
Influence Maximization in Bandit and Adaptive Settings

by

Sharan Vaswani

B.E. Computer Science, Birla Institute of Technology and Science, Pilani, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2015

c© Sharan Vaswani, 2015

Abstract

The objective of viral marketing is to leverage a social network to spread awareness about

a specific product in the market through information propagation via word-of-mouth. A

closely related problem is that of influence maximization which aims to identify the

‘best’ set of ‘influential’ users (seeds) to give discounts or free products to, such that

awareness about the product is maximized. We study two relatively unexplored variants

of influence maximization (IM) in social networks.

Conventional IM algorithms assume the structure of the social network and edge

weights to be known. Though the structure of the network is usually known, edge weights

need to be estimated from past data. In the first part of this thesis, we tackle the real but

difficult problems of (i) learning these edge weights online and (ii) maximizing influence

in the network when no past data is available as input. We adopt a combinatorial multi-

armed bandit (CMAB) paradigm and formulate the above problems respectively as (i)

network exploration, i.e. incrementally minimizing the error in learned edge weights and

(ii) regret minimization i.e. minimizing the loss in influence from choosing suboptimal

seed sets over multiple attempts.

Most previous work on influence maximization in social networks is limited to the

non-adaptive setting in which the marketer is supposed to select all of the seed users up

front. A disadvantage of this setting is that she is forced to select all the seeds based

solely on a diffusion model. If the selected seeds do not perform well, there is no op-

portunity to course-correct. A more practical setting is the adaptive setting in which the

marketer initially selects a batch of users and observes how seeding those users leads to

a diffusion of product adoptions. Based on this market feedback, she formulates a policy

for choosing the remaining seeds. We study adaptive offline strategies for two problems:

(a) MAXSPREAD - given a budget on number of seeds and a time horizon, maximize

the spread of influence and (b) MINTSS - given a time horizon and an expected number

of target users, minimize the number of required seeds.

ii

Preface

This thesis is submitted in partial fulfilment of the requirements for a Master of Science

Degree in Computer Science. All the work presented in this dissertation are original and

independent work of the author, performed under the supervision of Prof. Laks.V.S.Lakshmanan.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

List of Symbols . viii

Acknowledgements . x

1 Introduction . 1

2 Background and Related Work . 6
2.1 Conventional Influence Maximization 6

2.1.1 Diffusion Model . 6

2.1.2 Algorithm . 7

2.1.3 Learning probabilities . 8

2.1.4 Feedback . 8

2.2 Multi-armed Bandits . 8

2.3 Adaptive Influence Maximization . 10

3 Influence Maximization with Bandits . 12
3.1 Theory . 12

3.1.1 Combinatorial Multiarmed Bandit Framework 12

iv

3.1.2 Adaptation to IM . 13

3.2 Network Exploration . 21

3.2.1 Random Exploration . 21

3.2.2 Strategic Exploration . 24

3.3 Regret Minimization . 24

3.4 Experiments . 27

4 Adaptive Influence Maximization . 34
4.1 Theory . 34

4.1.1 MAXSPREAD . 37

4.1.2 MINTSS . 39

4.1.3 Bounded Time Horizon . 41

4.2 Algorithms . 42

4.2.1 Two phase Influence Maximization 42

4.2.2 Sequential Model Based Optimization 43

4.3 Experiments . 45

4.3.1 Datasets . 45

4.3.2 Experimental Setup . 45

4.3.3 Sequential Model Based Optimization 45

4.3.4 MAXSPREAD . 46

4.3.5 MINTSS . 49

5 Conclusion . 52

Bibliography . 54

v

List of Tables

Table 3.1 Dataset characteristics . 28

Table 3.2 Subroutine runtimes (in sec/round) 29

Table 3.3 Epinions: Spread vs k . 33

Table 4.1 Policies of p = 1 recovered by SMAC for varying time horizons(T)

for Flixster with Q = 5800 . 50

vi

List of Figures

Figure 3.1 Summary of bandit framework for influence maximization 14

Figure 3.2 Example for node level feedback. 15

Figure 3.3 NetHept,k = 50: Network Exploration 30

Figure 3.4 k = 50:Regret vs Number of Rounds 31

Figure 3.5 NetHept, k = 50: L2 error vs Number of Rounds 32

Figure 4.1 Example for adaptive versus non-adaptive seed selection 34

Figure 4.2 Theoretical comparison of adaptive and non-adaptive strategies . . . 40

Figure 4.3 Counterexample to show that the spread is not adaptive submodular

under incomplete diffusion . 41

Figure 4.4 Average Spread vs Number of seeds 46

Figure 4.5 Runtime vs Number of seeds . 47

Figure 4.6 Epinions:Adaptive vs Non-adaptive for MAXSPREAD 48

Figure 4.7 Number of seeds required vs Target fraction 49

Figure 4.8 Flixster: Runtime vs Target fraction 50

vii

List of Symbols

G Graph underlying the social network

V Set of vertices in G

E Set of edges in G

P Set of influence probabilities(edge weights) in G

Nout(u) Set of out-neighbours of node u

Nin(u) Set of in-neighbours of node u

D Length of the longest path of G

k Seed budget

S Seed set

W Possible world of the diffusion process

σ(S) Expected spread for the seed set S
m Number of base arms in the bandit framework

π Seed selection policy for adaptive seeding

H Time horizon for viral marketing campaign

T Number of rounds in the bandit game

Xi,s Reward of the ith in round s

Ti,s Number of times arm i has been triggered until round s

T s
(u,v) Number of times edge (u,v) has been triggered until round s

µi Mean of the reward distribution for the ith arm

A Superarm (subset of base arms)

µ̂ i Mean estimate for arm i

pi
A Triggering probability of arm i if the superarm A is played

O Influence maximization oracle

ρ Failure probability of the Frequentist approach for node level feedback

viii

pu,v Influence probability for the edge (u,v)

pmin Minimum influence probability in the network

pmax Maximum influence probability in the network

F Bounded convex set

cs Cost function in round s in Zinkevich’s framework

xs Point selected in round s in Zinkevich’s framework

ηs Step size in round s for gradient descent in Zinkevich’s framework

r~µ (A) Reward obtained on playing the superarm A when the mean rewards is given by ~µ

RegA
~µ ,α,β

Regret for algorithm A when the mean rewards

are given by ~µ calculated according to an (α,β) oracle

C Set of available cascades

M Feedback mechanism

µi Upper confidence bound for the ith arm

ω Initial exploration rate for the ε-greedy algorithm

ζ Fraction of exploration rounds for the Initial Exploration algorithm

γ Correlation decay in the network

α Multiplicative error in the marginal gain estimaton for adaptive policies

Q Expected target spread for MINTSS

δ , β Shortfall in achieving the target spread for MINTSS

πGA,k Greedy Adaptive policy constrained to select k seeds

πOA,k Optimal Adaptive policy constrained to select k seeds

πGNA,k Greedy Non-adaptive policy constrained to select k seeds

πONA,k Optimal Non-adaptive policy constrained to select k seeds

σ(πstrategy,k) Expected spread for a πstrategy policy constrained to select k seeds

ix

Acknowledgements

I am indebted to my supervisor Professor Laks.V.S.Lakshmanan for being so patient and

for all his help - technical and otherwise. I am grateful to all the professors with whom I

got an opportunity to interact with. In particular, I am grateful to Nick Harvey and Mark

Schmidt for taking time off their busy schedules to give me helpful advice. I would like

to thank my lab-mates and collaborators for all the useful discussions and ideas. I would

like to thank my friends at UBC for keeping me sane during these two years. Last but

not the least, I am thankful to my family for their constant love and support.

x

To my family

xi

1

Introduction

They say 90% of the promotion of a book comes through word of mouth. But

you’ve somehow got to get your book into the hands of those mouths first!.

– Claudia Osmond

Recently, there has been tremendous interest in the study of influence propagation in

social and information networks, motivated by applications such as the study of spread of

infections and innovations, viral marketing, and feed ranking to name a few (e.g.,see [18,

31, 48, 49]). In these applications, the network is given by a directed graph G= (V,E,P),

with nodes V , edges E, and edge weights P : E → [0,1]. The nodes denote users of

the social network, the edges correspond to relations between users of the network (e.g.

friendship in Facebook, followers in Twitter). The edge weights (also referred to as influ-

ence probabilities) characterize the strength of these relations. Usually, they denote the

probabilities of influence between adjacent nodes and govern how information spreads

from a node to its neighbours. Information propagation in these applications is modelled

with the aid of a stochastic diffusion model.

We address the problem of viral marketing [38, 43] the aim of which is to leverage

the social network to spread awareness about a specific product in the market through

information propagation via word-of-mouth. Specifically, the marketer aims to select a

fixed number of ‘influential’ users (called seeds) to give free products or discounts to.

The marketer assumes that these users will influence others through the social network.

This will result in information propagating through the network with increasing number

of users adopting or becoming aware of the product. Since there is a budget on the

number of free samples / discounts that can be given, the marketer must strategically

1

choose seeds so that the maximum number of people in the network become aware of

the product. This can be formalized as the influence maximization (IM) problem [33].

Under an assumed model of information diffusion, IM aims to identify the ‘best’ set of

seeds which when given free products / discounts will result in the maximum number

of people adopting or becoming aware of the product. We refer to a user adopting or

becoming aware of the product as being ‘activated’. More precisely, if k is the budget

on the number of seeds that can be selected by the marketer, IM aims to find a set S of

k seed nodes, such that activating them in the beginning leads to the maximum expected

spread σ , i.e., expected number of activated nodes according to a given diffusion model.

The IM problem can be formally formulated as:

S = argmax|S|≤kσ(S) (1.1)

In their seminal paper, Kempe, Kleinberg and Tardös [33] formalized IM as a discrete

optimization problem. They studied several discrete-time diffusion models originally pi-

oneered in mathematical sociology. These models include the independent cascade and

linear threshold model (details in Section 2). They showed that IM under these models

is NP-hard but the expected spread function satisfies the nice properties of monotonic-

ity and submodularity. Monotonicity means adding more seeds cannot lead to a lower

expected spread whereas submodularity intuitively corresponds to the property of dimin-

ishing returns (formal definitions in Chapter 2). By exploiting these properties and early

results by Nemhauser et al.[39], they showed that a simple greedy algorithm achieves

a (1− 1/e)-approximation to the optimum. There has been an explosion of research

activity around this problem, including development of scalable heuristics, alternative

diffusion models, and scalable approximation algorithms (e.g., see [10] [51] [35] [28]

[27] [50]). We refer the reader to [13] for a more detailed survey.

Most work on IM assumes that both the network and the set of influence probabil-

ities is available as input. However, although the network structure might be known in

practice, influence probabilities are not generally available. To overcome this, the ini-

tial series of papers following [33] simply assigned influence probabilities: e.g., assign

a fixed small probability such as 0.01 to all edges, assign values drawn at random from

a fixed set such as {0.1,0.01,0.001}, or assign an equal probability of 1
Nin(v) to all in-

coming edges of a node v, where Nin(v) is the set of in-neighbours of v. However, there

is no basis for such assignment. A useful kind of data sometimes available is the set of

diffusions or cascades that actually happened in the past, specified in the form of a log of

2

actions by network users. There is a growing body of work devoted to learning the true

influence probabilities from past data [17, 26, 40, 45, 46]. Details of this body of work

are covered in Section 2.

Irrespective of the differences in the approaches proposed, diffusion models used,

or parameters learned, a common characteristic of all these works is that they all criti-

cally depend on actual diffusion cascades being available. We notice that in several real

datasets, only the social network data is available and there is no available information

about cascades. This unfortunately renders the previous approaches for learning influ-

ence probabilities inapplicable. This raises the following questions. (1) When only a

social network is available, how can we learn influence probabilities, and do so in an

efficient manner? (2) More generally, how can we solve the IM problem when no cas-

cade information or influence probabilities is available? We solve these problems in an

online fashion i.e. we perform IM in multiple rounds and improve our seed selection and

knowledge about the influence probabilities incrementally across rounds. We refer to the

first question as the network exploration problem i.e. how to perform our seed selections

so that we can learn about the influence probabilities in the network quickly. The sec-

ond question can be cast as a regret minimization problem (formal definitions given in

chapter 3).

Formally, we adopt a multi-armed bandits(MAB) paradigm for solving the problems

of learning influence probabilities and influence maximization, when only the social net-

work is available as input. The inspiration for our work comes from recent work by Chen

et al. [14, 15] on combinatorial MAB that includes influence maximization as an appli-

cation. The stochastic multi-armed bandit setting [34] has been used to address problems

in clinical trials [44], adaptive routing [5] and advertisement placement on websites [42]

and recommender systems [36]. The combinatorial MAB framework [2, 14] is an exten-

sion to the multi-armed bandit setting and has proved to be important in solving tasks

which have an associated combinatorial structure. Adoption of a bandit paradigm in turn

raises the following additional questions. (3) How should we update our estimates of

the influence probabilities based on observations made from previous seed selections?

(4) How many rounds of seed selections are needed before influence probabilities can

be learned in an accurate enough manner? Another natural question is: (5) How does

the learning “rate” of bandit based algorithms compare with that of the batch algorithms

(which assume the availability of a batch of cascades) ? (6) While seed selection does im-

prove our knowledge of influence probabilities, we are paying a price for selecting seeds

3

under imperfect knowledge, in the form of reduced spread compared with the spread we

could have achieved if we had perfect knowledge of the true influence probabilities. How

can we quantify and how can we minimize this loss in spread or regret? This question

is particularly important to a viral marketer. Intuitively, a new marketer who has just en-

tered the market and has no knowledge about the network (besides its structure) will try

and learn about it through a trial and error procedure (the ‘exploration’ phase). These ex-

ploration rounds are therefore like an investment and the knowledge gained in this phase

can be used to generate revenue (by achieving a high spread) in the subsequent rounds

(the ‘exploitation’ phase). The regret minimization objective corresponds to minimizing

the loss in revenue while learning about the market whereas the network exploration ob-

jective corresponds to learning about the network in a reasonable amount of time. We

describe the basics of MAB and CMAB in chapter 2. In chapter 3, we show how to

address the above questions by mapping our IM problem to the CMAB framework and

using ideas and algorithms from bandit theory.

In the second part of this thesis, we focus on IM in the adaptive setting. The majority

of work in influence maximization has confined itself to a non-adaptive setting where,

in viral marketing terms, the marketer must commit to choosing all the k seeds up front.

We refer to conventional IM as the MAXSPREAD problem. Instead of maximizing the

spread, the marketer may have a certain expected spread as the target that she wants to

achieve. This target may be derived from the desired sales volume for the product. A nat-

ural problem is to find the minimum number of seeds needed to achieve the target. This

problem, called minimum targeted seed selection (MINTSS for short), has been studied

in the non-adaptive setting [29]. It was shown that the classic greedy algorithm leads to a

bi-criteria approximation to the optimal solution. Precisely, if the target spread is Q and a

shortfall of β > 0 is allowed, then the greedy algorithm will achieve an expected spread

≥ (Q− β) using no more than OPT (1+ lndQ/βe) seeds, where OPT is the optimal

number of seeds.

For both the MAXSPREAD and MINTSS problems, a non-adaptive setting implies

that the choice of every single seed is driven completely by the diffusion model used for

capturing the propagation phenomena. In practice, it may happen that the actual spread

resulting from the seeds chosen may fall short of the expected spread predicted by the

diffusion model. Recent work by Goyal et al. [27] shows that most diffusion models

tend to over-predict the actual spread. Thus, committing to the choice of all k seeds

in one shot can result in a sub-optimal performance in reality. A more realistic setting

4

is one where the marketer chooses a subset of seeds and activates them. She monitors

how their activation spreads through the network and observes the actual or ‘true’ spread

thus far. She can then take into account this market feedback in making subsequent seed

selections. We call this setting an adaptive setting, as choices of subsequent seeds are

adapted to observations made so far about the actual spread achieved by previous selec-

tions. Hence, the adaptive setting introduces a policy π which specifies which node(s) to

seed at a given time.

Adaptive seed selection raises several major challenges. For instance, in the adaptive

setting, in practice, there is a finite time horizon H within which the marketer wishes to

conduct her viral marketing campaign. The marketer must then consider the following

questions. How many seeds to select at a given time, that is, what is the batch size

? Which nodes should be selected in each intervention ? How long should she wait

between seeding successive batches i.e. what should be the inter-intervention time ? If H

is sufficiently long, it seems intuitive that selecting one seed at a time and waiting until

the diffusion completes, before choosing the next seed, should lead to the maximum

spread. The reason is that we do not commit any more seeds than necessary to start a

fresh diffusion and every seed selection takes full advantage of market feedback. We

refer to the above case as unbounded time horizon. Another natural question is, what if

the time horizon H is not long enough to allow many small batches to be chosen and/or

diffusions to be observed in full. In this case, which we call bounded time horizon, the

marketer has to choose a strategy in which the budget k is spent within the time horizon

H and every seed selection benefits from as much feedback as possible.

It is very intuitive that for the MAXSPREAD problem, adaptive seed selection should

lead to a higher actual spread compared to non-adaptive seed selection, since it benefits

from market feedback and tailors seed selections accordingly. For MINTSS, an interest-

ing question is to what extent can an adaptive seed selection strategy cut down on the

number of seeds required to reach a given target spread. We answer the above questions

theoretically and empirically in chapter 4.

5

2

Background and Related Work

If I have seen farther it is by standing on the shoulders of Giants.

– Sir Isaac Newton

2.1 Conventional Influence Maximization
We first describe the necessary background for solving the conventional IM problem.

2.1.1 Diffusion Model

Information propagation is modelled using stochastic diffusion models such as Indepen-

dent Cascade (IC) and Linear Threshold (LT) [33]. For both these models, time proceeds

in discrete steps. In this thesis, we focus exclusively on the IC model which we briefly

describe now. All our results can be easily adapted for the LT model. In the IC model,

the seed nodes are active at time t = 0. Each active user at time t gets one chance to

influence/activate her out-neighbours at the next time step t +1. This activation attempt

succeeds with the corresponding influence probability between the two users. If the at-

tempt succeeds, the neighbour will become active at time t +1. An edge along which an

activation attempt succeeded is said to be ‘live’ whereas the other edges are said to be

‘dead’. At a given instant of time t, an inactive node v may have multiple in-neighbours

capable of activating it. We refer to the in-neighbours of v as its parents and to its in-

neighbours which became active at t−1 (set of in-neighbours which can activate v at t)

as its active parents. The diffusion process is said to have ended if there are no more

nodes which can be activated using the above procedure. The number of nodes activated

6

at the end of the diffusion is referred to as the spread σ̄ . Since the IC diffusion model

is stochastic, it can result in a large number of ‘possible worlds’. Note that each edge

can be either ‘live’ or ‘dead’ in a possible world W depending on its influence probabil-

ity. Hence there can be 2|E| possible worlds where some worlds are more probable than

others. The expected spread (σ) can be trivially calculated by taking a weighted average

over σ̄ in these possible worlds.

2.1.2 Algorithm

As was mentioned in chapter 1, IM is NP-hard under these common discrete time models.

However, under both the IC and LT models, the expected spread σ is monotonic and

submodular.

Definition 1. [Monotonicity and Submodularity] Given the universe of elements U , a

real-valued set function f : 2U → R is monotone if f (S) ≤ f (S′),∀S ⊂ S′ ⊆ U . It is

submodular if ∀S⊂ S′ ⊂U and x ∈U \S′, f (S′∪{x})− f (S′)≤ f (S∪{x})− f (S). 2

The difference f (S∪{x})− f (S) is the marginal gain of adding element x to the set

S. Submodularity hence implies that the marginal gain of any element x decreases as

the size of the set increases. Submodularity enables a simple greedy algorithm [39] to

provide a (1− 1/e)-approximation to the optimal solution. For the greedy algorithm,

we build the set S incrementally. At each point, we add the element (in our case, seed)

which maximizes the marginal gain in expected spread. Computing the expected spread

of a given set (and hence marginal gain) is #P-hard for both IC and LT models [11, 12].

Kempe et al. [33] advocated using MCMC simulations to estimate marginal gains. Using

MCMC estimation of the marginal gain, the greedy algorithm yields a (1− 1/e− ε)-

approximation to the optimum, where ε > 0 is the error because of the marginal gain

estimation. Another technique for improving the speed of marginal gain computation

is that of lazy evaluation [35]. Tang et al. [50] proposed a near-optimal (w.r.t. time

complexity) randomized greedy (1−1/e−ε)-approximation algorithm for IM. We note

that it is currently the state of the art for MAXSPREAD and has been shown to scale to

a billion-edge network. We use the approach in [50] for solving the conventional IM

problem.

7

2.1.3 Learning probabilities

A number of methods have addressed the problem of learning probabilities from past

diffusions or cascades available in the form of logs. Goyal et al. [27] showed empirically

that learning the true influence probabilities from available data is critical for ensuring

the quality of seeds chosen and the spread achieved. Saito et al. [46] develop a likelihood

maximization approach for learning influence probabilities from available cascades un-

der the IC model and propose an expectation maximization algorithm. Goyal et al. [26]

develop a frequentist approach for learning influence probabilities under the generalized

threshold model. Netrapalli and Sanghavi [40] present a likelihood maximization for-

mulation for learning both the graph structure and influence probabilities using the IC

model. In continuous time diffusion models, in lieu of influence probabilities, one as-

sociates transfer rates of diffusion with network edges. Rodriguez et al. [17, 24, 45]

develop algorithms to infer these rates from available cascades under continuous time

diffusion models.

2.1.4 Feedback

In both the variants addressed in this thesis, we need some feedback from either the

partial or complete diffusion process. In the case when the influence probabilities are

unknown, we need feedback about the state of the network at the end of the diffusion

process to refine our estimates of the influence probabilities so that we can do better on

the next round of seed selection. For adaptive influence maximization, we need feedback

from the partial diffusion process so that we can select the next seed. The state of the

network can be characterized by identifying either the activated nodes (i.e. users who be-

came aware / adopted the product) or the ‘live’ edges (i.e. edges along which a successful

activation attempt has occurred). We refer to the former as node level feedback and to

the latter as edge level feedback. We note that it is more feasible to identify users who

have adopted a product than to gain information about each edge in the network. Thus,

node level feedback is more practical than edge level feedback and we use it throughout.

2.2 Multi-armed Bandits
As mentioned in chapter 1, we can cast influence maximization with unknown influence

probabilities as a combinatorial multiarmed bandit problem. The stochastic multi-armed

bandit (MAB) problem was first addressed in [34]. In the traditional framework, there are

8

m arms each of which has an unknown reward distribution. The bandit game proceeds

in rounds and in every round s, an arm is played, the environment samples the reward

distribution for that arm and a corresponding reward is generated. This game continues

for a fixed number of rounds T . Some of the arms will result in higher rewards whereas

others have underlying distributions that lead to smaller reward values. Initially, the

reward distribution of every arm is unknown to the player. The aim of the bandit game

is to minimize the regret obtained by playing suboptimal arms across rounds (regret

minimization). This results in an exploration (trying arms we don’t know much about

in hope of a higher rewards) vs exploitation (pulling the arm which we have learnt gives

high rewards) tradeoff. For the regret minimization setting, [1, 34] proposed algorithms

which can achieve the optimal regret of O(log(T)) over T rounds. Another objective of

the bandit game can be to learn the properties (such as mean) of the underlying reward

distributions (pure exploration). This problem has been studied in the past in [7, 19, 37].

The Combinatorial Multiarmed Bandit problem is an extension to the MAB frame-

work in which we can pull a set of arms (or superarm) together [14, 21] or simultaneously

play k among the m arms [2, 8, 20]. Clearly, triggering a super arm triggers all the arms

it contains and the resulting reward is some combination of the individual rewards. Pre-

vious literature [14, 21] consider a CMAB framework with an approximation oracle to

find the best superarm to be played in each round. In [21] however, the authors only

consider cases where the resulting reward on pulling the superarm is some linear combi-

nation of the rewards for individual arms in the superarm. This was generalized to any

non-linear combination in [14]. For the regret minimization case, [14] proposed a UCB

based algorithm Combinatorial UCB (CUCB) to solve the CMAB problem and obtain

an optimal regret of O(log(T)). [25] proposes a Thompson Sampling based algorithm

to solve the CMAB problem. Pure exploration case in the CMAB framework has been

addressed in [9]. In [15], the authors introduced the notion of probabilistically triggered

arms which are triggered when a superarm is played, in addition to the arms contained in

the superarm. In this paper, Chen at al. target both ad placement on web pages and viral

marketing application under semi-bandit feedback [4] i.e. we can observe the rewards of

arms which were triggered when the superarm was pulled. The latter is of special interest

to us, and we discuss this in more detail in Section 3.1.

9

2.3 Adaptive Influence Maximization
Adaptive influence maximization has been proposed previously in [16, 22, 30]. In the

adaptive setting, batches of nodes are seeded at different intervals. When a batch is

seeded, an actual diffusion (called realization in [22]) unfolds as per the classical IC

model. The next batch is chosen based on the partially observed diffusion/cascade. We

wish to choose a policy that maximizes such an objective function in the adaptive setting.

Golovin and Krause [22] extend the definitions of submodularity and monotonicity to

the adaptive setting. An objective function is adaptive monotone and adaptive submod-

ular if the marginal gain of every element is non-negative and non-increasing in every

possible realization, as the size of the set (alternatively length of the policy) increases.

As before, the greedy policy consists of selecting the node with the maximum marginal

gain. Golovin and Krause [22] derive average case bounds on the performance of greedy

adaptive policies. They also prove bounds on the greedy adaptive policy for adaptive

submodular functions under matroid constraints [23].

They assume an edge level feedback mechanism under the IC model and show that

the expected spread is adaptive monotone and adaptive submodular, guaranteeing an ap-

proximation algorithm. Guillory et al. [30] study the problem of submodular set cover in

the adaptive setting in which the objective is to minimize the total number of sets required

to cover a certain target set and prove worst case bounds for the greedy adaptive policy.

They briefly describe how their framework can be used for influence maximization in a

social network with hidden information (e.g., hidden preferences of users). The problem

involves simultaneously learning about the hidden preferences of users and maximizing

the influence among users who prefer a particular product. We consider the more tra-

ditional influence maximization problem and assume that users do not have any hidden

preferences. We establish average case guarantees similar to [22]. Finally, [16] addresses

the adaptive MINTSS problem and shows that under certain conditions, the batch-greedy

adaptive policy, in which the seeds are chosen in batches in a greedy manner, is compet-

itive not only against the sequential greedy policy (choosing one seed at a time) but also

against the optimal adaptive policy.

These papers assume the unrealistic edge level feedback described above. The ex-

periments conducted in these papers (if at all) are on small toy networks with 1000 nodes

and they do not clarify the practical benefits of going adaptive for real large networks.

All previous studies are confined to the setting of unbounded time horizon, which means

the horizon is long enough for the diffusion started by each batch to complete. In prac-

10

tice, the horizon may be bounded and not leave enough time for successive diffusions to

complete. The theoretical results in these papers bound the performance of the greedy

adaptive policy compared to the optimal adaptive policy. Notice that the optimal (adap-

tive) policy cannot be computed in polynomial time. The only practical options for both

non-adaptive and adaptive settings are greedy approximations (possibly with techniques

for scaling up to large datasets). Thus, a real question of practical interest is what do

we gain by going adaptive, i.e., what is the gain in peformance of the greedy approx-

imation algorithm when it is made adaptive? In contrast, we study MAXSPREAD and

MINTSS under both unbounded and bounded time horizon and quantify the benefits of

going adaptive with reference to the greedy approximation algorithm, as opposed to the

optimal algorithm. Furthermore, we use the more realistic node level feedback model

throughout and perform experiments on large real world networks.

11

3

Influence Maximization with
Bandits

Good judgment comes from experience, and experience comes from bad judg-

ment

– Rita Mae Brown

3.1 Theory

3.1.1 Combinatorial Multiarmed Bandit Framework

We briefly review the combinatorial multi-armed bandit (CMAB) framework proposed

in [14, 15] and adapt it to the problem of IM. A CMAB problem consists of m base arms.

Each arm i is associated with a random variable Xi,s which denotes the outcome or reward

of triggering the ith arm on the sth trial. The reward Xi,s is bounded on the support [0,1]

and is independently and identically distributed according to some unknown distribution

with mean µi. The CMAB game is played in T rounds, for some fixed T ≥ 1. In each

round s, a superarm A (a set of base arms) is played, which triggers all arms in A. In

addition, other arms may get probabilistically triggered. Let pi
A denote the triggering

probability of arm i if the superarm A is played. Clearly, ∀i ∈ A, pi
A = 1. The reward

obtained in each round s can be a (possibly non-linear) function of the rewards Xi,s for

each arm i that gets triggered in that round. Let Ti,s denote the number of times a base

arm i has been triggered until round s. For the special case s = T , we define Ti := Ti,T ,

12

as the number of times arm i is triggered in the game. Each time an arm i is triggered,

we update its mean estimate µ̂ i based on the observed reward. Using the current reward

distribution estimates, the best superarm (which is expected to lead to the highest reward)

to be played in each round is selected by an oracle O, which takes as input the vector

of current mean estimates ~̂µ = (µ̂1, ..., µ̂m) and outputs an appropriate superarm A. In

order to accommodate intractable problems, the framework of [14, 15] assumes that the

oracle provides an (α,β)-approximation to the optimal solution, i.e., the oracle outputs

with probability β a superarm A which attains a reward within a factor α of the optimal

solution, based on the current mean estimate ~̂µ .

3.1.2 Adaptation to IM

We can map the IM problem with unknown influence probabilities to the CMAB frame-

work as follows: the edges E in the network G map to arms. Each arm is characterized by

a Bernoulli distribution, i.e., the edge is either live or dead in the “true” possible world.

Thus, the rewards Xi,s are binary. The mean of this distribution for an arm i is precisely

the influence probability for the corresponding edge. A set of seed nodes S corresponds

to a superarm defined by the set of all edges ES that are outgoing from the nodes in S.

Specifically, given a seed budget k, in each round, k seeds are selected and the corre-

sponding superarm is played. Once the superarm is played, information diffuses in the

network and a subset of network edges become live, and Xi,s for these edges is 1. By

definition, when an arm/edge (u,v) is made live, we say that the target node v is active.

The total reward for each round is the spread σ̄(S), i.e., the number of active nodes at the

end of the diffusion process. Note that ¯σ(S) is a non-linear function of the rewards of

the triggered arms. The input to the influence maximization oracle is the graph G along

with the current estimates of influence probabilities ~̂µ . It constitutes a (1− 1
e ,1−

1
|E|)-

approximation oracle and outputs a seed set S under the cardinality constraint k. Notice

that the well-known greedy algorithm with MC simulations used for influence maximiza-

tion can serve as such an oracle. The mean estimate ~̂µ vector is updated based on the

observed rewards. In this context, the notion of feedback mechanism plays an important

role. It characterizes the information available after a superarm is played. This infor-

mation is used to update the model of the world to improve the mean estimates of the

underlying arm reward distributions. The entire framework is summarized in figure 3.1.

In the specific context of our application of bandits to IM, there are two basic types

of feedback we can formulate.

13

Figure 3.1: Summary of bandit framework for influence maximization

3.1.2.1 Edge Level Feedback

In the feedback mechanism proposed in [14], which we call edge level feedback, one

assumes we know the status (live or dead) of each triggered edge in the “true” possible

world generated by the diffusion in the network. The mean estimates of the arms distri-

butions can then be updated using a simple frequentist formula, i.e., for the ith arm, µ̂i

= ∑
s
j=1 Xi, j

Ti,s
. Assuming edge level feedback amounts to assuming that for each activated

node in the network, we know exactly which of its active parents succeeded in activat-

ing the node. A key point is that success/failure of activation attempts in general is not

observable and thus edge level feedback assumption is not realistic. This motivates us to

propose node level feedback, made precise below.

3.1.2.2 Node Level Feedback

Unlike the status of edges, we can always observe the status of each node, i.e., whether

a user bought/adopted the marketed product and when. We call this node level feed-

back. Clearly, compared to edge level feedback, node level feedback makes a weaker

but more realistic assumption. The flip side is that update to the mean estimates is more

challenging under node level feedback.

To see this, consider a given node v which becomes active at time t. Suppose v

14

has more than one parent and the parents u1, ...,uK became active at time t − 1 (see

Figure 3.2).

Figure 3.2: Example for node level feedback.

Under edge level feedback, we assume that we know the status of each edge (u j,v),

1 ≤ j ≤ K and use it to update mean estimates. Under node level feedback, any of the

active parents may be responsible for activating a node v and we don’t know which one

is. There are two ways of overcoming this problem.

3.1.2.2.1 Frequentist Approach This is an adaptation of the frequentist approach for

edge level feedback. Specifically, we propose a scheme whereby we choose one of the

active neighbors of v, say ui, uniformly at random, and assign the credit of activating v

to ui (see Figure 3.2). The probability of assigning credit to any one of the K nodes is
1
K . Here, edge (ui,v) is given a reward of 1 whereas the edges (u j,v) corresponding to

all the other active parents u j, j 6= i, are assigned a zero reward. We then follow the same

frequentist update formula as described for the edge level feedback model.

Owing to the inherent uncertainty in node level feedback, note that we may make

mistakes in credit assignment: we may infer an edge to be live while it is dead in the

true world or vice versa. We term the probability of such faulty inference, the failure

probability under node level feedback. An important question is whether we can bound

this probability. This is important since failure probability could ultimately affect the

achievable regret and the error in the learned probabilities. The following result settles

this question. As a preview, in Section 3.4, we verify that the failure probability is low

for real networks, thus establishing the effectiveness of learning influence probabilities

under node level feedback.

Theorem 1. Suppose a network node v became active at time t and u1, ...,uK are the

parents of v that became active at t − 1. Let i denote the arm corresponding to edge

(ui,v). Let pmin and pmax be the minimum and maximum true influence probabilities in

the network. The failure probability ρ under node level feedback is then characterized

15

by:

ρ ≤ 1
K
(1− pmin)(1−

K

∏
k=1,k 6=i

[1− pmax])+(1− 1
K
)pmax. (3.1)

Let µ̂E
i and µ̂N

i be the inferred influence probabilities for edge (ui,v) using edge level

and node level feedback respectively. Then the relative error in the learned influence

probability is given by: ∣∣µ̂N
i − µ̂E

i

∣∣
µ̂E

i
= ρ

∣∣(1
µ̂E

i
−2)

∣∣ (3.2)

Proof. Consider the network in Figure 3.2. Consider updating the influence probability

on the edge (ui,v) that is being learned. For the situation in Figure 3.2, we may infer the

edge (ui,v) to be live or dead. Our credit assignment makes an error when the edge is

live and inferred to be dead and vice versa. Recall that all probabilities are conditioned

on the fact that the node v is active at time t and K of its parents (u1, ...,ui, ...,uK) are

active at time t− 1. Let Ed (El) be the event that the edge (ui,v) is dead (resp., live) in

the true world. Hence we can characterize the failure probability as follows:

ρ = Pr[(ui,v) is inferred to be live]×Pr[Ed | v is active at time t]

+Pr[(ui,v) is inferred to be dead]×Pr[El | v is active at time t]

If (ui,v) is live in the true world, then node v will be active at time t irrespective of

the status of the edges (u j,v), j ∈ [K], j 6= i. Hence,

Pr[El | v is active at time t] = Pr[El]

By definition of independent cascade model, the statuses of edges are independent of

each other. Hence,

Pr[Ed | v is activeat time t] = Pr[Ed ∧ at least one of the edges (u j,v), j 6= i, is live]

ρ = Pr[(ui,v) is inferred to be live]×Pr[Ed ∧ at least one of the edges (u j,v), j 6= i, is live]

+Pr[(ui,v) is inferred to be dead]×Pr[El]

Let pu j,v be the true influence probability for the edge (u j,v), j ∈ [K]. We have the

16

following:

Pr[El] = pui,v

Pr[Ed ∧ at least one of the edges (u j,v), j 6= i, is live] = (1−Pr[El])
[
1−

K

∏
j=1, j 6=i

[1− pu j,v]
]

Since one of the active nodes is chosen at random and assigned credit,

Pr[choosing ui for credit] =
1
K
⇒ Pr[(ui,v) is inferred to be live] =

1
K

We thus obtain:

ρ =
1
K
(1− pui,v)[1−

K

∏
k=1,k 6=i

[
1− puk,v]

]
+(1− 1

K
)pui,v (3.3)

Let pmin (pmax) denote the minimum (resp. maximum) true influence probability of

any edge in the network. Plugging these in Eq. (3.3) gives us the upper bound in Eq.

(3.1),the first part of the theorem.

Let µ̂N
i and µ̂E

i denote the mean estimates using node level and edge level feedback

respectively. That is, they are the influence probabilities of edge (ui,v) learned under

node and edge level feedback. We next quantify the error in µ̂N
i relative to µ̂E

i . Let XN
i,s

be the status of the edge corresponding to arm i inferred using our credit assignment

scheme described above, at round s. Recall that under both edge level and node level

feedback, the mean is estimated using the frequentist approach. That is, µ̂N
i = ∑

T
s=1

XN
i,s

Ti

(similarly for edge level feedback). Note that Xi,s denotes the true reward (for edge level

feedback) whereas XN
i,s denotes the inferred reward under node level feedback, using the

credit assignment scheme described earlier. Thus, for each successful true activation of

arm i (i.e., Xi,s = 1) we obtain XN
i,s = 1 with probability 1−ρ and for each unsuccessful

true activation, we obtain XN
i,s = 1 with probability ρ . Let Si denote the number of rounds

in which the true reward Xi,s = 1. Hence, we have:

17

µ̂
E
i =

Si

Ti
(3.4)

µ̂
N
i =

Si(1−ρ)+(Ti−Si)(ρ)

Ti
(3.5)

The second part of the theorem, Eq.(3.2), follows from Eq.(3.4) and (3.5) using sim-

ple algebra.

In Section 3.4, we empirically find typical values of pmax, pmin, and K on real datasets

and verify that the failure probability is indeed small. We also find that the proposed node

level feedback achieves competitive performance compared to edge level feedback.

3.1.2.2.2 Maximum Likelihood Method As mentioned before, the papers [40, 46] de-

scribe an offline method for learning influence probabilities, where a batch of cascades

is given as input. We adapt the approach of [40] into an online method, employing the

CMAB paradigm. In an online setting, cascades stream in and only one cascade is avail-

able at a time. Each cascade can be viewed as resulting from choosing a set of seeds in

a round of a CMAB game. Before describing our extension, we briefly review the ap-

proach of Netrapalli and Sanghavi [40]. They take as input a batch of diffusion cascades

and infer the influence probabilities and the neighborhood structure for each node in the

graph. They formulate a function Lc(θ) which models the likelihood of observing a par-

ticular cascade c given the current estimated neighborhood and influence probabilities.

They show that the likelihood function is concave and can be decoupled over the nodes,

i.e., it can be maximized independently for each node. For our use case, we assume that

the graph structure (the true neighborhood) is known for each node. We next describe

the likelihood function used in [40] and then propose a method for making the likelihood

optimization online.

Offline MLE Learning: Let θuv = − ln(1− pu,v) where pu,v is the influence probabil-

ity of the edge (u,v). We can characterize the likelihood in terms of ~θ , the vector of

“θ values”. The overall likelihood function L(~θ) is a sum of the likelihood functions

for individual cascades i.e., L(~θ) = ∑
C
c=1 Lc(~θ), C being the number of cascades. The

likelihood function L decomposes over the network nodes, i.e., L(~θ) = ∑
C
c=1 ∑v∈V Lc

v(~θ)

where Lc
v(θ) models the likelihood of observing the cascade c w.r.t. node v. Let tc

u denote

the timestep at which node u becomes active in cascade c. Then Lc
v(~θ) can be written as

18

follows:

Lc
v(~θ) =− ∑

u:tc
u≤tc

v−2
θuv + ln(1− exp(− ∑

u:tc
u=tc

v−1
θuv)) (3.6)

The first term corresponds to unsuccessful attempts by u in activating node v, whereas

the second term corresponds to the successful activation attempts. Notice that pu,v is

0 whenever u is not a parent of v. Since the likelihood function is concave, we can

maximize it for each node v and each cascade c separately, using gradient descent, using

~θ
q+1
∗v = ~θ

q
∗v−ηq∇(−Lc

v(.)) (3.7)

where ∇(−Lc
v(.)) is the gradient of −Lc

v(.) and ~θ ∗v is the vector containing the θuv from

all parent nodes u of v. Here, q corresponds to the gradient descent iteration and ηq is

the step size used in iteration q.

Online MLE Learning: We use a result from online optimization of convex functions,

to maximize the likelihood function above in an online streaming setting. Zinkevich [52]

develops a method for online optimization of convex functions over a convex set. In

Zinkevich’s framework, there is a fixed convex set F of n-dimensional points, known in

advance. A series of convex functions cs : F → R stream in, with cs being revealed at

time s. This framework makes no assumption about the distribution of the cs functions.

At each timestep s, the online algorithm must choose a point xs ∈ F before seeing the

convex function cs. The objective is to minimize the total cost across T timesteps, i.e.,

Coston(T) = ∑s∈[T] cs(xs), for a given finite T . Consider an alternative offline setting

where the cost functions cs are revealed in advance s ∈ [T], for T timesteps. The offline

algorithm is required to choose a single point x ∈ F such that Costo f f (T) = ∑s∈[T] cs(x)

is minimized. Zinkevich defines the loss1 of the online algorithm compared to the offline

algorithm as Loss(T) = Coston(T)−Costo f f (T). Notice that the loss depends on the

number of steps T and it can also be measured in an average sense, i.e., as Loss(T)/T .

Zinkevich [52] proposes a greedy algorithm for updating the estimates xs i.e., xs+1 =

xs−ηs∇(cs(xs)).

For our IM application, the cost functions cs correspond to the negative likelihood

function −Ls
v(.) for the cascade generated in round s of the CMAB game. Notice that

these functions are convex. Thus, the online MLE method works as follows: at each

round, we pick a seed set at random, observe the resulting cascade, and update the “θ

1He used the term regret which we rename to loss, to avoid confusion with the regret studied in Sec-
tion 3.3.

19

values” using Eq.(3.7), the exact same update equation used in the offline MLE algo-

rithm. The only difference with the offline method lies in not requiring all cascades up

front and in using only the last cascade observed (resulting from the last seed set chosen)

to perform the update.

Performance of Online MLE Learning: In our online algorithm, we seek to mini-

mize the negative likelihood function across T rounds of the CMAB game and estimate

the true influence probabilities. Let F be the convex set of ~θ vectors corresponding to

possible values for network influence probabilities. Let dia(F) be the maximum Eu-

clidean distance d between any two points x,y ∈ F , i.e., dia(F) := maxx,y∈Fd(x,y). The

objective is to minimize the total “cost” incurred until round T . We evaluate the online

method of learning influence probabilities by comparing it with the offline algorithm in

[40]. Let ~θbatch denote the parameters learned by their offline algorithm. Let ~θ s de-

note the parameters learned by our online algorithm at the end of round s. (Recall that

θuv :=− ln(1− pu,v).) We can show:

Theorem 2. Let ~θbatch be the set of parameters learned offline with the cascades avail-

able in batch, and ~θ s be the estimate for the parameters in round s of the CMAB frame-

work. Let Ls
v be the likelihood function at round s for the node v under consideration, dv

be the in-degree of v, T be the total number of rounds and G = maxs∈[T]||∇(−Ls(~θs))|| be

the maximum L2-norm of the gradient of the negative likelihood function over all rounds.

Suppose we perform greedy updates to the estimates~θ s using Eq.(3.7) with ηs decreasing

as 1√
s . Then we have the following:

T

∑
s=1

(Ls
v(~θ batch)−Ls

v(~θ
s
)≤ dvθ 2

max
√

T
2

+(
√

T − 1
2
)G2. (3.8)

Proof. The proof is an adaptation of the loss result from [52], reproduced below:

Loss(T)≤ dia(F)2
√

T
2

+(
√

T − 1
2
)||∇(cmax)||2 (3.9)

where ||∇cmax|| is the maximum gradient obtained across the T rounds in the framework

of [52]. Let the true influence probabilities lie in the range (0, pmax], for some pmax. Then

the θ values for various edges lie in the range (0,θmax) where θmax = − ln(1− pmax).

Our optimization variables are ~θ and the cost function cs in our setting is −Ls
v where

1 ≤ s ≤ T . Furthermore, in our case, dia(F) =
√

dvθmax since this is the maximum

distance between any two “θ -vectors” and Loss(T) = ∑
T
s=1(L

s
v(~θbatch)−Ls

v(~θ
s), where

20

~θbatch is the optimal value of ~θ , given all the cascades as a batch. Substituting these

values in Eq. 3.9, we obtain Eq. 3.8, proving the theorem.

The significance of the theorem can be best understood by considering the average

loss over T rounds. The average loss Loss(T)
T can be seen to approach 0 as T increases.

This shows that with sufficiently many rounds T , the parameters learned by the online

MLE algorithm are nearly as likely as those learned by the offline algorithm of [40]. As

the number of cascades (rounds) becomes sufficiently large, ~θ batch approaches the “true”

parameters and hence by the above result, as T increases, the parameters ~θ s tend to the

true ones, on an average. Hence, the online approach for maximumizing the likelihood

results in a consistent estimator of the influence probabilities. Before closing, we remark

that the framework of [52] on which this result is based, makes no distributional assump-

tions on the cascades being generated and hence the above result does not depend on the

network exploration algorithm used. For instance, the result holds whether successive

seed sets are chosen at random or using any criteria.

3.2 Network Exploration
The objective of network exploration is to obtain good estimates of the network’s influ-

ence probabilities, regardless of the loss in spread in each round and it thus requires pure

exploration of the arms. We seek to minimize the error in the learned (i.e., estimated)

influence probabilities ~̂µ w.r.t. the true influence probabilities~µ i.e. minimize ||~̂µ−~µ||2.

We study two exploration strategies – random exploration, which chooses a random su-

perarm at each round and strategic exploration, which chooses the superarm which leads

to the triggering of a maximum number of edges which haven’t been sampled sufficiently

often.

3.2.1 Random Exploration

The idea of random exploration is simple: at each round of the CMAB game, pick a seed

set of size k at random. This starts a diffusion and based on the observations, we can

update the current influence probabilities according to the desired feedback model. The

pseudocode is given in Algorithm 1.

Frequentist Feedback: We next consider random exploration with a frequentist feed-

back used for estimating the influence probabilities. We already discussed the frequentist

update method in Section 3.1 (see Algorithm 4 and Sections 3.1.2.1 and 3.1.2.2.1). In

21

Algorithm 1: RANDOM EXPLORATION(budget k, Feedback mechanism M)

1 for s = 1→ t do
2 ES = Explore(G,k);
3 Play the superarm ES and observe the diffusion cascade c ;
4 ~̂µ = UPDATE(c,M) ;

this section, we mainly focus on its performance. Specifically, we address the important

question, how many CMAB rounds, equiv., number of cascades, are required in order

to learn the influence probabilities accurately? We settle this question below for random

exploration, assuming frequentist estimation of probabilities under edge level feedback.

Thereto, we resort to the correlation decay assumption commonly made for random

processes over large graphs [40]. This assumption intuitively says that diffusion from

each seed does not travel far. More formally, we assume that there is a number γ ∈ (0,1)

which bounds the sum of incoming probabilities of edges to any node: precisely, ∀v ∈
V : ∑(u,v)∈E pu,v ≤ (1− γ). From a straightforward application of Lemma 1 in [40], we

can show that the probability that any node v in V gets active is bounded by pinit
γ , where

pinit is the probability that node v is a seed node. When the seed budget is k and the seeds

are chosen at random, we have pinit =
k
|V | . We have the following result.

Theorem 3. Consider an edge (ui,v) in the network with true probability pi := pui,v.

Suppose that random exploration with frequentist estimation under edge level feedback

is used to learn the influence probabilities and that the number of available cascades C

satisfies the inequality

C ≥
3γ|V | ln(1

δ
)

ε2 pik
(3.10)

where k is the seed budget, γ is the correlation decay bound, and |V | is the number of

nodes in the network. Then the influence probability of the edge (ui,v) can be learned to

within a relative error of ε with probability greater than 1−δ .

Proof. Consider the edge (ui,v) which corresponds to the arm i in the CMAB framework.

Suppose the number of CMAB rounds that are played in all is C and of these, the number

of rounds in which arm i (edge (ui,v)) is played is Ci. By the semantics of the IC model,

this is equivalent to the number of cascades in which node ui gets activated. We establish

a bound on the number of cascades Ci needed to learn the influence probability for edge

22

(ui,v) to within a relative error of ε and use it to bound the total number of cascades C

needed. Arm i follows a Bernoulli distribution with mean as the true probability pi :=

pui,v. Let the random variable Xi,s denote the outcome of whether the edge (ui,v) became

live in the sth cascade, i.e., in the sth round in the CMAB game. Define X = ∑
Ci
s=1 Xi,s.

Using Chernoff bounds, we get

Pr[X ≥ (1+ ε)Ci pui,v]≤ exp(
−ε2Ci pi

3
)

Rewriting, we get

Pr[
µ̂E

i − pi

pi
]≥ ε]≤ exp(

−ε2Ci pi

3
) (3.11)

Bounding by δ the probability that the relative error exceeds ε , we get

exp(
−ε2Ci pi

3
)≤ δ (3.12)

Ci ≥
3ln(1/δ)

piε
2 (3.13)

This gives a bound on the number of times arm i needs to be sampled in order to

learn the probabilities to within a relative error of ε . If C is the total number of cascades,

then we have

Pr[nodeui becomes active]≤ pinit

γ
(3.14)

Ci ≤
Cpinit

γ
(3.15)

From Eq. (3.13) and (3.15),

C ≥
3γ ln(1

δ
)

pinitε
2 pi

(3.16)

(3.17)

If the seeds are chosen randomly and the seed budget is k, then pinit =
k
|V | . Plugging this

into Eq.(3.17), the theorem follows.

This result gives the minimum number of cascades required in order to learn the

23

influence probabilities within a given relative error, with high probability. The is also

the number of rounds of CMAB needed to learn those probabilities. Thus, this result

applies for both offline and online learning. The result is couched in terms of edge level

feedback. We can combine the result from Theorem 1 to bound the number of cascades

needed in case of node level feedback. We leave this for future work.

3.2.2 Strategic Exploration

Random exploration doesn’t use information from previous rounds to to select seeds and

explore the network. On the other hand, a pure exploitation strategy selects a seed set

according to the estimated probabilities in every round. This leads to selection of a seed

set which results in a high spread and consequently triggers a large set of edges. However,

after some rounds, it stabilizes choosing the same/similar seed set in each round. Thus

a large part of the network may remain unexplored. We combine ideas from these two

extremes, and propose a strategic exploration algorithm: in each round s, select a seed set

which will trigger the maximum number of edges that have not been explored sufficiently

often until this round. We instantiate this intuition below.

Recall Ti is the number of times arm i (edge (ui,v)) has been triggered, equivalently,

number of times ui was active in the T cascades. Writing this in explicit notation, let

T s
(u,v) be the number of times the edge (u,v) has been triggered in the cascades 1 through

s, s ∈ [T]. Define value(u) := ∑v∈Nout(u)
1

T(u,v)+1 . Higher the value of a node, the more

unexplored (or less frequently explored) out-edges it has. Define value-spread of a set

S ⊂ V exactly as the expected spread σ(S) but instead of counting activated nodes, we

add up their values. Then, we can choose seeds with the maximum marginal value-spread

gain w.r.t. previously chosen seeds. It is intuitively clear that this strategy will choose

seeds which will result in a large number of unexplored (or less often explored) edges to

be explored in the next round. We call this strategic exploration (SE). It should be noted

that the value of each node is dynamically updated by SE across rounds so it effectively

should result in maximizing the amount of exploration across the network. We leave

deriving formal bounds for strategic exploration for future work.

3.3 Regret Minimization
We first formally define the notion of regret, tailored to the IM problem. Intuitively, given

a seed budget k, we select seed sets Ss of size k in each round s, each corresponding to

24

Algorithm 2: EXPLORE(Graph G = (V,E,~µ), budget k)

//Returns superarm for an exploration round ;
1 Select k nodes at random from V to form seed set S ;

Output ES

Algorithm 3: EXPLOIT(Graph G = (V,E,~µ), Oracle O, budget k)

//Returns superarm for an exploitation round ;
1 S = O(G,k) //Oracle returns optimal seed set using current ~µ estimates ;

Output ES

a superarm ESs . By selecting seeds under imperfect knowledge, we achieve suboptimal

spread. Let ~µ denote the vector of true influence probabilities of the network edges.

Let r~µ (ES) denote the reward from playing the superarm ES, under the true means ~µ .

For IM, r~µ (ES) = σ̄(S), i.e., spread of S under the IC model, using the true influence

probabilities. Let opt~µ = maxS:|S|=kσ(S), i.e., the optimal spread.

If the true influence probabilities are known, using the oracle, we can achieve a spread

of α ·β ·opt~µ . Let A be any strategy used for choosing seeds in successive rounds. Let

SA
s be the seed set chosen by A in round s. There is a clear tradeoff between exploring

and exploiting: exploiting improves the quality of seeds selected, but only relative to

the current knowledge of influence probabilities, which may be imperfect; exploring

improves the knowledge of influence probabilities, but at the expense of choosing seeds

of lower quality. The regret incurred by A can be quantified as

RegA
µ,α,β = T ·α ·β ·optµ −ES

[T

∑
s=1

r~µ (SA
s)
]
,

where the expectation is over the randomness in the seed sets output by the oracle. We

now discuss several strategies for seed selection over the rounds. The strategies, given as

Algorithms 5-7, invoke the subroutines in Algorithms 2-4. Given a network G and budget

k, Algorithm 2 outputs a random subset of size k from V as the seed set. Algorithm 3, on

the same input, consults an oracle and outputs the seed set of size k that maximizes the

spread according to current mean estimates. Algorithm 4 examines the latest cascade c

and updates the parameters using the desired feedback mechanism M.

Combinatorial Upper Confidence Bound: The Combinatorial Upper Confidence

Bound (CUCB) algorithm was proposed in [14] and shown to achieve logarithmic regret

25

Algorithm 4: UPDATE(Cascade c, Feedback mechanism M)

1 if M == ‘Edge Level’ then
2 ∀i update µ̂i according to scheme in section 3.1.2.1 ;
3 else if M == ’Node Level Frequentist’ then
4 ∀i update µ̂i according to scheme in section 3.1.2.2.1 ;
5 else
6 ∀i update µ̂i according to scheme in section 3.1.2.2.2 ;

Output ~̂µ

Algorithm 5: CUCB(budget k, Feedback mechanism M)
Initialization

1 Initialize ~̂µ ;
2 ∀i initialize Ti ;

3 for s = 1→ T do
4 ES = Exploit(G,O,k) ;
5 Play the superarm ES and observe the diffusion cascade c ;
6 ~̂µ = Update(c,M) ;
7 ∀ arm i that was triggered, increment values of Ti,s ;

8 ∀ i µ̂i = µ̂i +
√

3ln(s)
2Ti

;

in the number of rounds (T). It is a variant of the popular upper confidence bound

algorithm. The algorithm assumes that each edge in the network has been triggered at

least once initially and maintains an overestimate µi of the mean estimates µ̂i. µi =

µ̂i +
√

3ln(t)
2Ti

. Pure exploitation, i.e., finding the best seed set using the oracle O with the

µi values as input leads to implicit exploration and is able to achieve optimal regret [14].

The pseudocode appears in Algorithm 5.

ε-Greedy: Another strategy proposed for the CMAB problem in [14] is the ε-Greedy

strategy. In each round s, this strategy involves exploration – select k seeds at random

with probability εs and exploitation – with probability 1− εs use the influence maxi-

mization oracle with the mean estimates µ̂i as input to select the seed set. Chen et al.

[14] show that that if εs is annealed as 1/s, logarithmic regret can be achieved. The

pseudocode appears in Algorithm 6.

As mentioned above, both the CUCB and ε-greedy approaches have been shown to

achieve optimal regret under edge level feedback [14]. The regret proofs for both these

algorithms rely on the mean estimates. To characterize the regret for node level feedback,

26

Algorithm 6: ε -GREEDY(budget k, Feedback mechanism M, parameter ω)

1 Initialize ~̂µ ;
2 for s = 1→ T do
3 εs = ω

s ;
4 With probability 1− εs, ES = Exploit(G,O,k) ;
5 Else ES = Explore(G, k) ;
6 Play the superarm ES and observe the diffusion cascade c ;
7 ~̂µ = Update(c,M) ;

Algorithm 7: INITIAL EXPLORATION(budget k, Feedback mechanism M, param-
eter ζ)

1 Initialize ~̂µ ;
2 for s = 1→ T do
3 if s≤ ζ T then
4 ES = Explore(G, k) ;
5 else
6 ES = Exploit(G,O,k)
7 ;
8 Play the superarm ES and observe the diffusion cascade c ;
9 ~̂µ = Update(c,M) ;

we can use the mean estimates for node level feedback from Theorem 1 and essentially

repeat the proofs to characterize the regret. For lack of space, we suppress these results

and refer the reader to [14].

Initial Exploration: In this strategy, we explore for the first ζ fraction of rounds and

then exploit. The pseudocode in Algorithm 7 is self-explanatory.

Pure Exploitation: This strategy exploits in every round. Even if we have no knowl-

edge about the initial probabilities, it results in implicit exploration: the initially picked

seed sets produce cascades which are used to learn the probabilities. This amounts to

invoking Algorithm 3 for T rounds.

3.4 Experiments
Goals: Our main goal is to test the various algorithms and evaluate the exploration al-

gorithms on the error in learning the influence probabilities, and regret minimization

algorithms on regret achieved. Our main goal is to benchmark the proposed algorithms

27

on the regret minimization and network exploration tasks.

Datasets: We use 3 real datasets – NetHept, Epinions and Flickr, whose characteristics

are summarized in Table 3.1. The “true” probabilities for these datasets are not available,

so we had to synthetically generate them: we set them according to the weighted cascade

model [33]: for an edge (u,v), the influence probability is set to pu,v =
1

|Nin(v)| . The

probabilities to be learned are initialized to 0.

Dataset | V | | E | Av.Degree Max.Degree
NetHEPT 15K 31K 4.12 64
Epinions 76K 509K 13.4 3079
Flickr 105K 2.3M 43.742 5425

Table 3.1: Dataset characteristics

Experimental Setup: We simulate the diffusion in the network by sampling a determin-

istic world from the probabilistic graph G: for purposes of our experiments, we assume

that the diffusion cascade in the real world happened according to this deterministic

graph. For this, we sample each edge in the graph according to its “true” probability. We

vary the size of the seed set or budget k from 10 to 100. For our influence maximization

oracle, we use the TIM algorithm proposed by Tang et al. [50], which is based on the

notion of reverse reachable (RR) sets. For lack of space, we refer the reader to [50] for

details of the algorithm but note that (i) it obtains a (1− 1
e − ε)-approximation solution

in near optimal time, (ii) it is much faster than using Greedy algorithm with MC simula-

tions, and (iii) it readily serves as a (1− 1
e ,1−

1
|E|)-approximation oracle for IM. Owing

to runtime constraints, we use a value of ε = 0.5. We have verified that smaller, more ac-

curate values of ε give us qualitatively similar results. We run the bandit algorithm for a

total of 1000 rounds. For each round, we find the “actual” spread obtained using the dif-

fusion according to the deterministic graph generated. We find this value with seed sets

obtained using both the learned probabilities as well as the “true” probabilities. Thus, we

are able to calculate the regret (difference in spread) in each round of the process. We

also plot the relative L2 error between the true and the learned probabilities. In addition

to this, we find the fraction of edges f within a relative error of p = 10% and plot f as p

is varied. All our results are those obtained by averaging across 3 runs.

Algorithms Compared: (abbreviations used in plots are in brackets) Regret Minimiza-

tion: CUCB, ε-greedy(EG), Initial Exploration(IE), Pure Exploitation(PE). Network Ex-

ploration: Random Exploration(R), Strategic Exploration(S). Feedback Mechanisms:

28

Edge Level(EL), Node Level Frequentist (NLF), Node Level Maximum Likelihood (NL-

ML). Using algorithm A with feedback M is abbreviated as A-M.

In order to characterize the runtime for the various algorithms, we characterize the

runtime for each of the basic components - EXPLORE, EXPLOIT and UPDATE (under

all three feedback mechanisms) for all three datasets. 3.2.

Dataset Exploit Explore Update
EL NL-F NL-ML

NetHEPT 2.682 0.0002 0.026 0.0275 1.148
Epinions 245.225 0.0014 0.214 0.224 15.156
Flickr 97.808 0.0019 1.452 2.479 690.103

Table 3.2: Subroutine runtimes (in sec/round)

Network Exploration: Figure 3.3(a) shows the L2 error obtained by using Random

Exploration and Strategic Exploration strategies, coupled with Edge level feedback and

both the frequentist and maximum likelihood based node level feedback mechanisms.

First, we can see that strategic exploration is better than just choosing nodes at ran-

dom because it incorporates feedback from the previous rounds and explicitly tries to

avoid those edges which have been sampled (often). We observe that the decrease in er-

ror for frequentist approaches is much quicker as compared to the maximum likelihood

approach. As expected, edge level feedback shows the fastest decrease in error. The

frequentist node level feedback takes more aggressive steps as compared to the maxi-

mum likelihood approach which is more principled and moderate towards distributing

credit. However, since the failure probability is low in typical networks, the aggressive-

ness of the frequentist approach pays off leading to a very quick decrease in error. In

Figure 3.3(b), we plot the fraction of edges which are within a relative error of 10% of

their true probabilities. Figure 3.3(c) depicts an ROC-type curve which shows how the

fraction of edges whose probabilities are learned within a given precision. We observe

that there is a quick decrease in L2 error and in just 1000 rounds, our network exploration

algorithm is able to learn a large percentage of edges lie within 20% error. Since we have

the flexibility to generate cascades to learn about the hitherto unexplored parts of the net-

work, our network exploration algorithms can lead to a far lesser sample complexity as

compared to algorithms which try to learn the probabilities from a given set of cascades.

Regret Minimization: For our regret minimization experiments, we compare CUCB,

ε-Greedy, Initial Exploration, Pure Exploitation. We explored random seed selection

29

(a) L2 Error (b) Fraction of edges within 10% Rel Err

(c) Fraction of edges with p% Rel Err

Figure 3.3: NetHept,k = 50: Network Exploration

as a baseline but the regret it achieved is much worse than that of all other algorithms

and it barely decreases over rounds, so we omit it completely from the plots. Since the

maximum likelihood approach is not able to learn the probabilities as effectively as the

frequentist approach and also has a high update runtime 3.2, we use just the frequentist

approaches in the regret minimization setting. For ε-Greedy, we set the parameter ω = 5

and for initial exploration we set ζ = 0.2. For CUCB, if the update results in any µi

exceeding 1, we reset it back to 1, following [14]. All the probabilities are initialized to

0. We show the results for all 3 datasets for k = 50 for both the node level and edge level

feedback. Results for other k are similar.

Figure 3.4(a) shows the decrease in average regret as the number of rounds increases.

We see that convergence for the CUCB is slow. This is because a UCB-based algorithm is

biased towards exploring edges which have not been triggered often (or even once). Since

30

(a) NetHept (b) Epinions

(c) Flickr

Figure 3.4: k = 50:Regret vs Number of Rounds

typical networks consist of a large number of edges, the rate of decrease in regret for

CUCB is slow. This behaviour is observed for other datasets as well, so we omit CUCB

from further plots. For algorithms such as ε-Greedy and Initial Exploration, we can

control the amount of exploration using the parameters ω and ζ . For these algorithms,

it can be seen from Figures 3.4(a)-(c), that the regret decreases at a much faster rate,

becoming very low in 1000 rounds. This implies that at the end of 1000 rounds, the

probabilities are estimated well enough to lead to a comparable spread as against the

known probabilities. For Initial Exploration, the regret remains almost the same during

the exploration phase in the first 200 rounds, after which its regret steeply decreases.

Pure Exploitation achieves the best average regret at the end of 1000 rounds. This is not

uncommon for cases where the rewards are noisy. Initially, with unknown probabilities,

rewards are noisy in our case, so exploiting and greedily choosing the best superarm

31

often leads to very good results. We also observe that the edge level and node level

feedback achieve almost the same regret in several cases and this leads us to conjecture

that the credit distribution in node level feedback does not lead to much error and hence

the failure probability ρ is indeed low for typical social networks. In fact, we can use

Eq. (3.1) to find the failure probability. For the NetHept dataset, we find that the average

number of active parents K for a node is 1.175. Hence credit distribution is not a big

issue. Previous work has shown that the probabilities learned from diffusion cascades

are generally small [26, 40, 47]. E.g., if pmin = 0 and pmax varies from 0.01 to 0.2, the

failure probability ρ varies from 0.0115 to 0.2261. Hence the failure probability of the

proposed node level feedback is small. We obtain similar results on the Epinions and

Flickr datasets as well.

Figure 3.5: NetHept, k = 50: L2 error vs Number of Rounds

In order to better understand the behaviour of the algorithms, we also plot the L2

error on influence probabilities. We show the results for NetHept in Figure 3.5. As the

rounds progress, the mean estimates improve and the relative L2 error goes down. This

leads to better estimates of expected spread, the quality of the chosen seeds improves,

the true spread increases and hence the average regret goes down (see Figure 3.4). We

can see that although pure exploitation led to the best regret, it narrowed down on the

seed set to be chosen quickly and did not learn about the other edges in the network.

ε-Greedy and Initial Exploration however did a fair bit of exploration and hence have a

lower L2 error. However, for the larger datasets, pure exploitation explores the network

more before settling on a seed set. Hence, the L2 error is as small as the other algorithms.

For brevity, we omit the plots. We also observe that the L2 error increases for the CUCB

algorithm. This is because of the resetting of mean estimates above 1. Since the influence

32

probabilities are small, resetting them to 1 leads to a large error.

k EG-NL spread EG-EL spread
10 6549.04 6599.06
20 8696.23 8616.90
50 11998.53 11986.96
100 14770.16 14730.80

Table 3.3: Epinions: Spread vs k

We show the effect of changing k in Table 3.3. We calculate the average spread

obtained using the learned probabilities across the rounds. We observe that the spread

obtained using node level feedback is always close to that using edge level feedback and

hence failure probability is small.

33

4

Adaptive Influence Maximization

The measure of intelligence is the ability to change.

– Albert Einstein

4.1 Theory
We introduced the idea of adaptive influence maximization in chapter 1 and hypothesized

that following an adaptive strategy by reacting to market feedback can potentially lead

to large gains for both the MAXSPREAD and MINTSS problems. In this chapter, we

give algorithms for adaptive influence maximization and formalize the benefit of going

adaptive. The toy example below provides basic intuition about the advantage of adaptive

seed selection over non-adaptive seed selection.

(a) Original probabilistic network (b) Network after diffusion for one
seed

Figure 4.1: Example for adaptive versus non-adaptive seed selection

Example 1 (Adaptive Seed Selection). Figure 4.1(a) shows a probabilistic network. The

34

influence probabilities (edge weights) corresponding to (u,v1) and (u,v2) are p1 and p2

respectively with p2 < p1. All remaining edges have a probability p. We need to select

k = 2 seeds for this network. It is easy to see that node u has the maximum marginal gain,

i.e. activating it will result in maximum number of nodes being activated in expectation.

Given that u has been selected as a seed node, we observe that v2 has a higher marginal

gain since it has lesser probability of being activated by u than v1 and activating it will

lead to a greater number of additional nodes being influenced (4p as compared to 3p

for v1, in expectation). Hence the non-adaptive strategy will select nodes u and v2 as

the seed nodes. Suppose the true world consists of 4 links – (u,v2), (v1,z1), (v1,z2)

and (v1,wz). Hence the non-adaptive strategy will result in an actual spread of 2 in this

true world. An adaptive strategy selects the first seed node, observes the diffusion and

then selects the second seed node. It selects the first seed node as u, then observes the

network feedback. The precise feedback mechanism is described later. Figure 4.1(b)

shows the observed network after seeding the first node. The double-circle for u means it

has already been seeded. Links shown by a bold arc ((u,v2)) are no longer probabilistic

and are known to exist in the true world. Similarly, links shown by a grey arc ((u,v1) and

all links outgoing from v2) are known not to exist. The other links are still probabilistic,

i.e., they have not yet been revealed in the feedback. Given this, the adaptive strategy will

select node v1 as the second seed, resulting in an actual spread of 6 in this true world.

This example gives an intuition on why we expect adaptive strategies to do better than

non-adaptive seed selection.

Recall, we say time horizon is unbounded if H ≥ kD, where k is the seed budget, D

is the length of the longest path of G, and H is the time horizon. We consider unbounded

time horizon up to Section 4.1.2. Bounded time horizon is addressed in subsection 4.1.3.

Our first result is that our spread function based on node level feedback is adaptive mono-

tone and adaptive submodular, thus affording an efficient approximation algorithm.

Theorem 4. For unbounded time horizon, if the diffusion process is allowed to com-

plete after every intervention, node level feedback is equivalent to edge level feedback

w.r.t. marginal gain computation and therefore the expected spread function is adaptive

submodular and adaptive monotone under node level feedback.

Proof. We will show that node level feedback is equivalent to edge level feedback from

the perspective of marginal gain computation. In [22], the authors show that the expected

spread function under edge level feedback is adaptive monotone and adaptive submod-

35

ular. The above theorem will follow from this. Specifically, we prove that (a) for every

edge level feedback based network state, there is a corresponding state based on node

level feedback, which preserves marginal gains of nodes, and (b) vice versa.

Given edge level feedback, we clearly know which nodes are active. These are pre-

cisely nodes reachable from the seeds via live edge paths in the revealed network. In the

rest of the proof, we show that for each node level feedback state, there is a correspond-

ing edge level feedback state that preserves marginal gains. Let S0 be the set of seeds

chosen at time t = 0. Given node level feedback, we can infer the corresponding edge

level feedback based network state using the following rules. Consider an edge from

an active node u to node v. Notice that the status of an edge leaving an inactive node is

unknown in either feedback model.

Rule 1: If node u is active, v is inactive, and there is an edge from u to v, then infer that

edge (u,v) is dead.

Rule 2: If nodes u and v are both active and u is the only in-neighbor of v, then conclude

that the edge (u,v) is live.

Rule 3: If nodes u and v are both active and u has more than one in-neighbor, arbitrarily

set the status of the edge (u,v) to be live or dead.

We now show that the way edge status is chosen to be live or dead in Rule 3 plays no

role in determining the marginal gains of nodes. We make the observation that if the dif-

fusion process is allowed to complete after each intervention, the only extra information

about the network that is observed using edge level feedback over node level feedback is

the status of edges between 2 active nodes. Given that the node u is active, we need to

calculate the marginal gain of every other node in the network for the next intervention.

Next we show that the status of edges between 2 active nodes does not matter in the

marginal gain computation for any node.

For the rest of the argument, we consider the both u and v are active and that v has

multiple active in-neighbours, i.e., the case that is addressed by Rule 3. Consider an

arbitrary node w the marginal gain of which we need to calculate. There maybe multiple

paths from w to a node reachable from w. These paths can be classified into those which

involve the edge (u,v) and ones which don’t. The marginal gain computation involving

the latter paths is independent of the status of the edge (u,v). Since the diffusion process

is allowed to complete, all nodes which can be reached (in the ”true” possible world)

from w through (u,v) have already been activated. Hence paths going through (u,v)

do not contribute to the marginal gain for w. Thus, the status of the edge (u,v) does

36

not matter. Since w is any arbitrary node, we can conclude that the marginal gain of

every node remains the same under states based on both feedback models. Adaptive

monotonicity and submodularity are properties of marginal gains. Since marginal gains

are preserved between edge level and node level feedback, it follows that these properties

carry over to our node level feedback model.

4.1.1 MAXSPREAD

There are four types of policies – the greedy non-adaptive policy (abbreviated GNA),

the greedy adaptive policy (GA), the optimal non-adaptive policy (ONA) and the optimal

adaptive policy (OA). We use πGA,k to denote the greedy adaptive policy constrained to

select k seeds and σ(πGA,k) to refer to the expected spread for this policy. While pre-

vious results bound the performance of greedy (adaptive) policies in relation to optimal

adaptive policies, they do not shed light on practically implementable policies under ei-

ther setting. These previous results do not quite answer the question ”What do we gain

in practice by going adaptive?” since both the optimal non-adaptive or optimal adaptive

policies are intractable. We establish relations between two key practical (and hence

implementable!) kinds of policies – the greedy non-adaptive policy and the greedy adap-

tive policy – for both MAXSPREAD and MINTSS. These relations quantify the average

“adaptivity gain”, i.e., the average benefit one can obtain by going adaptive.

We first restate Theorem 7 from [16]. This theorem gives a relation between the

spreads obtained using a batch greedy adaptive policy which is constrained to select

seeds in batches of size b and the optimal adaptive policy.

Fact 1. If σ(πGA,lb) is the average spread obtained by using a greedy batch policy with

a batchsize b and σ(πOA,mb) is the spread using an optimal sequential policy (the opti-

mal policy if we are able to select one seed per intervention) constrained to selecting a

number of seeds divisible by the batchsize b, then

σ(πGA,lb)> (1− e
−l

αγm)σ(πOA,mb) (4.1)

where α is the multiplicative error in calculating the marginal gains. gamma is a con-

stant and equal to (e
e−1)

2.

Proposition 1. Let the horizon be unbounded. Let πGA,nGA be the greedy batch policy that

select nGA seeds overall in batches of size bGA, and let πOA,nOA be the optimal adaptive

37

policy that selects nOA seeds overall in batches of size bOA. Then

σ(πGA,nGA)≥

[
1− exp

(
−

⌈nGA
bGA

⌉
αγ
⌈nOA

bOA

⌉)]σ(πOA,nOA) (4.2)

where α ≥ 1 is the multiplicative error in calculating the marginal gains and γ = (e
e−1)

2

is a constant.

Proof. Fact 4.1 gives a relation between the spreads obtained by a batch greedy adap-

tive policy constrained to select lb seeds and the optimal adaptive policy constrained to

select mb seeds. Both these policies are constrained to select seeds in batches of size

b. The relation is in terms of the number of batches used by the policies. Let l and

m be the number of batches for the greedy and optimal policies respectively. We make

the following observations. First, the two policies can be constrained to select seeds in

different batchsizes, bGA and bOA respectively. Next, the number of seeds selected by the

policies need not be divisible by the batchsizes. We can follow a similar proof procedure

as Theorem 7 in [16] and replace l by dnGA
bGA
e and m by dnOA

bOA
e.

Theorem 5. Let πGNA,k be a greedy non-adaptive policy, πGA,k and πOA,k be the greedy

and optimal adaptive policies respectively with batch-sizes equal to one i.e. the adaptive

policies are sequential. All policies are constrained to select k seeds. Then we have the

following relations:

σ(πGA,k)≥ (1− e−1/αγ)σ(πOA,k) (4.3)

σ(πGNA,k)≥ (1− 1
e
− ε)2

σ(πOA,k) (4.4)

Proof. Proposition 1 gives us bounds on the ratio of the spread achieved by batch-greedy

adaptive policy and that achieved by the optimal adaptive policy. We set nOA = k and

bGA = bOA = 1 and obtain equation 4.3 of the theorem.

Theorem 2 of [3] states that for a submodular monotone function, there exists a non-

adaptive policy which obtains (1−1/e− ε) fraction of the value of the optimal adaptive

policy. In our context, this implies that the spread due to an optimal non-adaptive policy

constrained to select nONA seeds is within a (1− e−nONA/nOA − ε) factor of the spread of

an optimal adaptive policy selecting nOA seeds. More precisely,

σ(πONA,nONA)≥ (1− e−nONA/nOA− ε)σ(πOA,nOA) (4.5)

38

The classical result from Nemhauser [39] states that the greedy non-adaptive algorithm

obtains a (1−1/e−ε) fraction of the value of the optimal non-adaptive algorithm, where

ε is the additive error made in the marginal gain computation. Moreover if the greedy

non-adaptive policy is constrained to select nGNA seeds and the optimal non-adaptive

policy selects nONA seeds we have the following:

σ(πGNA,nGNA)≥ (1− e−nGNA/nONA− ε)σ(πONA,nONA) (4.6)

Combining equations 4.5 and 4.6, we obtain the following result

σ(πGNA,nGNA)≥ (1− e−nGNA/nOA− ε)(1− e−nGNA/nOA− ε)σ(πOA,nOA) (4.7)

Setting nGNA = nGA = nOA = k, we obtain equation 4.4 of the theorem.

Discussion: To clarify what this theorem implies, lets assume that we can estimate

the marginal gains perfectly. Let’s set ε = 0 and α = 1. We thus obtain the following

relations: σ(πGA,k)≥ (1−e−1/γ)σ(πOA,k) and σ(πGNA,k)≥ (1− 1
e)

2σ(πOA,k). These two

factors are almost equal (in fact non-adaptive is slightly better) and in the case of perfect

marginal estimation, there is not much gain in going adaptive. This intuition is confirmed

by our experiments in section 4.3.

4.1.2 MINTSS

Given that it takes the optimal adaptive policy nOA seeds to achieve a spread of Q, we seek

to find the number of seeds that it will take the greedy adaptive and traditional greedy

non-adaptive policy to achieve the same spread. Since the non-adaptive policy can be

guaranteed to achieve the target spread only in expectation, we allow it to have a small

shortfall βONA. In addition, we allow both the greedy policies to have a small shortfall

against their optimal variants. We formalize these notions in the following theorem.

Theorem 6. Let the target spread to be achieved by the optimal adaptive policy be Q.

Let the allowable shortfall for the optimal non-adaptive policy over the optimal adaptive

policy be βONA. Let βGA and βGNA be the shortfall for the greedy adaptive and non-

adaptive policies over their optimal variants. Let the number of seeds required by the

four policies - OA, ONA, GA and GNA be nOA, nONA, nGA and nGNA. Then we have the

following relations

nGA ≤ nOA(αγ ln(Q/βGA)) (4.8)

39

Figure 4.2: Theoretical comparison of adaptive and non-adaptive strategies

nGNA ≤ nOA ln
(

Q
βONA−Qε

)
ln
(

Q−βONA

βGNA− ε(Q−βONA)

)
(4.9)

nGNA ≤ nOA ln
(

Q
βGA−βGNA−Qε

)
ln
(

Q−βGA +βGNA

βGNA− ε(Q−βGA +βGNA)

)
(4.10)

Proof. If in proposition 1, we set bGA = bOA = 1 , σ(πOA,nOA) = Q and σ(πGA,nGA) =

Q−βGA, after some algebraic manipulation we can obtain equation 4.8 of the theorem.

Setting σ(πONA,nONA) = Q−βONA, σ(πOA,nOA) = Q in equation 4.5, we obtain the inter-

mediate relation 4.11.

nONA ≤ nOA ln(
Q

Q−βONA
) (4.11)

Setting σ(πONA,nONA) = Q−βONA and σ(πGNA,nGNA) = Q−βONA−βGNA, we obtain the

following relation.

nGNA ≤ nONA ln(
Q−βONA

βGNA− ε(Q−βONA)
) (4.12)

We constrain the spreads for the greedy adaptive and greedy non-adaptive policies to

be the same. Hence, Q− βGA = Q− βONA− βGNA. Hence βONA = βGA− βGNA. By

combining equations 4.11 and 4.12 and substituting βONA as βGA − βGNA, we obtain

equation 4.10 of the theorem.

Discussion: To understand the implications of this theorem, set α = 1, ε = 0. Let

the βGNA = 2 and βGA = 1, thus allowing for a shortfall of only 2 nodes in the spread. We

obtain the following relations: nGA ≤ nOAγ ln(Q/2) and nGNA ≤ nOA ln(Q) ln((Q−1)/2).

Figure 4.2 shows the growth of these functions with Q. We can see that as Q in-

creases, the ratio nGA
nOA

grows much slower than nGNA
nOA

. Hence, for the MINTSSproblem,

there is clearly an advantage on going adaptive. This is confirmed by our experiments in

40

section 4.3.

4.1.3 Bounded Time Horizon

In discrete diffusion models (e.g., IC), each time-step represents one hop in the graph,

so the time needed for a diffusion to complete is bounded by D, the longest simple path

in the network. In networks where this length is small [41], most diffusions complete

within a short time. This is also helped by the fact that in practice, influence probabilities

are small. However, if we are given a very short time horizon, the diffusion process

may not complete. In this case, seed selection is forced to be based on observations of

incomplete diffusions. We show that the spread function in this case is no longer adaptive

submodular.

Theorem 7. The spread function with the IC diffusion model is not adaptive submodular

if the diffusion process after each intervention is not allowed to complete.

Figure 4.3: Counterexample to show that the spread is not adaptive submodular
under incomplete diffusion

Proof. We give a counterexample. Consider the network shown in Figure 4.3 and the

true world, where the edge (u,v) is live and (v,w) is dead. Let H = 2, k = 2. Suppose

at t = 0, we choose the seed set S = {u}, so the next intervention must be made at time

t = 1. Based on the true world, we observe that nodes u and v are active at time t = 1.

Hence we infer the edge (u,v) to be live. We do not know the status of edge (v,w).

Even though w is reachable in the network G, there is incomplete information in the

realization revealed at t = 1 to decide if the node w is active or not, since the observed

diffusion is incomplete. Thus, the expected spreads w.r.t. the realization above are as

follows: σ(S) = 2+(1− p) and σ(S∪{w}) = 3. Let S′ = {u,v}. Then σ(S′) = 2 and

σ(S′∪{w}) = 3. This is because w is one hop away from v ∈ S′ and the realization tells

us that w is not active. Thus, we have σ(S∪{w})−σ(S) < σ(S′∪{w})−σ(S′). This

was to be shown.

What are our options, given that the spread under bounded time horizon is in general

not adaptive submodular? Theorem 24 in [22] shows that if a function is not adap-

tive submodular, no polynomial algorithm can approximate the optimal expected spread

41

within any reasonable factor. Thus, we may continue to use adaptive greedy policy,

but without any guarantees in general. In our experiments 4.3, we use a novel Sequential

Model Based Optimization (SMBO) approach for finding a reasonably good policy when

the time horizon is bounded.

4.2 Algorithms
To obtain a greedy adaptive policy, we need to repeatedly select nodes with the maximum

marginal gain at every intervention. This implies that we need to run the greedy influ-

ence maximization algorithm to compute the marginal gain over the entire network mul-

tiple times. Fortunately, this can be done efficiently by exploiting the recent work [50]

which describes a near-optimal and efficient greedy algorithm – Two-phase Influence

Maximization (TIM) for non-adaptive influence maximization. We first review TIM and

describe the modifications we made to it for the adaptive case.

4.2.1 Two phase Influence Maximization

Overview of TIM: Given a budget of k seeds, a network with m edges and n nodes and

an appropriate diffusion model such as IC, TIM obtains a (1− 1/e− ε) fraction of the

optimal spread in the non-adaptive case, incurring a near-optimal runtime complexity of

O(k+ l)(n+m)logn/ε2. TIM operates by generating a large number of random Reverse

Reachable (RR) sets. An RR set is defined for a particular node v and a possible world

W of the network. It consists of the set of nodes that can reach the node v in the possible

world W . Given enough number (see [50] for an explicit bound) of RR sets, the nodes

which cover a large number of RR sets are chosen as the seed nodes: the node u which

appears in the maximum number of RR sets is chosen as the first seed. Once a node u is

selected as a seed, we remove all the RR sets containing u and the next seed is the node

which covers the maximum of the remaining RR sets and so on until a seed set S with k

nodes is chosen. Tang et al. [50] show that this simple strategy is enough to guarantee a

(1−1/e− ε)-approximation factor in near optimal time.

Adaptive TIM: In a greedy adaptive policy, we need to select seed nodes in every inter-

vention. After each intervention, a certain number of nodes are influenced and become

active. These already active nodes should not be selected as seeds. To ensure this, we

eliminate all RR sets covered by any of these active nodes. If the number of nodes which

became active is large, it brings the number of remaining RR sets below the required

42

bound, which in turn can invalidate the theoretical guarantees of TIM, as the marginal

gain of seeds selected in the next intervention may not be estimated accurately. Hence af-

ter each intervention, we need to re-generate the RR sets to effectively select seeds for the

next intervention. To avoid this expensive repeated RR set generation, we instead elimi-

nate all active nodes from the original network, by making all the incoming and outgoing

edges have a zero probability, and generating the required number of RR sets for the new

modified network. This guarantees that the resulting RR sets do not contain the already

active nodes. This is equivalent to running the greedy non-adaptive algorithm multiple

times on modified networks and results in retaining preserves the theoretical guarantees

of TIM. For the unbounded time horizon, the optimal policy consists of selecting one

seed per intervention and letting the diffusion complete. For the IC model, the diffusion

can take a maximum of D time steps.

4.2.2 Sequential Model Based Optimization

In the case of bounded time horizon (i.e., H < kD), as discussed at the end of Sec-

tion 4.1.3, there is no straightforward strategy to find or approximate the optimal policy.

The policy depends on the precise values of time horizon H and properties of the network.

For MAXSPREAD the two extreme cases are the non-adaptive policy and the completely

sequential greedy policy. The non-adaptive policy does not take any feedback into ac-

count and is hence suboptimal. For a sequential policy, the inter-intervention time H/k

will be less than D. Hence the completely sequential policy will result in incomplete

diffusions and from 7 will be suboptimal. A similar reasoning applies for MINTSSḞor

both problems, we are either forced to seed more than one node per intervention or wait

for less than D time-steps between interventions, or both. We split the problem of finding

the optimal policy into two parts - finding the intervention times and the number of nodes

to be seeded at each intervention and which nodes need to be seeded at each intervention.

Using the logic in 7, we solve the latter problem by using the adaptive TIM algorithm

described above. For the former problem, we resort to a heuristic approach since the

expected spread function we need to optimize does not have any nice algebraic proper-

ties w.r.t. time. In order to find the best offline policy, we need to calculate σ for each

candidate policy. Calculating σ across all the candidate possible worlds is expensive.

Thus we need to maximize an expensive function without any nice mathematical prop-

erties. Hence we resort to a bayesian optimization technique known as sequential model

based optimization (SMBO)[32]. The SMBO approach narrows down on the promising

43

configurations (in our case, policies) to optimize a certain function. It iterates between

fitting models and using them to make choices about which configurations to investigate.

We now show the above problems can be encoded for solving these problems using

SMBO. Consider MAXSPREADẆe have a maximum of k interventions. Some of these

interventions may seed multiple nodes whereas other might not seed any. There are

another k− 1 variables corresponding to the inter-intervention times. Since the number

of variables is 2k− 1, SMBO techniques will slow down as k increases. It is also non-

trivial to add the constraint that the sum of seeds across all interventions will add to

k. Since this leads to an unmanageable number of variables for large k, we introduce

a parameter p which we refer to as the policy complexity. Essentially, p encodes the

number of degrees of freedom a policy can have. For every i < p, we have a variable

si which is the number of nodes to be seeded at a particular intervention. We have also

have a variable ti which encodes waiting time before making the next intervention. For

example, if p = 2 and s1 = 2, t1 = 5,s2 = 3, t2 = 7 we initially seed 2 nodes, wait for

5 time-steps, then seed 3 nodes, wait for 7 time-steps before the next intervention. In

the next intervention, we repeat the above procedure, until we run out of time, i.e., reach

H or get too close (within s1 or s2) to the budget of k seeds. In the latter case, the

last intervention just consists of using the remaining seeds. We use the same strategy to

encode policies for MINTSSİn this case, however, we stop if the time reaches H or if≥Q

nodes become active. Since we have a manageable number of parameters, we can easily

use SMBO techniques to optimize over these parameters. The objective function for the

first problem is to maximize the spread. The constraint is covered by the encoding. For

the second problem, the objective function is to minimize the seeds to achieve a spread

of Q. This can be modelled by introducing penalty parameters λ1 and λ2. The function

can be written as,

minimize g(x)+λ1(Q− f (x))+λ2(f (x)−Q) (4.13)

where x is the parameter vector, g(x) is the number of seeds, f (x) is the spread, Q is

the target spread. The parameter λ1 penalizes not achieving the target spread whereas λ2

penalizes over-shooting the target spread. λ1 encodes the hard constraint whereas λ2 is

used to direct the search.

44

4.3 Experiments

4.3.1 Datasets

We run all our experiments on 3 real datasets – the author collaboration network NetHEPT

(15k nodes and 62k edges), the trust network Epinions (75k nodes and 500k edges) and

Flixster. On NetHEPT and Epinions where real influence probabilities are not available,

we set the probability of an edge into a node v to 1/indegree(v), following the popular

approach [10, 11, 51]. We use the Flixster network under the topic-aware independent

cascade model of diffusion [6] for which the authors learned the probabilities using Ex-

pectation Maximization. Their processed network has 29k nodes and 10 topics. We

choose the topic which results in the maximum number of non-zero edge weights. The

resulting sub-network of Flixster consists of 29k nodes and 200k edges.

4.3.2 Experimental Setup

As mentioned earlier, we consider only the IC model of diffusion. We compare between

greedy non-adaptive, greedy sequential adaptive and the batch-greedy adaptive policies.

Since the actual true world is not known, we sample each edge in the network according

to its influence probability and generate multiple true worlds. Since we are interested

in the performance of a policy on an average, we randomly generate generate 100 true

worlds and average our results across them. For either problem, the seeds selected by the

non-adaptive policy is based on expected case calculations and remain the same irrespec-

tive of the true world. Only the performance of the policy is affected by the true possible

world. Also note that for MINTSS in some true worlds the spread of the non-adaptive

policy might be less than the target Q. The shortfall can be modelled by the factor β

introduced in Section 4.1.

4.3.3 Sequential Model Based Optimization

We use Sequential Model-Based Optimization for General Algorithm Configuration (SMAC)

[32]. SMAC is the state of the art tool used for automatic algorithm configuration for hard

problems including SAT and Integer Linear Programming. Based on the performance of

a configuration on certain kinds of benchmark instances characterized by problem spe-

cific properties, SMAC creates a random forest model and uses it to choose promising

candidate configurations to be evaluated. SMAC uses the model’s predictive distribution

45

to compute its expected positive improvement over the the incumbent (current best solu-

tion). This approach automatically trades exploitation for exploration. SMAC can easily

handle both numerical and categorical parameters.

For our case, we need to optimize an expensive black-box function (as defined in the

previous section) over 2p configurations where p is the policy complexity. Because the

function is hard to evaluate a simple brute-force grid search over the parameter space is

not feasible. SMAC is implicitly able to leverage the structure present in the problem

and come up with promising solutions to the problem.

The benchmark instances consist of seeds for the random process generating 10 true

worlds at a time. Hence, the evaluation of each configuration on each instance involves

running the algorithm 10 times. We use a training set of 1000 such instances and a

separate test set of 50 instances to evaluate the policies found by SMAC. We restrict the

number of function evaluations SMAC can make to 500 and set the tuner timeout (the

maximum time that can be spent by SMAC in building the random forest model and

deciding which configuration to evaluate next) is set to 100 seconds.

4.3.4 MAXSPREAD

4.3.4.1 Unbounded time horizon

For MAXSPREAD we vary the number of seeds k over {1,10,20,50,100}. For the un-

bounded horizon, we compute the spread obtained using the greedy non-adaptive and the

greedy adaptive sequential policies. We set ε = 0.1.

(a) NetHEPT (b) Flixster

Figure 4.4: Average Spread vs Number of seeds

46

Figures 4.4(a) and 4.4(b) show the average spread σ across 100 possible true worlds

as the number of seeds is varied in the given range. We quantify the the effect of adap-

tivity by the ratio σ(πGA)
σ(πGNA)

, which we call the average adaptivity gain. We see that the

average adaptivity gain remains constant as the number of seeds are varied. We obtain

similar results even with higher (100 to 500) values of k. This finding is consistent with

the observations made in Section 4.1.

(a) NetHEPT (b) Flixster

Figure 4.5: Runtime vs Number of seeds

For the adaptive greedy sequential strategy in which we select one seed at a time, we

generate RR sets for k = 1 and regenerate the RR sets between each pair of interventions.

The run-time graphs are shown in Figures 4.5(a) and 4.5(b). As can be seen, although this

method scales linearly with the number of seeds, it is much slower than the non-adaptive

case and will prohibitive for larger datasets. Instead we can generate a large number of

RR sets upfront and use these sets to select seeds for the first few interventions. The

RR sets are regenerated as soon as the change in the number of active nodes becomes

greater than a certain threshold (the regeneration threshold θ). The intuition is that if the

number of active nodes has not increased much in a few interventions, the number of RR

sets does not decline significantly and they still represent information about the state of

the network well. We call this optimization trick lazy RR(LR) set regeneration to contrast

it with the full RR(FR) set regeneration. We observe that because of submodularity, the

frequency of RR set (re)generation decreases as the number of seeds (and time) increases.

For our experiments, we empirically set θ equal to 10. Higher values of θ lead to lower

runtimes but to a smaller average adaptivity gain.

We use this strategy to find the spread for both NetHEPT and Flixster. As can be seen

47

(a) Average Spread vs Number of seeds (b) Runtime vs Number of seeds

Figure 4.6: Epinions:Adaptive vs Non-adaptive for MAXSPREAD

from the runtime graphs and average spread graphs, this strategy does not decrease the

spread much but leads to significant computational savings. After verifying this strategy,

we use it to compare the 2 policies on the larger Epinions dataset, where the same trend

is observed – see Figures 4.6(a) and 4.6(b). The average adaptivity gain is small even for

the greedy adaptive sequential policy in case of unbounded time horizon.

4.3.4.2 Bounded time horizon

For the bounded time horizon, the policy will be forced to group sets of seeds together

to form a batch. From Fact 4.1, we know that the average spread for such a policy will

be lower and hence the average adaptivity gain will further decrease. To verify this, we

conduct an experiment on the NetHEPT dataset in which we decrease the time horizon T

from a large value (corresponding to unbounded time horizon) to low values of the order

of the length of the longest path in the network. We vary the policy complexity p to be

1 or 2 in this case. We aim to find the best configuration by varying the batch-size in the

range 1 to 100 and the inter-intervention time between 1 and the D of the network. Since

the difference between the spreads for the non-adaptive policy vs. the greedy adaptive

sequential policy is so small, for the bounded time horizon, SMAC is unable to find a

unique optimal policy. Different runs of SMAC yield different policies for the same

number of seeds, sometimes converging to the non-adaptive policy even for reasonably

large time horizons! A higher configuration time for SMAC might lead to stable results

or alternatively we might need to encode the problem differently. We leave this for future

work.

48

4.3.5 MINTSS

4.3.5.1 Unbounded time horizon

For all 3 datasets, for the unbounded time horizon, we compare the greedy non-adaptive

and greedy adaptive policies with different batch sizes in the range {1,10,50,100}. Be-

cause a large number of seeds may be required to saturate a certain fraction of the net-

work, we use the lazy RR set generation approximation explained above and set ε to 0.2.

Figures 4.7(a), 4.7(b) show the comparison between the non-adaptive and various adap-

tive greedy policies for the NetHEPT and Flixster datasets. Epinions shows a similar

trend.

(a) NetHEPT (b) Flixster

Figure 4.7: Number of seeds required vs Target fraction

As can be seen, the non-adaptive policy is competitive for smaller number of target

nodes. But as the target fraction increases, the adaptive policies are better able to exploit

the market feedback mechanism and lead to large savings in the number of seeds. This

again agrees with our theoretical results which showed that the adaptivity gain increases

as the number of target nodes increases. As the size of the network increases, the es-

timated spread calculation in the non-adaptive case is averaged across greater number

of true worlds and hence becomes less efficient. We observed that in many cases, the

final true spread for the non-adaptive policy either overshoots the target spread or misses

the target spread by a large amount. We conclude that adaptive policies are particularly

useful if we want to influence a significant fraction of the network.

We give some intuition for the difference in the adaptivity gains for the two prob-

lems. For adaptive policies, the rate of increase in the expected spread is fast in the

49

beginning before the effects of submodularity take over. Hence adaptive policies require

fewer seeds than non-adaptive to reach a comparable target spread. However, once sub-

modularity kicks in, the additional seeds added contribute relatively little to the spread.

Hence for MINTSS, where the objective is to reach a target spread with minimum seeds,

the adaptivity gain is higher. However for MAXSPREAD, even though the adaptive pol-

icy reaches a high spread with fewer seeds, the remaining seeds in the budget don’t add

much more to the true spread.

Figure 4.8: Flixster: Runtime vs Target fraction

We also plot the runtime graph for the Flixster dataset. The non-adaptive time domi-

nates because it needs to choose a larger number of seeds. Since the batch-greedy policies

select batches of seeds and consider feedback less often, they have a lower running time

which decreases as the batch-size increases. Figure 4.8 shows the runtime variation for

Flixster. Results on other datasets show a similar trend.

4.3.5.2 Bounded time horizon

T 10 50 100 1000
ShortFall (β) 709 174.98 10.54 0
Number of seeds 200 177.33 171.11 168
Objective function 7290 1927.1 276.51 168
Policy(s,t) (100,6) (28,8) (20,11) (3,12)

Table 4.1: Policies of p = 1 recovered by SMAC for varying time horizons(T) for
Flixster with Q = 5800

We now consider the important question, how good is the effect of adaptivity for a

bounded time horizon for the MINTSS problem. For this, we vary the time horizon T

50

from 10 to 1000 and the policy complexity p is set to either 1 or 2. We use the Flixster

dataset and fix the target fraction of nodes to 0.2. As in the previous problem, we aim

to find the best configuration by varying the batch size in the range 1-100 and the inter-

intervention time between 1 and the D of the network. Since each configuration run

involves solving MINTSS 500 times, to save computation time we use a relatively high

ε = 0.5. We verified that similar results hold for smaller values of ε . The optimal policy

returned by SMAC is evaluated on a different set of instances (possible true worlds)

averaging the results over 50 such instances.

Table 4.1 shows the results for this experiment. For both p= 1,2, as the time horizon

increases, the shortfall goes to zero and the objective function is just the number of seeds

required. We see that even for a low time horizon, SMAC is able to find a policy for which

the number of seeds is close to the policy (which uses 163 seeds) for an unbounded time

horizon. It is still much better than the non-adaptive version of the policy which uses a

large number of seeds even for unbounded time horizon. As T increases, in the policy

found by SMAC, the number of seeds/interventions decreases and inter-intervention time

increases. In fact, for T = 1000 the p = 1, the policy found by SMAC seeded 3 nodes

per intervention and had a inter-intervention time equal to 12 (which is greater than D

of the graph). For extremely small T , the policy found by SMAC had 100 nodes per

intervention and a very short inter-intervention time of 3. We observe similar behaviour

even for p = 2 and with the NetHEPT dataset as well. Note that as long as T > D, the

non-adaptive version will require the same number of seeds it needs for the unbounded

horizon case. This shows us the benefit of adaptivity even when the time horizon is

severely constrained. These experiments show the effectiveness of SMAC in finding

reasonably good policies for any time horizon for MINTSS.

51

5

Conclusion

A conclusion is simply the place where you got tired of thinking.

– Dan Chaon

In this thesis, we studied two important variants of the influence maximization prob-

lem - namely in the bandit and adaptive settings.

We studied the important, but under-researched problem of influence maximization

when no influence probabilities or diffusion cascades are available. Adopting a combina-

torial multi-armed bandit paradigm, we formulated two interesting technical problems:

minimizing error in the learned influence probabilities and minimizing regret from re-

duced spread as a result of choosing suboptimal seed sets across rounds of a CMAB

game. We proposed various algorithms from the bandits literature for these problems

and proved bounds on their performance. We also evaluated their empirical performance

comprehensively on three real datasets. It would be interesting to consider Thompson

sampling based algorithms for these problems. It is important to extend the results and

algorithms to continuous time diffusion models. How to learn on the fly, not just influ-

ence probabilities, but the graph structure as well, is another interesting question.

For the second part of the thesis, we relaxed the assumption that all seeds need to

be selected in the beginning of the diffusion process by adopting an adaptive approach.

We gave algorithms for finding guaranteed approximations to the optimal policy for both

the MAXSPREAD and MINTSS problems. We quantified the gain of an adaptive policy

over a non-adaptive strategy for both these problems. We studied these problems under

an unbounded as well as a bounded time horizon. We performed experiments on three

real world datasets to verify our theoretical findings. In the future, we plan to evaluate

52

the performance of the greedy adaptive policy under a bounded time horizon from both

a theoretical and empirical perspective.

Investigating a combination of both problems i.e. considering adaptive strategies

while learning influence probabilities in the CMAB framework is another interesting

future research direction.

53

Bibliography

[1] R. Agrawal. Sample mean based index policies with o (log n) regret for the
multi-armed bandit problem. Advances in Applied Probability, pages 1054–1078,
1995. → pages 9

[2] V. Anantharam, P. Varaiya, and J. Walrand. Asymptotically efficient allocation
rules for the multiarmed bandit problem with multiple plays-part i: Iid rewards.
Automatic Control, IEEE Transactions on, 32(11):968–976, 1987. → pages 3, 9

[3] A. Asadpour, H. Nazerzadeh, and A. Saberi. Maximizing stochastic monotone
submodular functions. arXiv preprint arXiv:0908.2788, 2009. → pages 38

[4] J.-Y. Audibert, S. Bubeck, and G. Lugosi. Minimax policies for combinatorial
prediction games. arXiv preprint arXiv:1105.4871, 2011. → pages 9

[5] I. C. Avramopoulos, J. Rexford, and R. E. Schapire. From optimization to regret
minimization and back again. In SysML, 2008. → pages 3

[6] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence propagation
models. Knowledge and information systems, 37(3):555–584, 2013. → pages 45

[7] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed and
continuous-armed bandits. Theoretical Computer Science, 412(19):1832–1852,
2011. → pages 9

[8] F. Caro and J. Gallien. Dynamic assortment with demand learning for seasonal
consumer goods. Management Science, 53(2):276–292, 2007. → pages 9

[9] S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen. Combinatorial pure exploration
of multi-armed bandits. In Advances in Neural Information Processing Systems,
pages 379–387, 2014. → pages 9

[10] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social
networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 199–208. ACM, 2009. → pages 2,
45

54

[11] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1029–1038. ACM, 2010. → pages 7, 45

[12] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social
networks under the linear reshold model. In Proc. 2010 IEEE Int. Conf. on Data
Mining, pages 88–97, 2010. → pages 7

[13] W. Chen, L. V. Lakshmanan, and C. Castillo. Information and influence
propagation in social networks. Synthesis Lectures on Data Management, 5(4):
1–177, 2013. → pages 2

[14] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General
framework and applications. In Proceedings of the 30th International Conference
on Machine Learning, pages 151–159, 2013. → pages 3, 9, 12, 13, 14, 25, 26, 27,
30

[15] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit and its
extension to probabilistically triggered arms. arXiv preprint arXiv:1407.8339,
2014. → pages 3, 9, 12, 13

[16] Y. Chen and A. Krause. Near-optimal batch mode active learning and adaptive
submodular optimization. In Proceedings of The 30th International Conference on
Machine Learning, pages 160–168, 2013. → pages 10, 37, 38

[17] H. Daneshmand, M. Gomez-Rodriguez, L. Song, and B. Schoelkopf. Estimating
diffusion network structures: Recovery conditions, sample complexity &
soft-thresholding algorithm. arXiv preprint arXiv:1405.2936, 2014. → pages 3, 8

[18] P. Domingos and M. Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 57–66. ACM, 2001. → pages 1

[19] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified
approach to fixed budget and fixed confidence. In Advances in Neural Information
Processing Systems, pages 3212–3220, 2012. → pages 9

[20] Y. Gai, B. Krishnamachari, and R. Jain. Learning multiuser channel allocations in
cognitive radio networks: A combinatorial multi-armed bandit formulation. In
New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, pages 1–9. IEEE,
2010. → pages 9

[21] Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual

55

observations. IEEE/ACM Transactions on Networking (TON), 20(5):1466–1478,
2012. → pages 9

[22] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence
Research, 42(1):427–486, 2011. → pages 10, 35, 41

[23] D. Golovin and A. Krause. Adaptive Submodular Optimization under Matroid
Constraints. Computing Research Repository, abs/1101.4, 2011. → pages 10

[24] M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion
and influence. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1019–1028. ACM, 2010. →
pages 8

[25] A. Gopalan, S. Mannor, and Y. Mansour. Thompson sampling for complex online
problems. In Proceedings of The 31st International Conference on Machine
Learning, pages 100–108, 2014. → pages 9

[26] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in
social networks. In Proceedings of the third ACM international conference on Web
search and data mining, pages 241–250. ACM, 2010. → pages 3, 8, 32

[27] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach to social
influence maximization. Proceedings of the VLDB Endowment, 5(1):73–84, 2011.
→ pages 2, 4, 8

[28] A. Goyal, W. Lu, and L. V. Lakshmanan. Simpath: An efficient algorithm for
influence maximization under the linear threshold model. In Data Mining
(ICDM), 2011 IEEE 11th International Conference on, pages 211–220. IEEE,
2011. → pages 2

[29] A. Goyal, F. Bonchi, L. Lakshmanan, and S. Venkatasubramanian. On minimizing
budget and time in influence propagation over social networks. Social Network
Analysis and Mining, 3(2):179–192, 2013. ISSN 1869-5450.
doi:10.1007/s13278-012-0062-z. URL
http://dx.doi.org/10.1007/s13278-012-0062-z. → pages 4

[30] A. Guillory and J. Bilmes. Interactive submodular set cover. In ICML, pages
415–422, 2010. → pages 10

[31] H. W. Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):
599–653, 2000. → pages 1

56

http://dx.doi.org/10.1007/s13278-012-0062-z
http://dx.doi.org/10.1007/s13278-012-0062-z

[32] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Learning and Intelligent
Optimization, pages 507–523. Springer, 2011. → pages 43, 45

[33] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146. ACM,
2003. → pages 2, 6, 7, 28

[34] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985. → pages 3, 8, 9

[35] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 420–429. ACM, 2007. → pages 2, 7

[36] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th
international conference on World wide web, pages 661–670. ACM, 2010. →
pages 3

[37] S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the
multi-armed bandit problem. The Journal of Machine Learning Research, 5:
623–648, 2004. → pages 9

[38] A. L. Montgomery. Applying quantitative marketing techniques to the internet.
Interfaces, 31(2):90–108, 2001. → pages 1

[39] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming, 14(1):
265–294, 1978. → pages 2, 7, 39

[40] P. Netrapalli and S. Sanghavi. Learning the graph of epidemic cascades. In ACM
SIGMETRICS Performance Evaluation Review, volume 40, pages 211–222. ACM,
2012. → pages 3, 8, 18, 20, 21, 22, 32

[41] M. E. Newman. The structure and function of complex networks. SIAM review, 45
(2):167–256, 2003. → pages 41

[42] S. Pandey and C. Olston. Handling advertisements of unknown quality in search
advertising. In Advances in neural information processing systems, pages
1065–1072, 2006. → pages 3

[43] J. Rayport. The virus of marketing. Fast Company, 6(1996):68, 1996. → pages 1

57

[44] H. Robbins. Some aspects of the sequential design of experiments. In Herbert
Robbins Selected Papers, pages 169–177. Springer, 1985. → pages 3

[45] M. G. Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal
dynamics of diffusion networks. arXiv preprint arXiv:1105.0697, 2011. → pages
3, 8

[46] K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion
probabilities for independent cascade model. In Knowledge-Based Intelligent
Information and Engineering Systems, pages 67–75. Springer, 2008. → pages 3,
8, 18

[47] K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda. Learning diffusion
probability based on node attributes in social networks. In Foundations of
Intelligent Systems, pages 153–162. Springer, 2011. → pages 32

[48] J. J. Samper, P. A. Castillo, L. Araujo, J. Merelo, O. Cordon, and F. Tricas.
Nectarss, an intelligent rss feed reader. Journal of Network and Computer
Applications, 31(4):793–806, 2008. → pages 1

[49] X. Song, Y. Chi, K. Hino, and B. L. Tseng. Information flow modeling based on
diffusion rate for prediction and ranking. In Proceedings of the 16th international
conference on World Wide Web, pages 191–200. ACM, 2007. → pages 1

[50] Y. Tang, X. Xiao, and S. Yanchen. Influence maximization: Near-optimal time
complexity meets practical efficiency. 2014. → pages 2, 7, 28, 42

[51] C. Wang, W. Chen, and Y. Wang. Scalable influence maximization for
independent cascade model in large-scale social networks. Data Mining and
Knowledge Discovery, 25(3):545–576, 2012. → pages 2, 45

[52] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Machine Learning, Proceedings of the Twentieth International
Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages
928–936, 2003. URL http://www.aaai.org/Library/ICML/2003/icml03-120.php. →
pages 19, 20, 21

58

http://www.aaai.org/Library/ICML/2003/icml03-120.php

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	Acknowledgements
	1 Introduction
	2 Background and Related Work
	2.1 Conventional Influence Maximization
	2.1.1 Diffusion Model
	2.1.2 Algorithm
	2.1.3 Learning probabilities
	2.1.4 Feedback

	2.2 Multi-armed Bandits
	2.3 Adaptive Influence Maximization

	3 Influence Maximization with Bandits
	3.1 Theory
	3.1.1 Combinatorial Multiarmed Bandit Framework
	3.1.2 Adaptation to IM

	3.2 Network Exploration
	3.2.1 Random Exploration
	3.2.2 Strategic Exploration

	3.3 Regret Minimization
	3.4 Experiments

	4 Adaptive Influence Maximization
	4.1 Theory
	4.1.1 MaxSpread
	4.1.2 MinTss
	4.1.3 Bounded Time Horizon

	4.2 Algorithms
	4.2.1 Two phase Influence Maximization
	4.2.2 Sequential Model Based Optimization

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Experimental Setup
	4.3.3 Sequential Model Based Optimization
	4.3.4 MaxSpread
	4.3.5 MinTss

	5 Conclusion
	Bibliography

