conditional probability means that Sτ is the source node

set and nodes in S0:τ−1 have been removed, and w and U after the semicolon indicate the

weight function.
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Then from Lemma 4, we have

h
(
Sτ ,S0:τ−1, U

)
=
∑
Sτ+1

U(Sτ+1)h
(
Sτ+1,S0:τ , U

)
h
(
Sτ ,S0:τ−1, w

)
=
∑
Sτ+1

w(Sτ+1)h
(
Sτ+1,S0:τ , w

)
where the sum is over all possible realization of Sτ+1.

Hence we have

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
=
∑
Sτ+1

[
U(Sτ+1)h

(
Sτ+1,S0:τ , U

)
− w(Sτ+1)h

(
Sτ+1,S0:τ , w

)]
=
∑
Sτ+1

[
U(Sτ+1)h

(
Sτ+1,S0:τ , U

)
− w(Sτ+1)h

(
Sτ+1,S0:τ , U

)]
+
∑
Sτ+1

[
w(Sτ+1)h

(
Sτ+1,S0:τ , U

)
− w(Sτ+1)h

(
Sτ+1,S0:τ , w

)]
=
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
+
∑
Sτ+1

w(Sτ+1)
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)]
, (A.23)

where the sum in the above equations is also over all the possible realizations of Sτ+1.

Notice that by definition, we have

E
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]

=∑
Sτ+1

w(Sτ+1)
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)]
, (A.24)

where the expectation in the lefthand side is over Sτ+1 under weight w, or equivalently,

over w(e) for all e ∈ E(Sτ ,S0:τ ) under weight w. Thus, to prove Lemma 5, it is sufficient

to prove that∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
≤

∑
e∈E(Sτ ,S0:τ )

[U(e)− w(e)] . (A.25)
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Notice that ∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
(a)

≤
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
(b)

≤
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
(c)
=

1

2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ , (A.26)

where (a) holds since

∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
=∑

Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
+
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
1
[
U(Sτ+1) < w(Sτ+1)

]
,

and the second term on the righthand side is non-positive. And (b) holds since 0 ≤
h
(
Sτ+1,S0:τ , U

)
≤ 1 by definition. To prove (c), we define shorthand notations

A+ =
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
A− =

∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
1
[
U(Sτ+1) < w(Sτ+1)

]
Then we have

A+ +A− =
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
= 0,

since by definition
∑
Sτ+1 U(Sτ+1) =

∑
Sτ+1 w(Sτ+1) = 1. Moreover, we also have

A+ −A− =
∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ .
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And hence A+ = 1
2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣. Thus, to prove Lemma 5, it is sufficient

to prove

1

2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ ≤ ∑

e∈E(Sτ ,S0:τ )

[U(e)− w(e)] . (A.27)

Let w̃ ∈ {0, 1}|E(Sτ ,S0:τ )| be an arbitrary edge activation realization for edges in E(Sτ ,S0:τ ).

Also with a little bit abuse of notation, we use w(w̃) to denote the probability of w̃ under

weight w. Notice that

w(w̃) =
∏

e∈E(Sτ ,S0:τ )

w(e)w̃(e) [1− w(e)]1−w̃(e) ,

and U(w̃) is defined similarly. Recall that by definition Sτ+1 is a deterministic function of

source node set Sτ , removed nodes S0:τ−1, and w̃. Hence, for any possible realized Sτ+1,

let W(Sτ+1) denote the set of w̃’s that lead to this Sτ+1, then we have

U(Sτ+1) =
∑

w̃∈W(Sτ+1)

U(w̃) and w(Sτ+1) =
∑

w̃∈W(Sτ+1)

w(w̃)

Thus, we have

1

2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ =

1

2

∑
Sτ+1

∣∣∣∣∣∣
∑

w̃∈W(Sτ+1)

[U(w̃)− w(w̃)]

∣∣∣∣∣∣
≤ 1

2

∑
Sτ+1

∑
w̃∈W(Sτ+1)

|U(w̃)− w(w̃)|

=
1

2

∑
w̃

|U(w̃)− w(w̃)| (A.28)

Finally, we prove that

1

2

∑
w̃

|U(w̃)− w(w̃)| ≤
∑

e∈E(Sτ ,S0:τ )

[U(e)− w(e)] (A.29)

by mathematical induction. Without loss of generality, we order the edges in E(Sτ ,S0:τ )

as 1, 2, . . . , |E(Sτ ,S0:τ )|. For any k = 1, . . . , |E(Sτ ,S0:τ )|, we use w̃k ∈ {0, 1}k to denote an
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arbitrary edge activation realization for edges 1, . . . , k. Then, we prove

1

2

∑
w̃k

|U(w̃k)− w(w̃k)| ≤
k∑
e=1

[U(e)− w(e)] (A.30)

for all k = 1, . . . , |E(Sτ ,S0:τ )| by mathematical induction. Notice that when k = 1, we have

1

2

∑
w̃1

|U(w̃1)− w(w̃1)| = 1

2
[|U(1)− w(1)|+ |(1− U(1))− (1− w(1))|] = U(1)− w(1).

Now assume that the induction hypothesis holds for k, we prove that it also holds for k+1.

Note that

1

2

∑
w̃k+1

|U(w̃k+1)− w(w̃k+1)| =1

2

∑
w̃k

[|U(w̃k)U(k + 1)− w(w̃k)w(k + 1)|

+ |U(w̃k)(1− U(k + 1))− w(w̃k)(1− w(k + 1))|]
(a)

≤ 1

2

∑
w̃k

[|U(w̃k)U(k + 1)− w(w̃k)U(k + 1)|

+ |w(w̃k)U(k + 1)− w(w̃k)w(k + 1)|

+ |U(w̃k)(1− U(k + 1))− w(w̃k)(1− U(k + 1))|

+ |w(w̃k)(1− U(k + 1))− w(w̃k)(1− w(k + 1))|]

=
1

2

∑
w̃k

[U(k + 1) |U(w̃k)− w(w̃k)|+ w(w̃k) |U(k + 1)− w(k + 1)|

+ (1− U(k + 1)) |U(w̃k)− w(w̃k)|+ w(w̃k) |U(k + 1)− w(k + 1)|]

=
1

2

∑
w̃k

|U(w̃k)− w(w̃k)|+ [U(k + 1)− w(k + 1)]

(b)

≤
k∑
e=1

[U(e)− w(e)] + [U(k + 1)− w(k + 1)]

=

k+1∑
e=1

[U(e)− w(e)] , (A.31)

where (a) follows from the triangular inequality and (b) follows from the induction hypoth-
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esis. Hence, we have proved Equation A.30 by induction hypothesis. As we have proved

above, this is sufficient to prove Lemma 5.

Finally, we prove the following lemma:

Lemma 6. For any two weight functions w,U : E → [0, 1] s.t. U(e) ≥ w(e) for all e ∈ E,

we have

f(St, U, v)− f(St, w, v) ≤ E
[∑τ̃−1

τ=0

∑
e∈E(Sτ ,S0:τ ) [U(e)− w(e)]

∣∣∣St] ,
where τ̃ is the stopping time when Sτ = ∅ or v ∈ Sτ , and the expectation is under the

weight function w.

Proof. Recall that the diffusion process (Sτ )τ̃τ=0 is a stochastic process. Note that by defi-

nition, if we treat the pair (Sτ ,S0:τ−1) as the state of the diffusion process at diffusion step

τ , and assume that w(e) ∼ Bern (w(e)) are independently sampled for all e ∈ ESt,v, then

the sequence (S0,S0:−1), (S0,S0:−1), . . . , (S τ̃ ,S0:τ̃−1) follows a Markov chain, specifically,

• For any state (Sτ ,S0:τ−1) s.t. v /∈ Sτ and Sτ 6= ∅, its transition probabilities to the

next state (Sτ+1,S0:τ ) depend on w(e)’s for e ∈ E
(
Sτ ,S0:τ

)
.

• Any state (Sτ ,S0:τ−1) s.t. v ∈ Sτ or Sτ = ∅ is a terminal state and the state transition

terminates once visiting such a state. Recall that by definition of the stopping time

τ̃ , the state transition terminates at τ̃ .

We define h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
as the “value” at state (Sτ ,S0:τ−1).

Also note that the states in this Markov chain is topologically sortable in the sense that

it will never revisit a state it visits before. Hence, we can compute h
(
Sτ ,S0:τ−1, U

)
−

h
(
Sτ ,S0:τ−1, w

)
via a backward induction from the terminal states, based on a valid topo-

logical order. Thus, from Lemma 5, we have

f(St, U, v)− f(St, w, v)
(a)
= h(S0, ∅, U)− h(S0, ∅, w)

(b)

≤ E

τ̃−1∑
τ=0

∑
e∈E(Sτ ,S0:τ )

[U(e)− w(e)]

∣∣∣∣∣∣S0

 , (A.32)

where (a) follows from the definition of h, and (b) follows from the backward induction.

Since S0 = St by definition, we have proved Lemma 6.
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Finally, we prove Theorem 9 based on Lemma 6. Recall that the favorable event at

round t− 1 is defined as

ξt−1 =

{
|xT
e(θτ−1 − θ∗)| ≤ c

√
xT
eM
−1
τ−1xe, ∀e ∈ E , ∀τ ≤ t

}
.

Also, based on Algorithm 2, we have

0 ≤ p(e) ≤ Ut(e) ≤ 1,∀e ∈ E .

Thus, from Lemma 6, we have

f(St, Ut, v)− f(St, p, v) ≤ E
[∑τ̃−1

τ=0

∑
e∈E(Sτ ,S0:τ ) [Ut(e)− p(e)]

∣∣∣St,Ht−1

]
,

where the expectation is based on the weight function p. Recall that Ot(e) is the event that

edge e is observed at round t. Recall that by definition, all edges in E(Sτ ,S0:τ ) are observed

at round t (since they are going out from an influenced node in Sτ , see Definition 2) and

belong to ESt,v, so we have

f(St, Ut, v)− f(St, p, v) ≤ E

τ̃−1∑
τ=0

∑
e∈E(Sτ ,S0:τ )

[Ut(e)− p(e)]

∣∣∣∣∣∣St,Ht−1


≤ E

 ∑
e∈ESt,v

1 (Ot(e)) [Ut(e)− p(e)]

∣∣∣∣∣∣St,Ht−1

 . (A.33)

This completes the proof for Theorem 9.

A.1.3 Proof of Lemma 2

Proof. To simplify the exposition, we define zt,e =
√
xT
eM
−1
t−1xe for all t = 1, 2 . . . , T and

all e ∈ E , and use Eot denote the set of edges observed at round t. Recall that

Mt = Mt−1 +
1

σ2

∑
e∈E

xex
T
e1 {Ot(e)} = Mt−1 +

1

σ2

∑
e∈Eot

xex
T
e. (A.34)
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Thus, for all (t, e) such that e ∈ Eot (i.e., edge e is observed at round t), we have that

det [Mt] ≥det

[
Mt−1 +

1

σ2
xex

T
e

]
= det

[
M

1
2
t−1

(
I +

1

σ2
M
− 1

2
t−1xex

T
eM
− 1

2
t−1

)
M

1
2
t−1

]
= det [Mt−1] det

[
I +

1

σ2
M
− 1

2
t−1xex

T
eM
− 1

2
t−1

]
= det [Mt−1]

(
1 +

1

σ2
xT
eM
−1
t−1xe

)
= det [Mt−1]

(
1 +

z2
t,e

σ2

)
.

Thus, we have

(det [Mt])
|Eot | ≥ (det [Mt−1])|E

o
t |
∏
e∈Eot

(
1 +

z2
t,e

σ2

)
.

Remark 1. Notice that when the feature matrix X = I, Mt’s are always diagonal matrices,

and we have

det [Mt] = det [Mt−1]
∏
e∈Eot

(
1 +

z2
t,e

σ2

)
,

which will lead to a tighter bound in the tabular (X = I) case.

Since 1) det [Mt] ≥ det [Mt−1] from Equation A.34 and 2) |Eot | ≤ E∗, where E∗ is

defined in Equation A.1 and |Eot | ≤ E∗ follows from its definition, we have

(det [Mt])
E∗ ≥ (det [Mt−1])E∗

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
.

Therefore, we have

(det [MT ])E∗ ≥ (det [M0])E∗
T∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
=

T∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
,

since M0 = I. On the other hand, we have that

trace (MT ) = trace

I +
1

σ2

T∑
t=1

∑
e∈Eot

xex
T
e

 = d+
1

σ2

T∑
t=1

∑
e∈Eot

‖xe‖22 ≤ d+
TE∗
σ2

,

where the last inequality follows from the fact that ‖xe‖2 ≤ 1 and |Eot | ≤ E∗. From the
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trace-determinant inequality, we have 1
dtrace (MT ) ≥ [det(MT )]

1
d , thus we have

[
1 +

TE∗
dσ2

]dE∗
≥
[

1

d
trace (MT )

]dE∗
≥ [det(MT )]E∗ ≥

T∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
.

Taking the logarithm on the both sides, we have

dE∗ log

[
1 +

TE∗
dσ2

]
≥

T∑
t=1

∑
e∈Eot

log

(
1 +

z2
t,e

σ2

)
. (A.35)

Notice that z2
t,e = xT

eM
−1
t−1xe ≤ xT

eM
−1
0 xe = ‖xe‖22 ≤ 1, thus we have z2

t,e ≤
log

(
1+

z2t,e

σ2

)
log
(

1+ 1
σ2

) · 1

Hence we have

T∑
t=1

∑
e∈Eot

z2
t,e ≤

1

log
(
1 + 1

σ2

) T∑
t=1

∑
e∈Eot

log

(
1 +

z2
t,e

σ2

)
≤
dE∗ log

[
1 + TE∗

dσ2

]
log
(
1 + 1

σ2

) . (A.36)

Remark 2. When the feature matrix X = I, we have d = m,

det [MT ] =

T∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
, and m log

[
1 +

TE∗
mσ2

]
≥

T∑
t=1

∑
e∈Eot

log

(
1 +

z2
t,e

σ2

)
.

This implies that

T∑
t=1

∑
e∈Eot

z2
t,e ≤

m log
[
1 + T

σ2

]
log
(
1 + 1

σ2

) , (A.37)

since E∗ ≤ m.

Finally, from Cauchy-Schwarz inequality, we have that

T∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe =

T∑
t=1

∑
e∈Eot

NSt,ezt,e

1Notice that for any y ∈ [0, 1], we have y ≤
log

(
1+ y

σ2

)
log

(
1+ 1

σ2

) ∆
= κ(y). To see it, notice that κ(y) is a strictly

concave function, and κ(0) = 0 and κ(1) = 1.
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≤

√√√√√
 T∑
t=1

∑
e∈Eot

N2
St,e

 T∑
t=1

∑
e∈Eot

z2
t,e



=

√√√√√( T∑
t=1

∑
e∈E

1 {Ot(e)}N2
St,e

) T∑
t=1

∑
e∈Eot

z2
t,e

. (A.38)

Combining this inequality with the above bounds on
∑T

t=1

∑
e∈Eot

z2
t,e (see Equations A.36

and A.37), we obtain the statement of the lemma.

A.1.4 Proof of Lemma 3

Proof. We use Eot denote the set of edges observed at round t. The first observation is that

we can order edges in Eot based on breadth-first search (BFS) from the source nodes St, as

described in Algorithm 5, where πt(St) is an arbitrary conditionally deterministic order of

St. We say a node u ∈ V is a downstream neighbor of node v ∈ V if there is a directed edge

(v, u). We also assume that there is a fixed order of downstream neighbors for any node

v ∈ V.

Algorithm 5 Breadth-First Sort of Observed Edges

Input: graph G, πt(St), and wt

Initialization: node queue queueN ← πt(St), edge queue queueE ← ∅, dictionary of
influenced nodes dictN← St
while queueN is not empty do

node v ← queueN.dequeue()
for all downstream neighbor u of v do

queueE.enqueue((v, u))
if wt(v, u) == 1 and u /∈ dictN then

queueN.enqueue(u) and dictN← dictN ∪ {u}
Output: edge queue queueE

Let Jt = |Eot |. Based on Algorithm 5, we order the observed edges in Eot as at1, a
t
2, . . . , a

t
Jt

.

We start by defining some useful notation. For any t = 1, 2, . . . , any j = 1, 2, . . . , Jt, we

define

ηt,j = wt(a
t
j)− p(atj).
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One key observation is that ηt,j ’s form a martingale difference sequence (MDS).2 Moreover,

ηt,j ’s are bounded in [−1, 1] and hence they are conditionally sub-Gaussian with constant

R = 1. We further define that

Vt =σ2Mt = σ2I +

t∑
τ=1

Jτ∑
j=1

xaτj x
T
aτj
, and

Yt =
t∑

τ=1

Jτ∑
j=1

xaτj ηt,j = Bt −
t∑

τ=1

Jτ∑
j=1

xaτj p(a
t
j) = Bt −

 t∑
τ=1

Jτ∑
j=1

xaτj x
T
aτj

 θ∗.
As we will see later, we define Vt and Yt to use the self-normalized bound developed in

(Abbasi-Yadkori et al., 2011) (see Algorithm 1 of (Abbasi-Yadkori et al., 2011)). Notice

that

Mtθt =
1

σ2
Bt =

1

σ2
Yt +

1

σ2

 t∑
τ=1

Jτ∑
j=1

xaτj x
T
aτj

 θ∗ =
1

σ2
Yt + [Mt − I] θ∗,

where the last equality is based on the definition of Mt. Hence we have

θt − θ∗ = M−1
t

[
1

σ2
Yt − θ∗

]
.

Thus, for any e ∈ E , we have

∣∣〈xe, θt − θ∗〉∣∣ =

∣∣∣∣xT
eM
−1
t

[
1

σ2
Yt − θ∗

]∣∣∣∣ ≤ ‖xe‖M−1
t
‖ 1

σ2
Yt − θ∗‖M−1

t

≤‖xe‖M−1
t

[
‖ 1

σ2
Yt‖M−1

t
+ ‖θ∗‖M−1

t

]
,

where the first inequality follows from the Cauchy-Schwarz inequality and the second in-

equality follows from the triangle inequality. Notice that ‖θ∗‖M−1
t
≤ ‖θ∗‖M−1

0
= ‖θ∗‖2, and

‖ 1
σ2Yt‖M−1

t
= 1

σ‖Yt‖V−1
t

(since M−1
t = σ2V−1

t ), therefore we have

∣∣〈xe, θt − θ∗〉∣∣ ≤ ‖xe‖M−1
t

[
1

σ
‖Yt‖V−1

t
+ ‖θ∗‖2

]
. (A.39)

2Notice that the notion of “time” (or a round) is indexed by the pair (t, j), and follows the lexicographical
order. Based on Algorithm 5, at the beginning of round (t, j), atj is conditionally deterministic and the
conditional mean of wt(a

t
j) is p(atj).
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Notice that the above inequality always holds. We now provide a high-probability bound

on ‖Yt‖V−1
t

based on self-normalized bound proved in (Abbasi-Yadkori et al., 2011). From

Theorem 1 of (Abbasi-Yadkori et al., 2011), we know that for any δ ∈ (0, 1), with probability

at least 1− δ, we have

‖Yt‖V−1
t
≤

√
2 log

(
det(Vt)1/2 det(V0)−1/2

δ

)
∀t = 0, 1, . . . .

Notice that det(V0) = det(σ2I) = σ2d. Moreover, from the trace-determinant inequality,

we have

[det(Vt)]
1/d ≤ trace (Vt)

d
= σ2 +

1

d

t∑
τ=1

Jτ∑
j=1

‖xaτj ‖
2
2 ≤ σ2 +

tE∗
d
≤ σ2 +

TE∗
d

,

where the second inequality follows from the assumption that ‖xatk‖2 ≤ 1 and the fact

Jt = |Eot | ≤ E∗, and the last inequality follows from t ≤ T . Thus, with probability at least

1− δ, we have

‖Yt‖V−1
t
≤

√
d log

(
1 +

TE∗
dσ2

)
+ 2 log

(
1

δ

)
∀t = 0, 1, . . . , T − 1.

That is, with probability at least 1− δ, we have

∣∣〈xe, θt − θ∗〉∣∣ ≤ ‖xe‖M−1
t

[
1

σ

√
d log

(
1 +

TE∗
dσ2

)
+ 2 log

(
1

δ

)
+ ‖θ∗‖2

]

for all t = 0, 1, . . . , T − 1 and ∀e ∈ E.

Recall that by the definition of event ξt−1, the above inequality implies that, for any

t = 1, 2, . . . , T , if

c ≥ 1

σ

√
d log

(
1 +

TE∗
dσ2

)
+ 2 log

(
1

δ

)
+ ‖θ∗‖2,

then P (ξt−1) ≥ 1− δ. That is, P (ξt−1) ≤ δ.
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A.2 Proof for a Better Lemma 7

In this section, we prove the following lemma, which is an improved version of Lemma 2.

Lemma 7. Under the assumption that ‖xe‖22 ≤ 1
m for all e ∈ E, for any round t =

1, 2, . . . , T , we have

T∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe ≤

√√√√( T∑
t=1

∑
e∈E

1{Ot(e)}N2
St,e

)
d log

(
1 + T

dσ2

)
log
(
1 + 1

σ2

)
Proof. To simplify the exposition, we define zt,e =

√
xT
eM
−1
t−1xe for all t = 1, 2 . . . , T and

all e ∈ E , and use Eot denote the set of edges observed at round t. Recall that

Mt = Mt−1 +
1

σ2

∑
e∈E

xex
T
e1 {Ot(e)} = Mt−1 +

1

σ2

∑
e∈Eot

xex
T
e. (A.40)

Thus, we have

det [Mt] = det

Mt−1 +
1

σ2

∑
e∈Eot

xex
T
e


= det

[
M

1
2
t−1

]
det

I +
1

σ2
M
− 1

2
t−1

∑
e∈Eot

xex
T
e

M
− 1

2
t−1

det

[
M

1
2
t−1

]

= det [Mt−1] det

I +
1

σ2
M
− 1

2
t−1

∑
e∈Eot

xex
T
e

M
− 1

2
t−1

 . (A.41)

Let λ1, . . . , λd be the d eigenvalues of 1
σ2 M

− 1
2

t−1

(∑
e∈Eot

xex
T
e

)
M
− 1

2
t−1, since the matrix is

positive semi-definite, we have λ1, . . . , λd ≥ 0. Hence we have

det [Mt] = det [Mt−1]

d∏
i=1

(1 + λi)

(a)

≥ det [Mt−1]

[
1 +

d∑
i=1

λi

]

113



= det [Mt−1]

1 +
1

σ2

∑
e∈Eot

trace

[
M
− 1

2
t−1xex

T
eM
− 1

2
t−1

]
= det [Mt−1]

1 +
1

σ2

∑
e∈Eot

xT
eM
−1
t−1xe


= det [Mt−1]

1 +
1

σ2

∑
e∈Eot

z2
t,e

 , (A.42)

where (a) follows from the fact that λ1, . . . , λd ≥ 0. Recall that M0 = I, then we have

det [MT ] ≥
T∏
t=1

1 +
1

σ2

∑
e∈Eot

z2
t,e

 .
On the other hand, we have

trace [MT ] = d+
1

σ2

T∑
t=1

∑
e∈Eot

‖xe‖22 ≤ d+
T

σ2
,

where the last inequality follows from the assumption that ‖xe‖22 ≤ 1
m for all e ∈ E . Notice

that under this assumption, we have

∑
e∈Eot

‖xe‖22 ≤
∑
e∈E
‖xe‖22 ≤

∑
e∈E

1

m
= 1.

Combining the above results, we have

T∏
t=1

1 +
1

σ2

∑
e∈Eot

z2
t,e

 ≤ det [MT ] ≤
[

trace [MT ]

d

]d
≤
[
1 +

T

dσ2

]d
.

Taking the logarithm, we have

d log

(
1 +

T

dσ2

)
≥

T∑
t=1

log

1 +
1

σ2

∑
e∈Eot

z2
t,e


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Notice that ∑
e∈Eot

z2
t,e ≤

∑
e∈E

xT
eM
−1
t−1xe ≤

∑
e∈E

xT
eM
−1
0 xe =

∑
e∈E
‖xe‖22 ≤

∑
e∈E

1

m
= 1.

Define auxiliary function κ : <+ → <+ as κ(y) = log
(
1 + y

σ2

)
. Notice that κ(y) is concave

in y, and hence κ(y) ≥ log
(
1 + 1

σ2

)
y for y ∈ [0, 1]. So we have

d log

(
1 +

T

dσ2

)
≥

T∑
t=1

log

1 +
1

σ2

∑
e∈Eot

z2
t,e

 =

T∑
t=1

κ

∑
e∈Eot

z2
t,e

 ≥ log

(
1 +

1

σ2

) T∑
t=1

∑
e∈Eot

z2
t,e,

where the last inequality follows from
∑

e∈Eot
z2
t,e ∈ [0, 1]. This implies that

T∑
t=1

∑
e∈Eot

z2
t,e ≤

d log
(
1 + T

dσ2

)
log
(
1 + 1

σ2

) .

Finally, from Cauchy-Schwarz inequality, we have that

T∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe =

T∑
t=1

∑
e∈Eot

NSt,ezt,e

≤

√√√√√
 T∑
t=1

∑
e∈Eot

N2
St,e

 T∑
t=1

∑
e∈Eot

z2
t,e



=

√√√√√( T∑
t=1

∑
e∈E

1 {Ot(e)}N2
St,e

) T∑
t=1

∑
e∈Eot

z2
t,e

. (A.43)

Combining this inequality with the above bound on
∑T

t=1

∑
e∈Eot

z2
t,e, we obtain the state-

ment of the lemma.

115



A.3 Laplacian Regularization

As explained in section 2.4.6, enforcing Laplacian regularization leads to the following

optimization problem:

θ̂t = arg min
θ

[
t∑

j=1

∑
u∈St

(yu,j − θuX)2 + λ2

∑
(u1,u2)∈E

||θu1 − θu2 ||22]

Here, the first term is the data fitting term, whereas the second term is the Laplacian

regularization terms which enforces smoothness in the source node estimates. This can

optimization problem can be re-written as follows:

θ̂t = arg min
θ

[ t∑
j=1

∑
u∈St

(yu,j − θuX)2 + λ2θ
T (L⊗ Id)θ

]

Here, θ ∈ <dn is the concatenation of the n d-dimensional θu vectors and A ⊗ B refers to

the Kronecker product of matrices A and B. Setting the gradient of equation A.44 to zero

results in solving the following linear system:

[XXT ⊗ In + λ2L⊗ Id]θ̂t = bt (A.44)

Here bt corresponds to the concatenation of the n d-dimensional vectors bu,t. This is the

Sylvester equation and there exist sophisticated methods of solving it. For simplicity, we

focus on the special case when the features are derived from the Laplacian eigenvectors

(Section 2.4.6).

Let βt be a diagonal matrix such that βtu, u refers to the number of times node u has

been selected as the source. Since the Laplacian eigenvectors are orthogonal, when using

Laplacian features, XXT ⊗ In = β ⊗ Id. We thus obtain the following system:

[(β + λ2L)⊗ Id]θ̂t = bt (A.45)

Note that the matrix (β + λ2L) and thus (β + λ2L) ⊗ Id is positive semi-definite and can

be solved using conjugate gradient (Hestenes and Stiefel, 1952).

For conjugate gradient, the most expensive operation is the matrix-vector multiplication

(β + λ2L)⊗Id]v for an arbitrary vector v. Let vec be an operation that takes a d×n matrix
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and stacks it column-wise converting it into a dn-dimensional vector. Let V refer to the

d×n matrix obtained by partitioning the vector v into columns of V . Given this notation,

we use the property that (BT ⊗ A)v = vec(AV B). This implies that the matrix-vector

multiplication can then be rewritten as follows:

(β + λ2L)⊗ Idv = vec(V
(
β + λ2L

T
)
) (A.46)

Since β is a diagonal matrix, V β is an O(dn) operation, whereas V LT is an O(dm)

operation since there are only m non-zeros (corresponding to edges) in the Laplacian matrix.

Hence the complexity of computing the mean θ̂t is an order O((d(m+ n))κ) where κ is the

number of conjugate gradient iterations. In our experiments, similar to (Vaswani et al.,

2017b), we warm-start with the solution at the previous round and find that κ = 5 is

enough for convergence.

Unlike independent estimation where we update the UCB estimates for only the se-

lected nodes, when using Laplacian regularization, the upper confidence values for each

reachability probability need to be recomputed in each round. Once we have an estimate

of θ, calculating the mean estimates for the reachabilities for all u, v requires O(dn2) com-

putation. This is the most expensive step when using Laplacian regularization.

We now describe how to compute the confidence intervals. For this, let D denote the

diagonal of (β + λ2L)−1. The UCB value zu,v,t can then be computed as:

zu,v,t =
√
Du||xv||2 (A.47)

The `2 norms for all the target nodes v can be pre-computed. If we maintain the D vector,

the confidence intervals for all pairs can be computed in O(n2) time.

Note that Dt requires O(n) storage and can be updated across rounds in O(K) time

using the Sherman Morrison formula. Specifically, if Du,t refers to the uth element in the

vector Dt, then

Du,t+1 =


Du,t

(1 +Du,t)
, ifu ∈ St

Du,t, otherwise

Hence, the total complexity of implementing Laplacian regularization is O(dn2). We need

to store the θ vector, the Laplacian and the diagonal vectors β and D. Hence, the total
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memory requirement is O(dn+m).

A.4 Proof of theorem 2

Proof. Theorem 2 can be proved based on the definitions of monotonicity and submodu-

larity. Note that from Assumption 1, for any seed set S ∈ C, any seed node u ∈ S, and any

target node v ∈ V, we have f({u}, v) ≤ f(S, v), which implies that

f̃(S, v, p∗) = max
u∈S

f({u}, v) ≤ f(S, v),

hence

f̃(S, p∗) =
∑
v∈V

f̃(S, v, p∗) ≤
∑
v∈V

f(S, v) = f(S).

This proves the first part of theorem 2.

We now prove the second part of the theorem. First, note that from the first part, we

have

f̃(S̃, p∗) ≤ f(S̃) ≤ f(S∗),

where the first inequality follows from the first part of this theorem, and the second in-

equality follows from the definition of S∗. Thus, we have ρ ≤ 1. To prove that ρ ≥ 1/K,

we assume that S = {u1, u2, . . . , uK}, and define Sk = {u1, u2, . . . , uk} for k = 1, 2, . . . ,K.

Thus, for any S ⊆ V with |S| = K, we have

f(S) = f(S1) +

K−1∑
k=1

[f(Sk+1)− f(Sk)]

≤
K∑
k=1

f({uk}) =
K∑
k=1

∑
v∈V

f({uk}, v)

≤
∑
v∈V

K max
u∈S

f({u}, v) = K
∑
v∈V

f̃(S, v, p∗) = Kf̃(S, p∗),

where the first inequality follows from the submodularity of f(·). Thus we have

f(S∗) ≤ Kf̃(S∗, p∗) ≤ Kf̃(S̃, p∗),

where the second inequality follows from the definition of S̃. This implies that ρ ≥ 1/K.
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A.5 Proof of theorem 3

We start by defining some useful notations. We use Ht to denote the “history” by the end

of time t. For any node pair (u, v) ∈ V × V and any time t, we define the upper confidence

bound (UCB) Ut(u, v) and the lower confidence bound (LCB) Lt(u, v) respectively as

Ut(u, v) = Proj[0,1]

(
〈θ̂u,t−1,xv〉+ c

√
xTv Σ−1

u,t−1xv

)
Lt(u, v) = Proj[0,1]

(
〈θ̂u,t−1,xv〉 − c

√
xTv Σ−1

u,t−1xv

)
(A.48)

Notice that Ut is the same as the UCB estimate q defined in algorithm 3. Moreover, we

define the “good event” F as

F =

{
|xTv (θ̂u,t−1 − θ∗u)| ≤ c

√
xTv Σ−1

u,t−1xv, ∀u, v ∈ V, ∀t ≤ T
}
, (A.49)

and the “bad event” F as the complement of F .

A.5.1 Regret Decomposition

Recall that the realized scaled regret at time t is Rραt = f(S∗)− 1
ραf(St), thus we have

Rραt = f(S∗)− 1

ρα
f(St)

(a)
=

1

ρ
f̃(S̃, p∗)− 1

ρα
f(St)

(b)

≤ 1

ρ
f̃(S̃, p∗)− 1

ρα
f̃(St, p∗), (A.50)

where equality (a) follows from the definition of ρ (i.e. ρ is defined as ρ = f̃(S̃, p∗)/f(S∗)),
and inequality (b) follows from f̃(St, p∗) ≤ f(St) (see theorem 2). Thus, we have

Rρα(T ) =E

[
T∑
t=1

Rραt

]

≤ 1

ρ
E

{
T∑
t=1

[
f̃(S̃, p∗)− f̃(St, p∗)/α

]}

=
P (F)

ρ
E

{
T∑
t=1

[
f̃(S̃, p∗)− f̃(St, p∗)/α

]∣∣∣∣∣F
}

+
P (F)

ρ
E

{
T∑
t=1

[
f̃(S̃, p∗)− f̃(St, p∗)/α

]∣∣∣∣∣F
}
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≤ 1

ρ
E

{
T∑
t=1

[
f̃(S̃, p∗)− f̃(St, p∗)/α

]∣∣∣∣∣F
}

+
P (F)

ρ
nT, (A.51)

where the last inequality follows from the naive bounds P (F) ≤ 1 and f̃(S̃, p∗)−f̃(St, p∗)/α ≤
n. Notice that under “good” event F , we have

Lt(u, v) ≤ p∗uv = xTv θ
∗
u ≤ Ut(u, v) (A.52)

for all node pair (u, v) and for all time t ≤ T . Thus, we have f̃(S, Lt) ≤ f̃(S, p∗) ≤ f̃(S, Ut)
for all S and t ≤ T under event F . So under event F , we have

f̃(St, Lt)
(a)

≤ f̃(St, p∗)
(b)

≤ f̃(S̃, p∗)
(c)

≤ f̃(S̃, Ut) ≤ max
S∈C

f̃(S, Ut)
(d)

≤ 1

α
f̃(St, Ut)

for all t ≤ T , where inequalities (a) and (c) follow from (A.52), inequality (b) follows

from S̃ ∈ arg maxS∈C f̃(S, p∗), and inequality (d) follows from the fact that ORACLE is

an α-approximation algorithm. Specifically, the fact that ORACLE is an α-approximation

algorithm implies that f̃(St, Ut) ≥ αmaxS∈C f̃(S, Ut).
Consequently, under event F , we have

f̃(S̃, p∗)− 1

α
f̃(St, p∗) ≤

1

α
f̃(St, Ut)−

1

α
f̃(St, Lt)

=
1

α

∑
v∈V

[
max
u∈St

Ut(u, v)−max
u∈St

Lt(u, v)

]
≤ 1

α

∑
v∈V

∑
u∈St

[Ut(u, v)− Lt(u, v)]

≤
∑
v∈V

∑
u∈St

2c

α

√
xTv Σ−1

u,t−1xv. (A.53)

So we have

Rρα(T ) ≤ 2c

ρα
E

{
T∑
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv

∣∣∣∣∣F
}

+
P (F)

ρ
nT. (A.54)

In the remainder of this section, we will provide a worst-case bound on
∑T

t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv
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(see appendix A.5.2) and a bound on the probability of “bad event” P (F) (see appendix A.5.3).

A.5.2 Worst-Case Bound on
∑T

t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv

Notice that

T∑
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv =
∑
u∈V

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv

For each u ∈ V, we define Ku =
∑T

t=1 1 [u ∈ St] as the number of times at which u is chosen

as a source node, then we have the following lemma:

Lemma 8. For all u ∈ V, we have

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
√
nKu

√
dn log

(
1 + nKu

dλσ2

)
λ log

(
1 + 1

λσ2

) .

Moreover, when X = I, we have

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
√
nKu

√
n log

(
1 + Ku

λσ2

)
λ log

(
1 + 1

λσ2

) .
Proof. To simplify the exposition, we use Σt to denote Σu,t, and define zt,v =

√
xTv Σ−1

u,t−1xv

for all t ≤ T and all v ∈ V. Recall that

Σt = Σt−1 +
1 [u ∈ St]

σ2
XXT = Σt−1 +

1 [u ∈ St]
σ2

∑
v∈V

xvx
T
v .

Note that if u /∈ St, Σt = Σt−1. If u ∈ St, then for any v ∈ V, we have

det [Σt] ≥ det

[
Σt−1 +

1

σ2
xvx

T
v

]
= det

[
Σ

1
2
t−1

(
I +

1

σ2
Σ
− 1

2
t−1xvx

T
v Σ
− 1

2
t−1

)
Σ

1
2
t−1

]
= det [Σt−1] det

[
I +

1

σ2
Σ
− 1

2
t−1xvx

T
v Σ
− 1

2
t−1

]

121



= det [Σt−1]

(
1 +

1

σ2
xTv Σ−1

t−1xv

)
= det [Σt−1]

(
1 +

z2
t−1,v

σ2

)
.

Hence, we have

det [Σt]
n ≥ det [Σt−1]n

∏
v∈V

(
1 +

z2
t−1,v

σ2

)
. (A.55)

Note that the above inequality holds for any X. However, if X = I, then all Σt’s are

diagonal and we have

det [Σt] = det [Σt−1]
∏
v∈V

(
1 +

z2
t−1,v

σ2

)
. (A.56)

As we will show later, this leads to a tighter regret bound in the tabular (X = I) case.

Let’s continue our analysis for general X. The above results imply that

n log (det [Σt]) ≥ n log (det [Σt−1]) + 1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)

and hence

n log (det [ΣT ]) ≥n log (det [Σ0]) +

T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)

=nd log(λ) +

T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
. (A.57)

On the other hand, we have that

Tr [ΣT ] = Tr

[
Σ0 +

T∑
t=1

1 [u ∈ St]
σ2

∑
v∈V

xvx
T
v

]

= Tr [Σ0] +

T∑
t=1

1 [u ∈ St]
σ2

∑
v∈V

Tr
[
xvx

T
v

]
=λd+

T∑
t=1

1 [u ∈ St]
σ2

∑
v∈V
‖xv‖2 ≤ λd+

nKu

σ2
, (A.58)
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where the last inequality follows from the assumption that ‖xv‖ ≤ 1 and the definition of

Ku. From the trace-determinant inequality, we have 1
d Tr [ΣT ] ≥ det [ΣT ]

1
d . Thus, we have

dn log

(
λ+

nKu

dσ2

)
≥ dn log

(
1

d
Tr [ΣT ]

)
≥ n log (det [ΣT ]) ≥ dn log(λ)+

T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
.

That is
T∑
t=1

1 (u ∈ St)
∑
v∈V

log

(
1 +

z2
t−1,v

σ2

)
≤ dn log

(
1 +

nKu

dλσ2

)

Notice that z2
t−1,v = xTv Σ−1

t−1xv ≤ xTv Σ−1
0 xv = ‖xv‖2

λ ≤ 1
λ . Moreover, for all y ∈ [0, 1/λ], we

have log
(
1 + y

σ2

)
≥ λ log

(
1 + 1

λσ2

)
y based on the concavity of log(·). Thus, we have

λ log

(
1 +

1

λσ2

) T∑
t=1

1 (u ∈ St)
∑
v∈V

z2
t−1,v ≤ dn log

(
1 +

nKu

dλσ2

)
.

Finally, from Cauchy-Schwarz inequality, we have that

T∑
t=1

1 (u ∈ St)
∑
v∈V

zt−1,v ≤
√
nKu

√√√√ T∑
t=1

1 (u ∈ St)
∑
v∈V

z2
t−1,v.

Combining the above results, we have

T∑
t=1

1 (u ∈ St)
∑
v∈V

zt−1,v ≤
√
nKu

√
dn log

(
1 + nKu

dλσ2

)
λ log

(
1 + 1

λσ2

) . (A.59)

This concludes the proof for general X. Based on (A.56), the analysis for the tabular

(X = I) case is similar, and we omit the detailed analysis. In the tabular case, we have

T∑
t=1

1 (u ∈ St)
∑
v∈V

zt−1,v ≤
√
nKu

√
n log

(
1 + Ku

λσ2

)
λ log

(
1 + 1

λσ2

) . (A.60)
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We now develop a worst-case bound. Notice that for general X, we have

∑
u∈V

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
∑
u∈V

√
nKu

√
dn log

(
1 + nKu

dλσ2

)
λ log

(
1 + 1

λσ2

)
(a)

≤ n

√
d log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) ∑
u∈V

√
Ku

(b)

≤ n

√
d log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) √n√∑
u∈V

Ku

(c)
=n

3
2

√
dKT log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) , (A.61)

where inequality (a) follows from the naive bound Ku ≤ T , inequality (b) follows from

Cauchy-Schwarz inequality, and equality (c) follows from
∑

u∈V Ku = KT . Similarly, for

the special case with X = I, we have

∑
u∈V

T∑
t=1

1 [u ∈ St]
∑
v∈V

√
xTv Σ−1

u,t−1xv ≤
∑
u∈V

√
nKu

√
n log

(
1 + Ku

λσ2

)
λ log

(
1 + 1

λσ2

) ≤ n
3
2

√
KT log

(
1 + T

λσ2

)
λ log

(
1 + 1

λσ2

) .

(A.62)

This concludes the derivation of a worst-case bound.

A.5.3 Bound on P
(
F
)

We now derive a bound on P
(
F
)

based on the “Self-Normalized Bound for Matrix-Valued

Martingales” developed in appendix A.6 (see theorem 10). Before proceeding, we define Fu
for all u ∈ V as

Fu =

{
|xTv (θ̂u,t−1 − θ∗u)| ≤ c

√
xTv Σ−1

u,t−1xv, ∀v ∈ V, ∀t ≤ T
}
, (A.63)

and the Fu as the complement of Fu. Note that by definition, F =
⋃
u∈V Fu. Hence, we

first develop a bound on P
(
Fu
)
, then we develop a bound on P

(
F
)

based on union bound.
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Lemma 9. For all u ∈ V, all σ, λ > 0, all δ ∈ (0, 1), and all

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log

(
1

δ

)
+
√
λ‖θ∗u‖2

we have P
(
Fu
)
≤ δ.

Proof. To simplify the expositions, we omit the subscript u in this proof. For instance,

we use θ∗, Σt, yt and bt to respectively denote θ∗u, Σu,t, yu,t and bu,t. We also use Ht to

denote the “history” by the end of time t, and hence {Ht}∞t=0 is a filtration. Notice that Ut

is Ht−1-adaptive, and hence St and 1 [u ∈ St] are also Ht−1-adaptive. We define

ηt =

{
yt −XT θ∗ if u ∈ St
0 otherwise

∈ <n and Xt =

{
X if u ∈ St
0 otherwise

∈ <d×n (A.64)

Note that Xt is Ht−1-adaptive, and ηt is Ht-adaptive. Moreover, ‖ηt‖∞ ≤ 1 always holds,

and E [ηt|Ht−1] = 0. To simplify the expositions, we further define yt = 0 for all t s.t.

u /∈ St. Note that with this definition, we have ηt = yt −XT
t θ
∗ for all t. We further define

V t =nσ2Σt = nσ2λI + n
t∑

s=1

XsX
T
s

St =
t∑

s=1

Xsηs =
t∑

s=1

Xs

[
ys −XT

s θ
∗] = bt − σ2 [Σt − λI] θ∗ (A.65)

Thus, we have Σtθ̂t = σ−2bt = σ−2St + [Σt − λI] θ∗, which implies

θ̂t − θ∗ = Σ−1
t

[
σ−2St − λθ∗

]
. (A.66)

Consequently, for any v ∈ V, we have∣∣∣xTv (θ̂t − θ∗)∣∣∣ =
∣∣xTv Σ−1

t

[
σ−2St − λθ∗

]∣∣ ≤√xTv Σ−1
t xv‖σ−2St − λθ∗‖Σ−1

t

≤
√
xTv Σ−1

t xv

[
‖σ−2St‖Σ−1

t
+ ‖λθ∗‖Σ−1

t

]
, (A.67)

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality
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follows from triangular inequality. Note that ‖λθ∗‖Σ−1
t

= λ‖θ∗‖Σ−1
t
≤ λ‖θ∗‖Σ−1

0
=
√
λ‖θ∗‖2.

On the other hand, since Σ−1
t = nσ2V

−1
t , we have ‖σ−2St‖Σ−1

t
=
√
n
σ ‖St‖V −1

t
. Thus, we

have ∣∣∣xTv (θ̂t − θ∗)∣∣∣ ≤√xTv Σ−1
t xv

[√
n

σ
‖St‖V −1

t
+
√
λ‖θ∗‖2

]
. (A.68)

From theorem 10, we know with probability at least 1− δ, for all t ≤ T , we have

‖St‖2
V
−1
t

≤ 2 log

(
det
(
V t

)1/2
det (V )−1/2

δ

)
≤ 2 log

(
det
(
V T

)1/2
det (V )−1/2

δ

)
,

where V = nσ2λI. Note that from the trace-determinant inequality, we have

det
[
V T

] 1
d ≤

Tr
[
V T

]
d

≤ nσ2λd+ n2T

d
,

where the last inequality follows from Tr
[
XtX

T
t

]
≤ n for all t. Note that det [V ] =

[
nσ2λ

]d
,

with a little bit algebra, we have

‖St‖V −1
t
≤

√
d log

(
1 +

nT

σ2λd

)
+ 2 log

(
1

δ

)
∀t ≤ T

with probability at least 1− δ. Thus, if

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log

(
1

δ

)
+
√
λ‖θ∗‖2,

then Fu holds with probability at least 1− δ. This concludes the proof of this lemma.

Hence, from the union bound, we have the following lemma:

Lemma 10. For all σ, λ > 0, all δ ∈ (0, 1), and all

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log

(n
δ

)
+
√
λmax
u∈V
‖θ∗u‖2 (A.69)

we have P
(
F
)
≤ δ.

Proof. This lemma follows directly from the union bound. Note that for all c satisfying
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Equation A.69, we have P
(
Fu
)
≤ δ

n for all u ∈ V, which implies P
(
F
)

= P
(⋃

u∈V Fu
)
≤∑

u∈V P
(
Fu
)
≤ δ.

A.5.4 Conclude the Proof

Note that if we choose

c ≥ 1

σ

√
dn log

(
1 +

nT

σ2λd

)
+ 2 log (n2T ) +

√
λmax
u∈V
‖θ∗u‖2, (A.70)

we have P
(
F
)
≤ 1

nT . Hence for general X, we have

Rρα(T ) ≤ 2c

ρα
E

{
T∑
t=1

∑
u∈St

∑
v∈V

√
xTv Σ−1

u,t−1xv

∣∣∣∣∣F
}

+
1

ρ

≤ 2c

ρα
n

3
2

√
dKT log

(
1 + nT

dλσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (A.71)

Note that with c = 1
σ

√
dn log

(
1 + nT

σ2λd

)
+ 2 log (n2T )+

√
λmaxu∈V ‖θ∗u‖2, this regret bound

is Õ
(
n2d
√
KT

ρα

)
. Similarly, for the special case X = I, we have

Rρα(T ) ≤ 2c

ρα
n

3
2

√
KT log

(
1 + T

λσ2

)
λ log

(
1 + 1

λσ2

) +
1

ρ
. (A.72)

Note that with c = n
σ

√
log
(
1 + T

σ2λ

)
+ 2 log (n2T )+

√
λmaxu∈V ‖θ∗u‖2 ≤ n

σ

√
log
(
1 + T

σ2λ

)
+ 2 log (n2T )+

√
λn, this regret bound is Õ

(
n

5
2
√
KT

ρα

)
.

A.6 Self-Normalized Bound for Matrix-Valued Martingales

In this section, we derive a “self-normalized bound” for matrix-valued Martingales. This

result is a natural generalization of Theorem 1 in Abbasi-Yadkori et al. (2011).

Theorem 10. (Self-Normalized Bound for Matrix-Valued Martingales) Let {Ht}∞t=0 be a fil-

tration, and {ηt}∞t=1 be a <K-valued Martingale difference sequence with respect to {Ht}∞t=0.

Specifically, for all t, ηt is Ht-measurable and satisfies (1) E [ηt|Ht−1] = 0 and (2) ‖ηt‖∞ ≤ 1
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with probability 1 conditioning on Ht−1. Let {Xt}∞t=1 be a <d×K-valued stochastic process

such that Xt is Ht−1 measurable. Assume that V ∈ <d×d is a positive-definite matrix. For

any t ≥ 0, define

V t = V +K
t∑

s=1

XsX
T
s St =

t∑
s=1

Xsηs. (A.73)

Then, for any δ > 0, with probability at least 1− δ, we have

‖St‖2
V
−1
t

≤ 2 log

(
det
(
V t

)1/2
det (V )−1/2

δ

)
∀t ≥ 0. (A.74)

We first define some useful notations. Similarly as Abbasi-Yadkori et al. (2011), for any

λ ∈ <d and any t, we define Dλ
t as

Dλ
t = exp

(
λTXtηt −

K

2
‖XT

t λ‖22
)
, (A.75)

and Mλ
t =

∏t
s=1D

λ
s with convention Mλ

0 = 1. Note that both Dλ
t and Mλ

t are Ht-
measurable, and

{
Mλ
t

}∞
t=0

is a supermartingale with respect to the filtration {Ht}∞t=0. To

see it, notice that conditioning on Ht−1, we have

λTXtηt = (XT
t λ)T ηt ≤ ‖XT

t λ‖1‖ηt‖∞ ≤ ‖XT
t λ‖1 ≤

√
K‖XT

t λ‖2

with probability 1. This implies that λTXtηt is conditionally
√
K‖XT

t λ‖2-subGaussian.

Thus, we have

E
[
Dλ
t

∣∣∣Ht−1

]
= E

[
exp

(
λTXtηt

)∣∣Ht−1

]
exp

(
−K

2
‖XT

t λ‖22
)
≤ exp

(
K

2
‖XT

t λ‖22 −
K

2
‖XT

t λ‖22
)

= 1.

Thus,

E
[
Mλ
t

∣∣∣Ht−1

]
= Mλ

t−1E
[
Dλ
t

∣∣∣Ht−1

]
≤Mλ

t−1.

So
{
Mλ
t

}∞
t=0

is a supermartingale with respect to the filtration {Ht}∞t=0. Then, following

Lemma 8 of Abbasi-Yadkori et al. (2011), we have the following lemma:

Lemma 11. Let τ be a stopping time with respect to the filtration {Ht}∞t=0. Then for any

λ ∈ <d, Mλ
τ is almost surely well-defined and E

[
Mλ
τ

]
≤ 1.
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Proof. First, we argue that Mλ
τ is almost surely well-defined. By Doob’s convergence

theorem for nonnegative supermartingales, Mλ
∞ = limt→∞M

λ
t is almost surely well-defined.

Hence Mλ
τ is indeed well-defined independent of τ < ∞ or not. Next, we show that

E
[
Mλ
τ

]
≤ 1. Let Qλt = Mλ

min{τ,t} be a stopped version of
{
Mλ
t

}∞
t=1

. By Fatou’s Lemma, we

have E
[
Mλ
τ

]
= E

[
lim inft→∞Q

λ
t

]
≤ lim inft→∞ E

[
Qλt
]
≤ 1.

The following results follow from Lemma 9 of Abbasi-Yadkori et al. (2011), which uses

the “method of mixtures” technique. Let Λ be a Gaussian random vector in <d with mean

0 and covariance matrix V −1, and independent of all the other random variables. Let H∞
be the tail σ-algebra of the filtration, i.e. the σ-algebra generated by the union of all events

in the filtration. We further define Mt = E
[
MΛ
t

∣∣H∞] for all t = 0, 1, . . . and t =∞. Note

that M∞ is almost surely well-defined since Mλ
∞ is almost surely well-defined.

Let τ be a stopping time with respect to the filtration {Ht}∞t=0. Note that Mτ is

almost surely well-defined since M∞ is almost surely well-defined. Since E
[
Mλ
τ

]
≤ 1 from

Lemma 11, we have

E [Mτ ] = E
[
MΛ
τ

]
= E

[
E
[
MΛ
τ

∣∣Λ]] ≤ 1.

The following lemma follows directly from the proof for Lemma 9 of Abbasi-Yadkori et al.

(2011), which can be derived by algebra. The proof is omitted here.

Lemma 12. For all finite t = 0, 1, . . ., we have

Mt =

(
det(V )

det(V t)

)1/2

exp

(
1

2
‖St‖V −1

t

)
. (A.76)

Note that Lemma 12 implies that for finite t, ‖St‖2
V
−1
t

> 2 log

(
det(V t)

1/2
det(V )−1/2

δ

)
and Mt >

1
δ are equivalent. Consequently, for any stopping time τ , the event{

τ <∞, ‖Sτ‖2
V
−1
τ

> 2 log

(
det
(
V τ

)1/2
det (V )−1/2

δ

)}

is equivalent to
{
τ <∞, Mτ >

1
δ

}
. Finally, we prove Theorem 10:
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Proof. We define the “bad event” at time t = 0, 1, . . . as:

Bt(δ) =

{
‖St‖2

V
−1
t

> 2 log

(
det
(
V t

)1/2
det (V )−1/2

δ

)}
.

We are interested in bounding the probability of the “bad event”
⋃∞
t=1Bt(δ). Let Ω de-

note the sample space, for any outcome ω ∈ Ω, we define τ(ω) = min{t ≥ 0 : ω ∈
Bt(δ)}, with the convention that min ∅ = +∞. Thus, τ is a stopping time. Notice

that
⋃∞
t=1Bt(δ) = {τ < ∞}. Moreover, if τ < ∞, then by definition of τ , we have

‖Sτ‖2
V
−1
τ

> 2 log

(
det(V τ)

1/2
det(V )−1/2

δ

)
, which is equivalent to Mτ >

1
δ as discussed above.

Thus we have

P

( ∞⋃
t=1

Bt(δ)

)
(a)
= P (τ <∞)

(b)
= P

(
‖Sτ‖2

V
−1
τ

> 2 log

(
det
(
V τ

)1/2
det (V )−1/2

δ

)
, τ <∞

)
(c)
= P (Mτ > 1/δ, τ <∞)

≤P (Mτ > 1/δ)

(d)

≤ δ,

where equalities (a) and (b) follow from the definition of τ , equality (c) follows from

Lemma 12, and inequality (d) follows from Markov’s inequality. This concludes the proof

for Theorem 10.

We conclude this section by briefly discussing a special case. If for any t, the elements

of ηt are statistically independent conditioning on Ht−1, then we can prove a variant of

Theorem 10: with V t = V +
∑t

s=1XsX
T
s and St =

∑t
s=1Xsηs, Equation A.74 holds with

probability at least 1− δ. To see it, notice that in this case

E
[
exp

(
λTXtηt

)∣∣Ht−1

]
=E

[
K∏
k=1

exp
(
(XT

t λ)(k)ηt(k)
)∣∣∣∣∣Ht−1

]
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(a)
=

K∏
k=1

E
[
exp

(
(XT

t λ)(k)ηt(k)
)∣∣Ht−1

]
(b)

≤
K∏
k=1

exp

(
(XT

t λ)(k)2

2

)
= exp

(∥∥XT
t λ
∥∥2

2

)
, (A.77)

where (k) denote the k-th element of the vector. Note that the equality (a) follows from the

conditional independence of the elements in ηt, and inequality (b) follows from |ηt(k)| ≤ 1 for

all t and k. Thus, if we redefine Dλ
t = exp

(
λTXtηt − 1

2‖X
T
t λ‖22

)
, and Mλ

t =
∏t
s=1D

λ
s , we

can prove that {Mλ
t }t is a supermartingale. Consequently, using similar analysis techniques,

we can prove the variant of Theorem 10 discussed in this paragraph.
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Appendix B

Supplementary for Chapter 3

B.1 Learning the Graph

In the main paper, we assumed that the graph is known, but in practice such a user-user

graph may not be available. In such a case, we explore a heuristic to learn the graph on the

fly. The computational gains described in the main paper make it possible to simultaneously

learn the user-preferences and infer the graph between users in an efficient manner. Our

approach for learning the graph is related to methods proposed for multitask and multilabel

learning in the batch setting (Gonçalves et al., 2015; Goncalves et al., 2014) and multitask

learning in the online setting (Saha et al., 2011). However, prior works that learn the graph

in related settings only tackle problem with tens or hundreds of tasks/labels while we learn

the graph and preferences across thousands of users.

Let Vt ∈ Rn×n be the inverse covariance matrix corresponding to the graph inferred

between users at round t. Since zeroes in the inverse covariance matrix correspond to

conditional independences between the corresponding nodes (users) (Rue and Held, 2005),

we use L1 regularization on Vt for encouraging sparsity in the inferred graph. We use

an additional regularization term ∆(Vt||Vt−1) to encourage the graph to change smoothly

across rounds. This encourages Vt to be close to Vt−1 according to a distance metric ∆.

Following (Saha et al., 2011), we choose ∆ to be the log-determinant Bregman divergence

given by ∆(X||Y ) = Tr(XY −1)−log |XY −1|−dn. If Wt ∈ Rd×n = [θ1θ2 . . . θn] corresponds
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to the matrix of user preference estimates, the combined objective can be written as:

[θt, Vt] = arg min
θ,V

||rt − Φtθ||22 + Tr
(
V (λW TW + V −1

t−1)
)

+ λ2||V ||1 − (dn+ 1) ln |V | (B.1)

The first term in (B.1) is the data fitting term. The second term imposes the smoothness

constraint across the graph and ensures that the changes in Vt are smooth. The third

term ensures that the learnt precision matrix is sparse, whereas the last term penalizes the

complexity of the precision matrix. This function is independently convex in both θ and

V (but not jointly convex), and we alternate between solving for θt and Vt in each round.

With a fixed Vt, the θ sub-problem is the same as the MAP estimation in the main paper

and can be done efficiently. For a fixed θt, the V sub-problem is given by

Vt = arg min
V

Tr
(
(V [λW

T
t W t + V −1

t−1)
)

+ λ2||V ||1 − (dn+ 1) ln |V | (B.2)

Here W t refers to the mean subtracted (for each dimension) matrix of user preferences. This

problem can be written as a graphical lasso problem (Friedman et al., 2008), minX Tr(SX)+

λ2||X||1− log |X|, where the empirical covariance matrix S is equal to λW
T
t W t +V −1

t−1. We

use the highly-scalable second order methods described in (Hsieh et al., 2011, 2013) to

solve (B.2). Thus, both sub-problems in the alternating minimization framework at each

round can be solved efficiently.

For our preliminary experiments in this direction, we use the most scalable epoch-greedy

algorithm for learning the graph on the fly and denote this version as L-EG. We also con-

sider another variant, U-EG in which we start from the Laplacian matrix L corresponding

to the given graph and allow it to change by re-estimating the graph according to (B.2).

Since U-EG has the flexibility to infer a better graph than the one given, such a variant

is important for cases where the prior is meaningful but somewhat misspecified (the given

graph accurately reflects some but not all of the user similarities). Similar to (Saha et al.,

2011), we start off with an empty graph and start learning the graph only after the prefer-

ence vectors have become stable, which happens in this case after each user has received 10

recommendations. We update the graph every 1K rounds. For both datasets, we allow the

learnt graph to contain at most 100K edges and tune λ2 to achieve a sparsity level equal

to 0.05 in both cases.

To avoid clutter, we plot all the variants of the EG algorithm, L-EG and U-EG, and
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(a) Last.fm (b) Delicious

Figure B.1: Regret Minimization while learning the graph

use EG-IND, G-EG, EG-SIN as baselines. We also plot CLUB as a baseline. For the

Last.fm dataset (Figure B.1b(a)), U-EG performs slightly better than G-EG, which already

performed well. The regret for L-EG is lower compared to LINUCB-IND indicating that

learning the graph helps, but is worse as compared to both CLUB and LINUCB-SIN. On

the other hand, for Delicious (Figure B.1b(b)), L-EG and U-EG are the best performing

methods. L-EG slightly outperforms EG-IND, underscoring the importance of learning

the user-user graph and transferring information between users. It also outperforms G-

EG, which implies that it is able to learn a graph which reflects user similarities better

than the existing social network between users. For both datasets, U-EG is among the

top performing methods, which implies that allowing modifications to a good (in that it

reflects user similarities reasonably well) initial graph to model the obtained data might

be a good method to overcome prior misspecification. From a scalability point of view,

for Delicious the running time for L-EG is 0.1083 seconds/iteration (averaged across T ) as

compared to 0.04 seconds/iteration for G-EG. This shows that even in the absence of an

explicit user-user graph, it is possible to achieve a low regret in an efficient manner.
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B.2 Regret bound for Epoch-Greedy

Theorem 11. Under the additional assumption that ||wt||2 ≤ 1 for all rounds t, the expected

regret obtained by epoch-greedy in the GOB framework is given as:

R(T ) = Õ

(
n1/3

(
Tr(L−1)

λn

) 1
3

T
2
3

)
(B.3)

Proof. Let H be the class of hypotheses of linear functions (one for each user) coupled

with Laplacian regularization. Let µ(H, q, s) represent the regret or cost of performing s

exploitation steps in epoch q. Let the number of exploitation steps in epoch q be sq.

Lemma 13 (Corollary 3.1 from (Langford and Zhang, 2008)). If sq = b 1
µ(H,q,1)c and QT

is the minimum Q such that Q+
∑Q

q=1 sq ≥ T , then the regret obtained by Epoch Greedy is

bounded by R(T ) ≤ 2QT .

We now bound the quantity µ(H, q, 1). Let Err(q,H) be the generalization error for H
after obtaining q unbiased samples in the exploration rounds. Clearly,

µ(H, q, s) = s · Err(q,H). (B.4)

Let `LS be the least squares loss. Let the number of unbiased samples per user be equal

to p. The empirical Rademacher complexity for our hypotheses class H under `LS can be

given as R̂np (`LS ◦ H). The generalization error for H can be bounded as follows:

Lemma 14 (Theorem 1 from (Maurer, 2006)). With probability 1− δ,

Err(q,H) ≤ R̂np (`LS ◦ H) +

√
9 ln(2/δ)

2pn
(B.5)

Assume that the target user is chosen uniformly at random. This implies that the

expected number of samples per user is at least p = b qnc. For simplicity, assume q is exactly

divisible by n so that p = q
n (this only affects the bound by a constant factor). Substituting

p in (B.5), we obtain

Err(q,H) ≤ R̂np (`LS ◦ H) +

√
9 ln(2/δ)

2q
. (B.6)
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The Rademacher complexity can be bounded using Lemma 15 (see below) as follows:

R̂np (`LS ◦ H) ≤ 1
√
p

√
48 Tr(L−1)

λn
=

1
√
q

√
48 Tr(L−1)

λ
(B.7)

Substituting this into (B.6) we obtain

Err(q,H) ≤ 1
√
q

[√
48 Tr(L−1)

λ
+

√
9 ln(2/δ)

2

]
. (B.8)

We set sq = 1
Err(q,H) . Denoting

[√
48 Tr(L−1)

λ +

√
9 ln(2/δ)

2

]
as C, sq =

√
q
C .

Recall that from Lemma 13, we need to determine QT such that

QT +

QT∑
q=1

sq ≥ T =⇒
QT∑
q=1

(1 + sq) ≥ T

Since sq ≥ 1, this implies that
∑QT

q=1 2sq ≥ T . Substituting the value of sq and observing

that for all q, sq+1 ≥ sq, we obtain the following:

2QT sQT ≥ T =⇒ 2
Q

3/2
T

C
≥ T =⇒ QT ≥

(
CT

2

) 2
3

QT =

[√
12 Tr(L−1)

λ
+

√
9 ln(2/δ)

8

] 2
3

T
2
3 (B.9)

Using the above equation with Lemma 13, we can bound the regret as

R(T ) ≤ 2

[√
12 Tr(L−1)

λ
+

√
9 ln(2/δ)

8

] 2
3

T
2
3 (B.10)

To simplify this expression, we suppress the term

√
9 ln(2/δ)

8 in the Õ notation, implying

that

R(T ) = Õ

(
2

[
12 Tr(L−1)

λ

] 1
3

T
2
3

)
(B.11)
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To present and interpret the result, we keep only the factors which are dependent on n, λ,

L and T . We then obtain

R(T ) = Õ

(
n1/3

(
Tr(L−1)

λn

) 1
3

T
2
3

)
(B.12)

This proves Theorem 11. We now prove Lemma 15, which was used to bound the

Rademacher complexity.

Lemma 15. The empirical Rademacher complexity for H under `LS on observing p unbi-

ased samples for each of the n users can be given as:

R̂np (`LS ◦ H) ≤ 1
√
p

√
48 Tr(L−1)

λn
(B.13)

Proof.

The Rademacher complexity for a class of linear predictors with graph regularization for a

0/1 loss function `0,1 can be bounded using Theorem 2 of (Maurer, 2006). Specifically,

R̂np (`0,1 ◦ H) ≤ 2M
√
p

√
Tr((λL)−1)

n
(B.14)

where M is the upper bound on the value of ||L
1/2W ∗||2√

n
and W ∗ is the d× n matrix corre-

sponding to the true user preferences. We now upper bound ||L
1
2W ∗||2√
n

.

||L
1
2W ∗||2 ≤ ||L

1
2 ||2||W ∗||2

||W ∗||2 ≤ ||W ∗||F =

√√√√ n∑
i=1

||w∗i ||22

||W ∗||2 ≤
√
n (Using assumption 1: For all i, ||w∗i ||2 ≤ 1)
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||L
1
2 || ≤ νmax(L

1
2 ) =

√
νmax(L) ≤

√
3

(The maximum eigenvalue of any normalized Laplacian LG is 2 (Chung) and recall that L = LG + In)

=⇒ ||L
1
2W ∗||2√
n

≤
√

3 =⇒ M =
√

3

Since we perform regression using a least squares loss function instead of classification, the

Rademacher complexity in our case can be bounded using Theorem 12 from (Bartlett and

Mendelson, 2003). Specifically, if ρ is the Lipschitz constant of the least squares problem,

R̂np (`LS ◦ H) ≤ 2ρ · Rnp (`0,1 ◦ H) (B.15)

Since the estimates wi,t are bounded from above by 1 (additional assumption in the theo-

rem), ρ = 1. From Equations B.14, B.15 and the bound on M , we obtain that

R̂np (`LS ◦ H) ≤ 4
√
p

√
3 Tr(L−1)

λn
(B.16)

B.3 Regret bound for Thompson Sampling

Theorem 12. Under the following additional technical assumptions: (a) log(K) < (dn −
1) ln(2) (b) λ < dn (c) log

(
3+T/λdn

δ

)
≤ log(KT ) log(T/δ), with probability 1− δ, the regret

obtained by Thompson Sampling in the GOB framework is given as:

R(T ) = Õ

(
dn√
λ

√
T

√
log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

))
(B.17)

Proof. We can interpret graph-based TS as being equivalent to solving a single dn-dimensional

contextual bandit problem, but with a modified prior covariance ((L⊗Id)−1 instead of Idn).

Our argument closely follows the proof structure in (Agrawal and Goyal, 2012b), but is mod-

ified to include the prior covariance. For ease of exposition, assume that the target user at

each round is implicit. We use j to index the available items. Let the index of the optimal
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item at round t be j∗t , whereas the index of the item chosen by our algorithm is denoted jt.

Let r̂t(j) be the estimated rating of item j at round t. Then, for all j,

r̂t(j) ∼ N (〈θt,φj〉, st(j)) (B.18)

Here, st(j) is the standard deviation in the estimated rating for item j at round t. Recall

that Σt−1 is the covariance matrix at round t. st(j) is given as:

st(j) =
√
φTjΣ−1

t−1φj (B.19)

We drop the argument in st(jt) to denote the standard deviation and estimated rating for

the selected item jt i.e. st = st(jt) and r̂t = r̂t(jt).

Let ∆t measure the immediate regret at round t incurred by selecting item jt instead of

the optimal item j∗t . The immediate regret is given by:

∆t = 〈θ∗,φj∗t 〉 − 〈θ
∗,φjt〉 (B.20)

Define Eµ(t) as the event such that for all j,

Eµ(t) : |〈θt,φj〉 − 〈θ
∗,φj〉| ≤ ltst(j) (B.21)

Here lt =

√
dn log

(
3+t/λdn

δ

)
+
√

3λ. If the event Eµ(t) holds, it implies that the expected

rating at round t is close to the true rating with high probability.

Recall that |Ct| = K and that θ̃t is a sample drawn from the posterior distribution at round

t. Define ρt =
√

9dn log
(
t
δ

)
and gt = min{

√
4dn ln(t),

√
4 log(tK)}ρt + lt. Define Eθ(t) as

the event such that for all j,

Eθ(t) : |〈θ̃t,φj〉 − 〈θt,φj〉| ≤ min{
√

4dn ln(t),
√

4 log(tK)}ρtst(j) (B.22)
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If the event Eθ(t) holds, it implies that the estimated rating using the sample θ̃t is close to

the expected rating at round t.

(B.23)

In lemma 18, we prove that the event Eµ(t) holds with high probability. Formally, for

δ ∈ (0, 1),

p(Eµ(t)) ≥ 1− δ (B.24)

To show that the event Eθ(t) holds with high probability, we use the following lemma

from (Agrawal and Goyal, 2012b).

Lemma 16 (Lemma 2 of (Agrawal and Goyal, 2012b)).

p(Eθ(t))|Ft−1) ≥ 1− 1

t2
(B.25)

Next, we use the following lemma to bound the immediate regret at round t.

Lemma 17 (Lemma 4 in (Agrawal and Goyal, 2012b)). Let γ = 1
4e
√
π

. If the events Eµ(t)

and Eθ(t) are true, then for any filtration Ft−1, the following inequality holds:

E[∆t|Ft−1] ≤ 3gt
γ

E[st|Ft−1] +
2gt
γt2

(B.26)

Define I(E) to be the indicator function for an event E . Let regret(t) = ∆t · I(Eµ(t)). We

use Lemma 19 (proof is given later) which states that with probability at least 1− δ
2 ,

T∑
t=1

regret(t) ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2
T∑
t=1

36g2
t

γ2
ln(2/δ) (B.27)

140



From Lemma 18, we know that event Eµ(t) holds for all t with probability at least 1 − δ
2 .

This implies that, with probability 1− δ
2 , for all t

regret(t) = ∆t (B.28)

From Equations B.27 and B.28, we have that with probability 1− δ,

R(T ) =

T∑
t=1

∆t ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2

T∑
t=1

36g2
t

γ2
ln(2/δ)

Note that gt increases with t i.e. for all t, gt ≤ gT

R(T ) ≤ 3gT
γ

T∑
t=1

st +
2gT
γ

T∑
t=1

1

t2
+

6gT
γ

√
2T ln(2/δ) (B.29)

Using Lemma 20 (proof given later), we have the following bound on
∑T

t=1 st, the variance

of the selected items:

T∑
t=1

z ≤
√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)
(B.30)

where C = 1

λ log
(

1+ 1
λσ2

) .

(B.31)

Substituting this into Equation B.29, we get

R(T ) ≤ 3gT
γ

√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)
+

2gT
γ

T∑
t=1

1

t2
+

6gT
γ

√
2T ln(2/δ)

Using the fact that
∑T

t=1
1
t2
< π2

6

R(T ) ≤ 3gT
γ

√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)
+
π2gT
3γ

+
6gT
γ

√
2T ln(2/δ)

(B.32)
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We now upper bound gT . By our assumption on K, log(K) < (dn− 1) ln(2). Hence for all

t ≥ 2, min{
√

4dn ln(t),
√

4 log(tK)} =
√

4 log(tK). Hence,

gT = 6
√
dn log(KT ) log(T/δ) + lT

= 6
√
dn log(KT ) log(T/δ) +

√
dn log

(
3 + T/λdn

δ

)
+
√

3λ

By our assumption on λ, λ < dn. Hence,

gT ≤ 8
√
dn log(KT ) log(T/δ) +

√
dn log

(
3 + T/λdn

δ

)

Using our assumption that log
(

3+T/λdn
δ

)
≤ log(KT ) log(T/δ),

gT ≤ 9
√
dn log(KT ) log(T/δ)

(B.33)

Substituting the value of gT into Equation B.32, we obtain the following:

R(T ) ≤ 27dn

γ

√
T

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)
+

3π2
√
dn ln(T/δ) ln(KT )

γ
+

54
√
dn ln(T/δ) ln(KT )

√
2T ln(2/δ)

γ

For ease of exposition, we keep the just leading terms on d, n and T . This gives the following

bound on R(T ).

R(T ) = Õ

(
27dn

γ

√
T

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

))

Rewriting the bound to keep only the terms dependent on d, n, λ, T and L. We thus obtain
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the following equation.

R(T ) = Õ

(
dn√
λ

√
T

√
log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

))
(B.34)

This proves the theorem.

We now prove the the auxiliary lemmas used in the above proof.

In the following lemma, we prove that Eµ(t) holds with high probability, i.e., the ex-

pected rating at round t is close to the true rating with high probability.

Lemma 18.

The following statement is true for all δ ∈ (0, 1):

Pr(Eµ(t)) ≥ 1− δ (B.35)

Proof.

Recall that rt = 〈θ∗, φjt〉+ηt (Assumption 2) and that Σtθt = bt
σ2 . Define St−1 =

∑t−1
l=1 ηlφjl .

St−1 =
t−1∑
l=1

(rl − 〈θ∗, φjl〉)φjl =
t−1∑
l=1

(
rlφjl − φjlφ

T
jl
θ∗
)

St−1 = bt−1 −
t−1∑
l=1

(
φjlφ

T
jl

)
θ∗ = bt−1 − σ2(Σt−1 − Σ0)θ∗ = σ2(Σt−1θt − Σt−1θ

∗ + Σ0θ
∗)

θ̂t − θ∗ = Σ−1
t−1

(
St−1

σ2
− Σ0θ

∗
)

The following holds for all j:

|〈θt,φj〉 − 〈θ
∗,φj〉| = |〈φj, θt − θ

∗〉|

≤
∣∣∣∣φTjΣ−1

t−1

(
St−1

σ2
− Σ0θ

∗
) ∣∣∣∣
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≤ ||φj ||Σ−1
t−1

(∣∣∣∣∣∣∣∣St−1

σ2
− Σ0θ

∗
∣∣∣∣∣∣∣∣

Σ−1
t−1

)
(Since Σ−1

t−1 is positive definite)

By triangle inequality,

|〈θt,φj〉 − 〈θ
∗,φj〉| ≤ ||φj ||Σ−1

t−1

(∣∣∣∣∣∣∣∣St−1

σ2

∣∣∣∣∣∣∣∣
Σ−1
t−1

+ ||Σ0θ
∗||Σ−1

t−1

)
(B.36)

We now bound the term ||Σ0θ
∗||Σ−1

t−1

||Σ0θ
∗||Σ−1

t−1
≤ ||Σ0θ

∗||Σ−1
0

=

√
θ∗TΣT

0 Σ−1
0 Σ0θ

∗ (Since φjtφ
T
jt

is positive definite for all t)

=

√
θ∗TΣ0θ

∗ (Since Σ0 is symmetric)

≤
√
νmax(Σ0)||θ∗||2

≤
√
νmax(λL⊗ Id) (||θ∗||2 ≤ 1)

=
√
νmax(λL) (νmax(A⊗B) = νmax(A) · νmax(B))

≤
√
λ · νmax(L)

||Σ0θ
∗||Σ−1

t−1
≤
√

3λ

(The maximum eigenvalue of any normalized Laplacian is 2 (Chung) and recall that L = LG + In)

For bounding ||φj ||Σ−1
t−1

, note that

||φj ||Σ−1
t−1

=
√
φTjΣ−1

t−1φj = st(j)

Using the above relations, Equation B.36 can thus be rewritten as:

|〈θt,φj〉 − 〈θ
∗,φj〉| ≤ st(j)

(
1

σ
||St−1||Σ−1

t−1
+
√

3λ

)
(B.37)

To bound ||St−1||Σ−1
t−1

, we use Theorem 1 from (Abbasi-Yadkori et al., 2011) which we

restate in our context. Note that using this theorem with the prior covariance equal to Idn
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gives Lemma 8 of (Agrawal and Goyal, 2012b).

Theorem 13 (Theorem 1 of (Abbasi-Yadkori et al., 2011)). For any δ > 0, t ≥ 1, with

probability at least 1− δ,

||St−1||2Σ−1
t−1
≤ 2σ2 log

(
det(Σt)

1/2 det(Σ0)−1/2

δ

)

||St−1||2Σ−1
t−1
≤ 2σ2

(
log
(

det(Σt)
1/2
)

+ log
(

det(Σ−1
0 )1/2

)
− log(δ)

)

Rewriting the above equation,

||St−1||2Σ−1
t−1
≤ σ2

(
log (det(Σt)) + log

(
det(Σ−1

0 )
)
− 2 log(δ)

)

We now use the trace-determinant inequality. For any n×n matrix A, det(A) ≤
(
Tr(A)
n

)n
which implies that log(det(A)) ≤ n log

(
Tr(A)
n

)
. Using this for both Σt and Σ−1

0 , we obtain:

||St−1||Σ−1
t−1
≤ dnσ2

(
log

((
Tr(Σt)

dn

))
+ log

((
Tr(Σ−1

0 )

dn

))
− 2

dn
log(δ)

)
(B.38)

Next, we use the fact that

Σt = Σ0 +
t∑
l=1

φjlφ
T
jl

=⇒ Tr(Σt) ≤ Tr(Σ0) + t (Since ||φjl ||2 ≤ 1)
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Note that Tr(A ⊗ B) = Tr(A) · Tr(B). Since Σ0 = λL ⊗ Id, it implies that Tr(Σ0) =

λd · Tr(L). Also note that Tr(Σ−1
0 ) = Tr((λL)−1 ⊗ Id) = d

λ Tr(L−1). Using these relations

in Equation B.38,

||St−1||2Σ−1
t−1
≤ dnσ2

(
log

(
λdTr(L) + t

dn

)
+ log

(
Tr(L−1)

λn

)
− 2

dn
log(δ)

)
≤ dnσ2

(
log

(
Tr(L) Tr(L−1)

n2
+
tTr(L−1)

λdn2

)
− log(δ

2
dn )

)
(log(a) + log(b) = log(ab))

= dnσ2 log

(
Tr(L) Tr(L−1)

n2δ
+
tTr(L−1)

λdn2δ

)
(Redefining δ as δ

2
dn )

If L = In, Tr(L) = Tr(L−1) = n, we recover the bound in (Agrawal and Goyal, 2012b) i.e.

||St−1||2Σ−1
t−1
≤ dnσ2 log

(
1 + t/λdn

δ

)
(B.39)

The upper bound for Tr(L) is 3n, whereas the upper bound on Tr(L−1) is n. We thus

obtain the following relation.

||St−1||2Σ−1
t−1
≤ dnσ2 log

(
3

δ
+

t

λdnδ

)
||St−1||Σ−1

t−1
≤ σ

√
dn log

(
3 + t/λdn

δ

)
(B.40)

Combining Equations B.37 and B.40, we have with probability 1− δ,

|〈θt,φj〉 − 〈θ
∗,φj〉| ≤ st(k)

(√
dn log

(
3 + t/λdn

δ

)
+
√

3λ

)
|〈θt,φj〉 − 〈θ

∗,φj〉| ≤ st(k)lt

where lt =

√
dn log

(
3+t/λdn

δ

)
+
√

3λ. This completes the proof.

(B.41)
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Lemma 19. With probability 1− δ,

T∑
t=1

regret(t) ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2
T∑
t=1

36g2
t

γ2
ln

2

δ
(B.42)

Proof.

Let Zl and Yt be defined as follows:

Zl = regret(l)− 3gl
γ
sl −

2gl
γl2

Yt =
t∑
l=1

Zl (B.43)

E[Yt − Yt−1|Ft−1] = E[Xt] = E[regret(t)|Ft−1]− 3gt
γ
st −

2gt
γt2

E[regret(t)|Ft−1] ≤ E[∆t|Ft−1] ≤ 3gt
γ
st −

2gt
γt2

(Definition of regret(t) and using lemma 17)

E[Yt − Yt−1|Ft−1] ≤ 0

Hence, Yt is a super-martingale process. We now state and use the Azuma-Hoeffding

inequality for Yt

(B.44)

Definition 3 (Azuma-Hoeffding). If a super-martingale Yt (with t ≥ 0) and its the corre-

sponding filtration Ft−1, satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all t = 1, . . . T ,

then for any a ≥ 0,

Pr(YT − Y0 ≥ a) ≤ exp

(
−a2

2
∑T

t=1 c
2
t

)
(B.45)
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We define Y0 = 0. Note that |Yt−Yt−1| = |Zl| is bounded by 1 + 3gl
γ −

2gl
γl2

. Hence, ct = 6gt
γ .

Setting a =
√

2 ln(2/δ)
∑T

t=1 c
2
t in the above inequality, we obtain that with probability

1− δ
2 ,

YT ≤

√√√√2

T∑
t=1

36g2
t

γ2
ln(2/δ)

T∑
t=1

(
regret(t)− 3gt

γ
st −

2gt
γt2

)
≤

√√√√2
T∑
t=1

36g2
t

γ2
ln(2/δ) (B.46)

T∑
t=1

regret(t) ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2

T∑
t=1

36g2
t

γ2
ln(2/δ) (B.47)

Lemma 20.

T∑
t=1

z ≤
√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)
(B.48)

Proof.

Following the proof in (Dani et al., 2008; Wen et al., 2015b),

det [Σt] ≥ det

[
Σt−1 +

1

σ2
φjtφ

T
jt

]
= det

[
Σ

1
2
t−1

(
I +

1

σ2
Σ
− 1

2
t−1φjtφ

T
jt

Σ
− 1

2
t−1

)
Σ

1
2
t−1

]
= det [Σt−1] det

[
I +

1

σ2
Σ
− 1

2
t−1φjtφ

T
jt

Σ
− 1

2
t−1

]
det [Σt] = det [Σt−1]

(
1 +

1

σ2
φTjt

Σ−1
t−1φjt

)
= det [Σt−1]

(
1 +

s2
t

σ2

)
log (det [Σt]) ≥ log (det [Σt−1]) + log

(
1 +

s2
t

σ2

)
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log (det [ΣT ]) ≥ log (det [Σ0]) +

T∑
t=1

log

(
1 +

s2
t

σ2

)
(B.49)

If A is an n×n matrix, and B is an d×d matrix, then det[A⊗B] = det[A]d det[B]n. Hence,

det[Σ0] = det[λL⊗ Id] = det[λL]d

det[Σ0] = [λn det(L)]d = λdn[det(L)]d

log (det[Σ0]) = dn log (λ) + d log (det[L]) (B.50)

From Equations B.49 and B.50,

log (det [ΣT ]) ≥ (dn log (λ) + d log (det[L])) +
T∑
t=1

log

(
1 +

s2
t

σ2

)
(B.51)

We now bound the trace of Tr(ΣT+1).

Tr(Σt+1) = Tr(Σt) +
1

σ2
φjtφ

T
jt

=⇒ Tr(Σt+1) ≤ Tr(Σt) +
1

σ2
(Since ||φjt || ≤ 1)

Tr(ΣT ) ≤ Tr(Σ0) +
T

σ2

Since Tr(A⊗B) = Tr(A) · Tr(B)

Tr(ΣT ) ≤ Tr (λ(L⊗ Id)) +
T

σ2
=⇒ Tr(ΣT ) ≤ λdTr(L) +

T

σ2
(B.52)

Using the determinant-trace inequality, we have the following relation:(
1

dn
Tr(ΣT )

)dn
≥ (det[ΣT ])

dn log

(
1

dn
Tr(ΣT )

)
≥ log (det[ΣT ]) (B.53)
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Using Equations B.51, B.52 and B.53, we obtain the following relation.

dn log

(
λdTr(L) + T

σ2

dn

)
≥ (dn log (λ) + d log (det[L])) +

T∑
t=1

log

(
1 +

s2
t

σ2

)

T∑
t=1

log

(
1 +

s2
t

σ2

)
≤ dn log

(
λdTr(L) + T

σ2

dn

)
− dn log (λ)− d log (det[L])

≤ dn log

(
λdTr(L) + T

σ2

dn

)
− dn log (λ) + d log

(
det[L−1]

)
(det[L−1] = 1/det[L])

≤ dn log

(
λdTr(L) + T

σ2

dn

)
− dn log (λ) + dn log

(
1

n
Tr(L−1)

)
(Using the determinant-trace inequality for log(det[L−1]))

≤ dn log

(
λdTr(L) Tr(L−1) + Tr(L−1)T

σ2

λdn2

)
(log(a) + log(b) = log(ab))

≤ dn log

(
Tr(L) Tr(L−1)

n2
+

Tr(L−1)T

λdn2σ2

)
The maximum eigenvalue of any Laplacian is 2. Hence Tr(L) is upper-bounded by 3n.

T∑
t=1

log

(
1 +

s2
t

σ2

)
≤ dn log

(
3 Tr(L−1)

n
+

Tr(L−1)T

λdn2σ2

)
(B.54)

(B.55)

s2
t = φTjΣ−1

t φj ≤ φ
T
jΣ−1

0 φj

(Since we are making positive definite updates at each round t)

≤ ‖φj‖
2νmax(Σ−1

0 )

= ‖φj‖
2 1

νmin(λL⊗ Id)

= ‖φj‖
2 1

νmin(λL)
(νmin(A⊗B) = νmin(A)νmin(B))
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≤ 1

λ
· 1

νmin(L)
(||φj ||2 ≤ 1)

s2
t ≤

1

λ
(Minimum eigenvalue of a normalized Laplacian LG is 0. L = LG + In)

Moreover, for all y ∈ [0, 1/λ], we have log
(
1 + y

σ2

)
≥ λ log

(
1 + 1

λσ2

)
y based on the concav-

ity of log(·). To see this, consider the following function:

h(y) =
log
(
1 + y

σ2

)
λ log

(
1 + 1

λσ2

) − y (B.56)

Clearly, h(y) is concave. Also note that, h(0) = h(1/λ) = 0. Hence for all y ∈ [0, 1/λ], the

function h(y) ≥ 0. This implies that log
(
1 + y

σ2

)
≥ λ log

(
1 + 1

λσ2

)
y. We use this result by

setting y = s2
t .

log

(
1 +

s2
t

σ2

)
≥ λ log

(
1 +

1

λσ2

)
s2
t

s2
t ≤

1

λ log
(
1 + 1

λσ2

) log

(
1 +

s2
t

σ2

)
(B.57)

Hence,

T∑
t=1

s2
t ≤

1

λ log
(
1 + 1

λσ2

) T∑
t=1

log

(
1 +

s2
t

σ2

)
(B.58)

By Cauchy Schwartz,

T∑
t=1

z ≤
√
T

√√√√ T∑
t=1

s2
t (B.59)

From Equations B.58 and B.59,

T∑
t=1

z ≤
√
T

√√√√ 1

λ log
(
1 + 1

λσ2

) T∑
t=1

log

(
1 +

s2
t

σ2

)
T∑
t=1

z ≤
√
T

√√√√C

T∑
t=1

log

(
1 +

s2
t

σ2

)
(B.60)
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where C = 1

λ log
(

1+ 1
λσ2

) . Using Equations B.54 and B.60,

T∑
t=1

z ≤
√
dnT

√
C log

(
3 Tr(L−1)

n
+

Tr(L−1)T

λdn2σ2

)
T∑
t=1

z ≤
√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 +

T

λdnσ2

)
(B.61)
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Appendix C

Supplementary for Chapter 4

C.1 Proof for Theorem 6

We prove Theorem 6 in this section. First, we have the following tail bound for Binomial

random variables:

Proposition 2 (Binomial Tail Bound). Assume that random variable X ∼ Bino(n, p), then

for any k s.t. np < k < n, we have

P(X ≥ k) ≤ exp

(
−nD

(
k

n

∥∥∥∥p)) ,
where D

(
k
n

∥∥p) is the KL-divergence between k
n and p.

Please refer to (Arratia and Gordon, 1989) for the proof of Proposition 2.

Notice that for our considered case, the “observation history” of the agent at the begin-

ning of time t is completely characterized by a triple Ht = (αt−1, βt−1, t), where αt−1 is the

number of times arm 1 has been pulled from time 1 to t−1 and the realized reward is 1, plus

the pseudo count α0; similarly, βt−1 is the number of times arm 1 has been pulled from time

1 to t−1 and the realized reward is 0, plus the pseudo count β0. Moreover, conditioning on

this history Ht, the probability that the agent will pull arm 1 under the NPB only depends

on (αt−1, βt−1). To simplify the exposition, we use P (αt−1, βt−1) to denote this conditional

probability. The following lemma bounds this probability in a “bad” history:

Lemma 21. Consider a “bad” history Ht with αt−1 = 1 and βt−1 = 1+m for some integer
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m ≥ 15, then we have

P (αt−1, βt−1) < exp (−(m+ 2) log(m+ 2)/20) < exp (−m log(m)/20) .

Proof. Recall that by definition, we have

P (αt−1, βt−1) =P (1,m+ 1)

(a)
= P (wt ≥ 1/4 |αt−1 = 1, βt−1 = m+ 1)

=P ((m+ 2)wt ≥ (m+ 2)/4 |αt−1 = 1, βt−1 = m+ 1)

(b)

≤ exp

(
−(m+ 2)D

(
1

4

∥∥∥∥ 1

m+ 2

))
, (C.1)

where (a) follows from the NPB procedure in this case, and (b) follows from Proposition 2.

Specifically, recall that (m+2)wt ∼ Bino(m+2, 1/(m+2)), and (m+2)/4 > (m+2) 1
m+2 = 1

for m ≥ 15. Thus, the conditions of Proposition 2 hold in this case. Furthermore, we have

D

(
1

4

∥∥∥∥ 1

m+ 2

)
=

1

4
log

(
m+ 2

4

)
+

3

4
log

(
3(m+ 2)

4(m+ 1)

)
≥ 1

4
log(m+ 2)− 1

4
log(4) +

3

4
log

(
3

4

)
=

1

20
log(m+ 2) +

[
1

5
log(m+ 2)− 1

4
log(4) +

3

4
log

(
3

4

)]
(c)
>

1

20
log(m+ 2), (C.2)

where (c) follows from the fact that 1
5 log(m + 2) − 1

4 log(4) + 3
4 log

(
3
4

)
≥ 0 for m > 15.

Thus we have

P (αt−1, βt−1) ≤ exp

(
−(m+ 2)D

(
1

4

∥∥∥∥ 1

m+ 2

))
< exp (−(m+ 2) log(m+ 2)/20)

< exp (−m log(m)/20) . (C.3)

The following technical lemma derives the expected value of a truncated geometric
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random variable, as well as a lower bound on it, which will be used in the subsequent

analysis:

Lemma 22 (Expected Value of Truncated Geometric R.V.). Assume that Z is a truncated

geometric r.v. with parameter p ∈ (0, 1) and integer l ≥ 1. Specifically, the domain of Z is

{0, 1, . . . , l}, and P(Z = i) = (1− p)ip for i = 0, 1, . . . , l− 1 and P(Z = l) = (1− p)l. Then

we have

E(Z) =

[
1

p
− 1

] [
1− (1− p)l

]
≥ 1

2
min

{
1

p
− 1, l(1− p)

}
.

Proof. Notice that by definition, we have

E(Z) = p

[
l−1∑
i=0

i(1− p)i
]

︸ ︷︷ ︸
A

+l(1− p)l

Define the shorthand notation A =
∑l−1

i=0 i(1− p)i, we have

(1− p)A =

l−1∑
i=0

i(1− p)i+1 =

l∑
i=1

(i− 1)(1− p)i

=
l∑

i=0

i(1− p)i −
[

1

p
− 1

] [
1− (1− p)l

]
=A+ l(1− p)l −

[
1

p
− 1

] [
1− (1− p)l

]
. (C.4)

Recall that E(Z) = pA+ l(1− p)l, we have proved that E(Z) =
[

1
p − 1

] [
1− (1− p)l

]
.

Now we prove the lower bound. First, we prove that

(1− p)l ≤ 1− pl

1 + pl
(C.5)

always holds by induction on l. Notice that when l = 1, the LHS of equation (C.5) is 1− p,
and the RHS of equation (C.5) is 1

1+p . Hence, this inequality trivially holds in the base

case. Now assume that equation (C.5) holds for l, we prove that it also holds for l + 1.
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Notice that

(1− p)l+1 = (1− p)l(1− p)
(a)

≤
(

1− pl

1 + pl

)
(1− p)

= 1− p(l + 1)

1 + pl
+

p

1 + pl
− p+

p2l

1 + pl

= 1− p(l + 1)

1 + pl
≤ 1− p(l + 1)

1 + p(l + 1)
, (C.6)

where (a) follows from the induction hypothesis. Thus equation (C.5) holds for all p and l.

Notice that equation C.5 implies that

E(Z) =

[
1

p
− 1

] [
1− (1− p)l

]
≥
[

1

p
− 1

]
pl

1 + pl
.

We now prove the lower bound. Notice that for any l, pl
1+pl is an increasing function of p,

thus for p ≥ 1/l, we have[
1

p
− 1

]
pl

1 + pl
≥
[

1

p
− 1

]
/2 ≥ 1

2
min

{
1

p
− 1, l(1− p)

}
.

On the other hand, if p ≤ 1/l, we have[
1

p
− 1

]
pl

1 + pl
=

(1− p)l
1 + pl

≥ (1− p)l/2 ≥ 1

2
min

{
1

p
− 1, l(1− p)

}
.

Combining the above results, we have proved the lower bound on E(Z).

We then prove the following lemma:

Lemma 23 (Regret Bound Based on m). When NPB is applied in the considered case, for

any integer m and time horizon T satisfying 15 ≤ m ≤ T , we have

E [R(T )] ≥ 2−m

8
min

{
exp

(
m log(m)

20

)
,
T

4

}
.

Proof. We start by defining the bad event G as

G = {∃t = 1, 2, . . . s.t. αt−1 = 1 and βt−1 = m+ 1} .
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Thus, we have E [R(T )] ≥ P (G)E [R(T )| G]. Since αt ≥ 1 for all t = 1, 2, . . ., with prob-

ability 1, the agent will pull arm 1 infinitely often. Moreover, the event G only depends

on the outcomes of the first m pulls of arm 1. Thus we have P (G) = 2−m. Furthermore,

conditioning on G, we define the stopping time τ as

τ = min {t = 1, 2, . . . s.t. αt−1 = 1 and βt−1 = m+ 1} .

Then we have

E [R(T )] ≥P (G)E [R(T )| G] = 2−mE [R(T )| G]

= 2−m [P (τ > T/2|G)E [R(T )| G, τ > T/2] + P (τ ≤ T/2|G)E [R(T )| G, τ ≤ T/2]]

≥ 2−m min {E [R(T )| G, τ > T/2] , E [R(T )| G, τ ≤ T/2]} (C.7)

Notice that conditioning on event {G, τ > T/2}, in the first bT/2c steps, the agent either

pulls arm 2 or pulls arm 1 but receives a reward 0, thus, by definition of R(T ), we have

E [R(T )| G, τ > T/2] ≥ bT/2c
4

.

On the other hand, if τ ≤ T/2, notice that for any time t ≥ τ with history Ht =

(αt−1, βt−1, t) s.t. (αt−1, βt−1) = (1,m + 1), the agent will pull arm 1 conditionally inde-

pendently with probability P (1,m+1). Thus, conditioning on Hτ , the number of times the

agent will pull arm 2 before it pulls arm 1 again follows the truncated geometric distribution

with parameter P (1,m+ 1) and T − τ + 1. From Lemma 22, for any τ ≤ T/2, we have

E [R(T )| G, τ ]
(a)

≥ 1

8
min

{
1

P (1,m+ 1)
− 1, (T − τ + 1)(1− P (1,m+ 1))

}
(b)

≥ 1

8
min

{
1

P (1,m+ 1)
− 1,

T

2
(1− P (1,m+ 1))

}
(c)
>

1

8
min

{
exp ((m+ 2) log(m+ 2)/20)− 1,

T

4

}
(d)

≥ 1

8
min

{
exp (m log(m)/20) ,

T

4

}
, (C.8)

notice that a factor of 1/4 in inequality (a) is due to the reward gap. Inequality (b) follows

157



from the fact that τ ≤ T/2; inequality (c) follows from Lemma 21, which states that for

m ≥ 15, we have P (αt−1, βt−1) < exp (−(m+ 2) log(m+ 2)/20) < 1
2 ; inequality (d) follows

from the fact that for m ≥ 15, we have

exp ((m+ 2) log(m+ 2)/20)− 1 > exp (m log(m)/20) .

Finally, notice that

E [R(T )| G, τ ≤ T/2] =
∑
τ≤T/2

P(τ |G, τ ≤ T/2)E [R(T )| G, τ ] >
1

8
min

{
exp

(
m log(m)

20

)
,
T

4

}
.

Thus, combining everything together, we have

E[R(T )] ≥ 2−m min {E [R(T )| G, τ > T/2] , E [R(T )| G, τ ≤ T/2]}

>
2−m

4
min

{
1

2
exp

(
m log(m)

20

)
,
T

8
, bT

2
c
}

=
2−m

4
min

{
1

2
exp

(
m log(m)

20

)
,
T

8

}
, (C.9)

where the last equality follows from the fact that T
8 < b

T
2 c for T ≥ 15. This concludes the

proof.

Finally, we prove Theorem 6.

Proof. For any given γ ∈ (0, 1), we choose m =
⌈
γ log(T )

2

⌉
. Since

T ≥ exp

[
2

γ
exp

(
80

γ

)]
,

we have

T � m =

⌈
γ log(T )

2

⌉
≥ exp

(
80

γ

)
≥ exp (80)� 15,

thus, Lemma 23 is applicable. Notice that

E [R(T )] ≥ 2−m

8
min

{
exp

(
m log(m)

20

)
,
T

4

}
>

exp(−m)

8
min

{
exp

(
m log(m)

20

)
,
T

4

}
.
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Furthermore, we have

exp(−m)T > exp (−γ log(T ))T = T 1−γ ,

where the first inequality follows from m =
⌈
γ log(T )

2

⌉
< γ log(T ). On the other hand, we

have

exp(−m) exp

(
m log(m)

20

)
= exp

(
m log(m)

20
−m

)
≥ exp

(
m log(m)

40

)
,

where the last inequality follows from the fact that m log(m)
40 ≥ m, since m ≥ exp(80). Notice

that we have

exp

(
m log(m)

40

)
≥ exp

(
γ log(T ) log(γ log(T )

2 )

80

)
≥ T ,

where the first inequality follows from the fact that m ≥ γ log(T )
2 , and the second inequality

follows from T ≥ exp
[

2
γ exp

(
80
γ

)]
. Putting it together, we have

E [R(T )] >
1

8
min

{
T,
T 1−γ

4

}
=
T 1−γ

32
.

This concludes the proof for Theorem 6.

C.2 Proof for Theorem 2

For simplicity of exposition, we consider 2 arms with means µ1 > µ2. Let ∆ = µ1−µ2. Let

µt(k) be the mean of the history of arm k at time t and µ̂t(k) be the mean of the bootstrap

sample of arm k at time t. Note that both are random variables. Each arm is initially

explored m times. Since µt(k) and µ̂t(k) are estimated from random samples of size at

least m, we get from Hoeffding’s inequality (Theorem 2.8 in Boucheron et al (Boucheron

et al., 2013)) that

P (µt(1) ≤ µ1 − ε) ≤ exp[−2ε2m] ,

P (µt(2) ≥ µ2 + ε) ≤ exp[−2ε2m] ,

P (µ̂t(1) ≤ µt(1)− ε) ≤ exp[−2ε2m] ,
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P (µ̂t(2) ≥ µt(2) + ε) ≤ exp[−2ε2m]

for any ε > 0 and time t > 2m. The first two inequalities hold for any µ1 and µ2. The

last two hold for any µt(1) and µt(2), and therefore also in expectation over their random

realizations. Let E be the event that the above inequalities hold jointly at all times t > 2m

and E be the complement of event E . Then by the union bound,

P (E) ≤ 4T exp[−2ε2m] .

By the design of the algorithm, the expected T -step regret is bounded from above as

E[R(T )] = ∆m+ ∆
T∑

t=2m+1

E[1{jt = 2}]

≤ ∆m+ ∆
T∑

t=2m+1

E[1{jt = 2, E}] + 4T 2 exp[−2ε2m] ,

where the last inequality follows from the definition of event E and observation that the

maximum T -step regret is T . Let

m =

⌈
16

∆̃2
log T

⌉
, ε =

∆̃

4
,

where ∆̃ is a tunable parameter that determines the number of exploration steps per arm.

From the definition of m and ∆̃, and the fact that E[1{jt = 2, E}] = 0 when ∆̃ ≤ ∆, we

have that

E[R(T )] ≤ 16∆

∆̃2
log T + ∆̃T + ∆ + 4 .

Finally, note that ∆ ≤ 1 and we choose ∆̃ =

(
16 log T

T

) 1
3

that optimizes the upper bound.

C.3 Weighted bootstrapping and equivalence to TS

In this section, we prove that for the common reward distributions, WB becomes equivalent

to TS for specific choices of the weight distribution and the transformation function.
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C.3.1 Using multiplicative exponential weights

In this subsection, we consider multiplicative exponential weights, implying that wi ∼
Exp(1) and T (yi, wi) = yi · wi. We show that in this setting WB is mathematically equiv-

alent to TS for Bernoulli and more generally categorical rewards.

Proof for Proposition 1

Proof. Recall that the bootstrap sample is given as:

θ̃ =

∑n
i=1[wi · yi] +

∑α0
i=1[wi]∑n+α0+β0

i=1 wi

To characterize the distribution of θ̃, let us define P0 and P1 as the sum of weights for the

positive and negative examples respectively. Formally,

P0 =

n∑
i=1

[wi · I{yi = 0}] +

α0∑
i=1

[wi]

P1 =
n∑
i=1

[wi · I{yi = 1}] +

β0∑
i=1

[wi]

The sample θ̃ can then be rewritten as:

θ̃ =
P1

P0 + P1

Observe that P0 (and P1) is the sum of α + α0 (and β + β0 respectively) exponentially

distributed random variables. Hence, P0 ∼ Gamma(α+α0, 1) and P1 ∼ Gamma(β+β0, 1).

This implies that θ̃ ∼ Beta(α+ α0, β + β0).

When using the Beta(α0, β0) prior for TS, the corresponding posterior distribution

on observing α positive examples and β negative examples is Beta(α+ α0, β + β0). Hence

computing θ̃ according to WB is the equivalent to sampling from the Beta posterior. Hence,

WB with multiplicative exponential weights is mathematically equivalent to TS.
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Categorical reward distribution

Proposition 3. Let the rewards yi ∼ Multinomial(θ∗1, θ
∗
2, . . . θ

∗
C) where C is the number

of categories and θ∗i is the probability of an example belonging to category i. In this case,

weighted bootstrapping with wi ∼ Exp(1) and the transformation yi → yi · wi results in

θ̃ ∼ Dirichlet(n1 + ñ1, n2 + ñ2, . . . nc + ñc) where ni is the number of observations and ñi

is the pseudo-count for category i. In this case, WB is equivalent to Thompson sampling

under the Dirichlet(ñ1, ñ2, . . . ñC) prior.

Proof. Like in the Bernoulli case, for all c ∈ C, define Pc as follows:

Pc =

nc∑
i=1

[wi · I{yi = c}] +

ñc∑
i=1

[wi]

The bootstrap sample θ̃ consists of C dimensions i.e. θ̃ = (θ̃1, θ̃2 . . . θ̃C) such that:

θ̃c =
Pc∑C
i=1 Pc

Note that
∑C

c=1 θ̃c = 1. Observe that Pc is the sum of nc + ñc exponentially distributed

random variables. Hence, Pc ∼ Gamma(nc + ñc, 1). This implies that θ̃ ∼ Dirichlet(n1 +

ñ1, n2 + ñ2 . . . nk + ñk).

When using the Dirichlet(ñ1, ñ2, . . . ñC) prior for TS, the corresponding posterior dis-

tribution is Dirichlet(n1 + ñ1, n2 + ñ2 . . . nk + ñk). Hence computing θ̃ according to WB

is the equivalent to sampling from the Dirichlet posterior. Hence, WB with multiplicative

exponential weights is mathematically equivalent to TS.

C.3.2 Using additive normal weights

In this subsection, we consider additive normal weights, implying that wi ∼ N(0, 1) and

T (yi, wi) = yi + wi. We show that in this setting WB is mathematically equivalent to TS

for Gaussian rewards.
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Normal

Proposition 4. Let the rewards yi ∼ Normal(〈xi, θ∗〉, 1) where xi is the corresponding

feature vector for point i. If X is the n× d matrix of feature vectors and y is the vector of

labels for the n observations, then weighted bootstrapping with wi ∼ N(0, 1) and using the

transformation yi → yi + wi results in θ̃ ∼ N(θ̂,Σ) where Σ−1 = XTX and θ̂ = Σ
[
XTy

]
.

In this case, WB is equivalent to Thompson sampling under the uninformative prior θ ∼
N(0,∞).

Proof. The probability of observing point i when the mean is θ and assuming unit variance,

P(yi|xi, θ) = N(〈xi, θ〉, 1)

The log-likelihood for observing the data is equal to:

L(θ) =
−1

2

n∑
i=1

(yi − 〈xi, θ〉)2

The MLE has the following closed form solution:

θ̂ =
(
XTX

)−1
XTy

The bootstrapped log-likelihood is given as:

L̃(θ) =
−1

2

n∑
i=1

(yi + wi − 〈xi, θ〉)2

If w = [w1, w2 . . . wn] is the vector of weights, then the bootstrap sample can be computed

as:

θ̃ =
(
XTX

)−1
XT [y + w]

The bootstrap estimator θ̃ has a Gaussian distribution since it is a linear combination of

Gaussian random variables (y and w). We now calculate the first and second moments for
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θ̃ wrt to the random variables w.

E[θ̃] = Ew

[(
XTX

)−1
XT [y + w]

]
=
(
XTX

)−1
XTy + E

[(
XTX

)−1
XTw

]
= θ̂ +

(
XTX

)−1
XTE[w]

=⇒ Ew[θ̃] = θ̂

Ew

[
(θ̃ − θ̂)(θ̃ − θ̂)T

]
= Ew

[[
(XTX)−1XTw

] [
(XTX)−1XTw

]T ]
= E

[[
(XTX)−1XTwwTX(XTX)−T

]]
= E

[
(XTX)−1XTwwTX(XTX)−T

]
= (XTX)−1XTE

[
wwT

]
X(XTX)−T

= (XTX)−1XTX(XTX)−T (Since E[wwT ] = Id)

= (XTX)−1(XTX)(XTX)−1

=⇒ Ew

[
(θ̃ − θ̂)(θ̃ − θ̂)T

]
= (XTX)−1 = Σ

Thus θ̃ ∼ N(θ̂,Σ). When using the uninformative prior N(0,∞Id) prior for TS, the poste-

rior distribution on observing D is equal to N(θ̂,Σ). Hence computing θ̃ according to WB

is the equivalent to sampling from the the Gaussian posterior. Hence, WB with additive

normal weights is mathematically equivalent to TS.

C.4 Additional Experimental Results

C.4.1 Bandit setting

C.4.2 Contextual bandit setting - Comparison to the method proposed
in (McNellis et al., 2017)
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(a) Bernoulli
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(b) Truncated-
Normal
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(c) Beta
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Figure C.1: Cumulative Regret for TS, NPB and WB in a bandit setting K = 2
arms for (a) Bernoulli (b) Truncated-Normal in [0, 1] (c) Beta (d) Triangular
in [0, 1] reward distributions
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(a) Bernoulli
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(b) Truncated-
Normal
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(c) Beta
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Figure C.2: Cumulative Regret for TS, NPB and WB in a bandit setting K = 5
arms for (a) Bernoulli (b) Truncated-Normal in [0, 1] (c) Beta (d) Triangular
in [0, 1] reward distributions

Dataset UAI-log UAI-nn NPB-log NPB-nn WB-log WB-nn

Statlog 0.90 0.69 0.035 0.093 0.032 0.10

CovType 1.14 0.74 0.062 0.14 0.061 0.14

Table C.1: Runtime in seconds/round for non-linear variants of UAI, NPB and WB.
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Figure C.3: Comparison of the method proposed in (McNellis et al., 2017) (denoted
as UAI in the plots), NPB and WB. The proposed bootstrapping methods
tend to perform better than or equal to the method UAI. For UAI, we use an
ensemble size of 5, 10 Gaussian feature-vectors as pseudo-examples and use the
same stochastic optimization procedures as NPB and WB. In each round, we
independently add the feature-vector and reward to a model in the ensemble
independently with probability 0.5.
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