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Abstract

Random projection has emerged as a powerful technique for dimensionality re-
duction. It is computationally efficient and has provably good performance under
reasonable assumptions. It has consequently been used for a variety of machine
learning tasks involving classification, regression and information retrieval. In this
paper, we focus on the task of binary classification. There exist a number of the-
oretical guarantees for classification performance in the low dimensional space.
However, the problem of recovering the weight vector in the original space from
projected low dimensional space has been studied very recently. In this paper, we
empirically evaluate the theoretical bounds derived for weight recovery and study
its application for feature selection in high dimensional datasets. We improve the
bound on the number of projections required to recover the weights within an ε
error and outline some promising directions for future work.

1 Introduction

Random projections has proved to be a powerful method for dimensionality reduction. The method
involves projecting the original high dimensional data into a lower dimensional space using a ran-
dom projection matrix. There exist a number of theoretical guarantees (under certain reasonable
assumptions on the random matrix used and the number of projections) for the properties in the
original space that will be preserved in the projected space. For example, the Johnson-Lindenstrauss
lemma [11] derives conditions for preserving pairwise Euclidean distances between points. As com-
pared to PCA, random projections is a computationally efficient way of dimensionality reduction
with provably good performance. It has been used in a variety of machine learning tasks such as
classification [18] [14], regression [12] and information retrieval [6]. In this paper, we focus on
the task of binary classification. A number of theoretical guarantees for classification have been
derived [1] [2] [16]. These prove bounds on the classification performance and margin preservation
in the projected low dimensional space.However the question whether we can recover the original
feature weights from the weights in the low dimensional space has been addressed recently by Zhang
et.al [19].

Theoretical guarantees in this context become important for applications like feature selection which
use feature weights. This is essential in high dimensional datasets where the number of features is
very high as compared to the number of examples. Typical applications involve those in biology such
as predicting functional residues in proteins [10] and gene selection for tumour classification [9] [4].
The task of gene selection involves finding from gene expression data a subset of genes which are
important for for predicting whether a tumour is malignant or benign. Guyon et.al [9] use support
vector machines for this task. A similar feature selection problem arises in high dimensional data
from astronomy applications [20].

Guyon et.al summarize a number of feature selection methods in [7]. A common and simple ap-
proach for feature selection is to use the weights from a linear classifier to order the features in terms
of their importance to the classification problem at hand. [13] [17] use weights from support vector
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machines for feature selection. Random projection for dimensionality reduction has been empiri-
cally evaluated for practical applications [3]. However to the best of our knowledge, we are the first
to empirically evaluate the optimal weight recovery proposed in [19] and explore its use in feature
selection for real world applications.

The rest of the paper is structured as follows: Section 2 introduces the notation and presents some
of the theorems derived in [19]. We also derive a tighter bound on the number of random projections
required to recover the weights to within an ε error. In section 3, we present our experiments
evaluating the robustness of the weight recovery algorithm and its use in feature selection on two
real world datasets. Section 4 concludes our paper and outlines some promising directions for future
work.

2 Theoretical Results

2.1 Notation

Let (xi,yi), i = 1,2....n be the set of training examples where each xi ∈ Rd is the feature vector for
the ith example and yi ∈ {-1,+1 } is the ith class label. Let X ∈ Rn×d = {x1,x2, ...} be the data
matrix consisting of the input examples and let y ∈ Rn be the vector of class labels and w ∈ Rd
represent the weight vector. Let r be the rank of the datamatrix. All the results we present assume
a low rank datamatrix X i.e. r << min(n, d). Similar bounds hold for a full rank datamatrix. In
the subsequent discussion, we focus on a L2 - regularized cost function. Specifically, we want to
minimize the following objective function.

min
w

λ

2
||w||2 +

n∑
i=1

`(yixiw) (1)

where `() is the loss function (like squared loss) which is a measure of how well the model fits the
training data. λ is the regularization parameter and is used to prevent overfitting.

We define the dual optimization problem as

max
α
−

n∑
i=1

`∗(αi)−
1

2λ
αTGα (2)

where α ∈ Rn is the dual variable and G = D(y)XTXD(y) is the Gram matrix. `∗ is the convex
conjugate of l. Let w∗ be the optimal solution to the primal problem given by 1 and α∗ be the
optimal solution to the dual problem defined by equation 2. Zhang et.al in [19] derive the following
proposition which connects the optimal primal and dual solutions.

Proposition 1. Let w∗ be the optimal primal solution and α∗ be the optimal dual solution. Then,

w∗ = − 1

λ
XD(y)α∗

α∗ = ∇`(yixTi w∗) (3)

LetR ∈ Rd×m represent the random matrix which projects each high dimensional example xi ∈ Rd
to a lower dimension x̂i ∈ Rm. Equation 4 describes the projection the ith example.

x̂i =
1√
m
RTxi (4)

X̂ represents the datamatrix and Ĝ represents the Gram matrix in the low dimensional space. Ideally
we would like m << d and still be able to recover the original weights from the low dimensional
space. [19] use a random Gaussian matrix where each entry of the matrix is independently drawn
from a standard normal distribution. Let z∗ ∈ Rm and α̂∗ ∈ Rn denote the optimal solutions to the
primal problem and dual problems in the low dimensional space.
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2.2 Naive Recovery

A point xi is classified by the linear classifier in the original space as wT
∗ x. In the lower dimen-

sional space, its projection x̂i is classified as zT∗ x̂. Since we want the classification to be consistent
in both the spaces, we have from equation 4, ŵ = 1√

m
Rz∗. This says that we can obtain the high

dimensional weights by simply projecting back the low dimensional weights to the original dimen-
sion. Henceforth, this method is known as Naive Recovery of weights. Theorem 1 states that naive
recovery is a bad approximation of the original weights.
Theorem 1. For any 0 < ε < 1/3, with a probability of at least 1 − exp(−(d − r)/32) −
exp(−m/32)− δ

||ŵ −w∗|| ≥
1

2

√
d− r
m

(
1−

ε
√
2(1 + ε)

1− ε

)
||w∗||

provided m satisfies

m ≥ (r + 1)log(2r/δ)

cε2

where c ≥ 1/4.

2.3 Recovery using Dual Random Projection

We first present an important corollary which is essential for optimal weight recovery using the dual
random projection algorithm.
Corollary 1. Let A ∈ Rr×m be a standard Gaussian random matrix. For any 0 < ε ≤ 1/2, with a
probability at least 1− δ, we have ∣∣∣∣∣

∣∣∣∣∣ 1mAAT − I

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε

provided m satisfies

m ≥ (r + 1)log(2r/δ)

cε2

where c = 2−
√
3.

We use equation 4 to make the following observation regarding the Gram matrix in the low dimen-
sional space.

Ĝ = D(y)X̂X̂TD(y) (5)

Ĝ = D(y)XT RR
T

m
XD(y) (6)

Given that m satisfies the condition in corollary 1 we have E[RR
T

m ] = I . This condition holds for
other matrices as well. For example, a Bernoulli ensemble matrix with equally probable random {-1,
+1} entries also satisfies E[RR

T

m ] = I and in principle can be used the random projection matrix.
This condition coupled with equation 6 implies that Ĝ = G in expectation. Hence from the dual
formulation given in 2, we have in expectation that α̂∗ = α∗. Thus, the solutions to the dual
problem in both spaces are close to each other. We use this fact to recover the weight vector w̃. We
now present the dual random projection algorithm.

• Use a random Gaussian / Bernoulli ensemble matrix (R) to project data to low dimensional
space.

• Solve the primal classification problem in the low dimensional space and obtain the weights
z∗.

• Use the relation in proposition 1 to obtain the equivalent dual solution α̂∗

• From the previous argument, we know that α̂∗ ≈ α∗. Use the relation in proposition 1 to
obtain the primal solution w̃ in the original space.

Theorem 2 gives precise bounds on quality of the solution obtained from the above algorithm.
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Theorem 2. Letw∗ be the optimal solution and let w̃ be the solution recovered by the dual random
projection algorithm. For any 0 < ε < 1/2, with a probability at least 1− δ, we have

||w̃ −w∗|| ≤
ε

1− ε
||w∗||

provided

m ≥ (r + 1)log(2r/δ)

cε2

where c ≥ 1/4.

2.4 Tighter bounds for dual random projection

Zhang et.al prove a O(r log r) bound on the number of projections needed to achieve a certain fixed
error. Corollary 1 is the key to this proof. We prove an improved version of corollary 1 for any
random matrix having entries drawn independently from a distribution with mean zero and unit
variance. For this, we use a theorem about the asymptotic properties of the maximum singular value
of a random matrix. This theorem was first derived by Geman [5].We first state this theorem as it
appears in the survey [15].
Theorem 3 (Theorem 2.1 in [15]). Let A = AN,n be an N × n random matrix whose entries are
independent copies of some random variable with zero mean, unit variance and finite fourth moment.
Suppose that the dimensions N and n grow to infinity while the aspect ratio n/N converges to some
number y ∈ (0, 1]. Then

1√
N
smin(A)→ 1−√y, 1√

N
smax(A)→ 1 +

√
y

almost surely. Moreover, without the fourth moment assumption the sequence 1√
N
smax(A) is almost

surely unbounded.

We use Theorem 3 to prove a corollary which proves a O(r) bound on the number of projections
required to achieve a fixed error ε in the weights. A proof similar to that for Theorem 2 follows
directly from this corollary.
Corollary 2. Let A ∈ Rr×m be a matrix whose entries are independently sampled from a distribu-
tion with zero mean and unit variance and has a finite fourth order moment. For any 0 < ε < 1, we
have ∣∣∣∣∣

∣∣∣∣∣ 1mAAT − I

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε

provided

m ≥ 3r

ε

Proof. Let B = 1
mA

TA − I . We need to find conditions on m such that ||B||2 ≤ ε. Let smax be
the maximum singular value for A and let λmax be its maximum eigenvalue. We know that,

||A||2 = smax(A) = smax(A
T ) =

√
λmax(ATA)

We have the following relation,

||B||2 = λmax(B) =
1

m
λmax(A

TA)− 1

||B||2 =
1

m
[smax(A

T )]2 − 1

||B||2 =
[ 1√

m
smax(A

T )
]2
− 1 ≤ ε

AT ∈ Rm×r satisfies the properties for Theorem 3. Hence, as r →∞ and m→∞, r/m→ y such
that y ∈ (0, 1]. From theorem 3 and the above relation.

(1 +
√
y)2 − 1 ≤ ε

After some algebra, we have y ≤ ε
3 . Hence m ≥ 3r

ε .
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2.5 Iterative Recovery

From Theorem 2, the relative error can be reduced by a constant factor by one iteration of the dual
random projection algorithm. This suggests we can develop an algorithm which iteratively reduces
the error. [19] propose such an algorithm and prove its correctness.For the sake of brevity, we skip
the details of this algorithm.

3 Experiments

In this section, we present our results for the empirical evaluation of the dual random projection
algorithm. For our experiments, we use the squared loss function as defined in equation 7

`(z) =
1

2
(1− z)2 (7)

Hence our primal objective function defined in equation 1 can be rewritten as

min
w

λ

2
||w||2 + 1

2

n∑
i=1

(yi − xTi w)2 (8)

To follow the dual random projection algorithm, we need expressions to find the primal optimal
solution and to convert between the primal-dual solutions. For the squared loss function, the optimal
primal solution is given by equation 9.

w∗ = X(λI +XTX)−1y (9)

We can convert between primal and dual solutions using equations 10

α = D(y)XTw − 1

w = − 1

λ
XD(y)α (10)

Analogous expressions hold for the low dimensional space.

3.1 Datasets

We use the ARCENE and DOROTHEA datasets [8] which were used for the NIPS 2003 feature
selection challenge. Both datasets have full rank and possess a greater number of features than
input examples. For both these datasets, half of the features are true features whereas half of the
features have been artificially added as probes and have no predictive power in the classification
task. To conduct experiments to test the dependence on the rank of the datamatrix, we use low rank
approximations of the data. The task for ARCENE dataset is to differentiate between cancer and
normal patterns based on the mass-spectrometric data. The dataset consists of 10000 features with
100 instances. The DOROTHEA dataset is a drug discovery dataset where the task is to distinguish
between active and inactive chemical compounds based on their structural molecular features. This
dataset consists of 100000 features with 800 instances.

3.2 Experiment 1

We reconstruct the original weight vector using both naive recovery and the dual random projection
methods. We measure the relative error with respect to the true weight vector obtained by solving the
problem in the high dimensional space. We evaluate the dependence between the relative error and
the number of projections. The experiments use the random Gaussian matrix. Using the Bernoulli
ensemble matrix leads to similar results. For all the experiments, we fix the regularization parameter
λ as 1, use LBFGS to minimize the primal objective function and average the results across 10 runs.
Figures 1(a) and 1(b) present plots for both datasets with full rank.

The weights of irrelevant features are forced to zero because of the L2 regularization. Hence the
features with nonzero weights are predictive for the classification task. For feature selection , we
need to find the predictive features and are not concerned with the absolute values of the weights.
Hence we propose to use another metric to measure efficiency of our weight recovery. We calculate
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(a) (b)

Figure 1: Relative error vs number of random projections for (a)ARCENE and (b) DOROTHEA
dataset. The weights recovered using the dual random projection method are more accurate than
those recovered by the naive method.

(a) (b)

Figure 2: Jaccard index vs number of random projections for (a)ARCENE and (b) DOROTHEA
dataset. As expected, as the number of random projections increases, the jaccard index improves
and saturates around 0.8 for both the datasets at relatively fewer number of projections

the Jaccard index between sets of features with non-zero weights in the original and recovered space.
Figures 2(a) and 2(b) show these plots for the two datasets.

We see that the dual random projection algorithm is able to find the correct subset of important
features even when the number of projections is relatively less. This implies that it is possible
to quickly solve the problem in the low dimensional space and recover the weights and still find
relevant features with reasonable accuracy.

The next set of figures 3(a) and 3(b) show that we get a good classification performance for both
recovery methods. The weights are recovered using the two methods and then used to evaluate the
classification performance on the test set. [19] proves this fact and reconciles their results with
the existing guarantees on classification performance in the projected space. This proves that the
conditions for optimal weight recovery subsume those for good classification performance.

Figures 4(a) and 4(b) show the time required for classification in the original space and sum of
the times for classification in the projected low dimensional space and weight recovery for each of
the methods. These results proves that dimensionality reduction coupled with appropriate weight
recovery can lead to reduction in classification time. This becomes important especially for large
high dimensional datasets.

3.3 Experiment 2

For the subsequent experiments, we show results only for the ARCENE dataset. The results for the
DOROTHEA dataset are similar. The objective of this experiment is used to evaluate the dependence
of the weight recovery error on the rank of the matrix. Figure 5(a) shows a linear dependence of the
recovery error on rank for a fixed number of projections. This agrees with the our improved bounds
presented in the previous section.
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(a) (b)

Figure 3: Classification Error vs number of random projections for (a)ARCENE and (b)
DOROTHEA dataset. The results show good classification performance for both recovery meth-
ods.

(a) (b)

Figure 4: Time taken for classification vs number of random projections for (a)ARCENE and (b)
DOROTHEA dataset. The time taken for classification and weight recovery is smaller than the
classification time in the original space when the number of projections is around 3000 for the
ARCENE and 7000 for the DOROTHEA dataset.The error in weight recovery with these number of
random projections is sufficiently low and the jaccard index is almost maximum. As the number of
random projections increases further, the weight recovery time increases and it is more efficient to
solve the problem in the original space.

(a) (b)

Figure 5: (a)Recovery error vs rank of the datamatrix with the number of projections fixed at 900.(b)
Number of projections required to achieve a fixed error (0.5) vs rank of the matrix. This dependence
is linear as estimated by our improved bound. The original estimate is much higher than the number
of projections required in practice.
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Figure 6: Relative error vs number of iterations of the dual random projection method. The number
of projections is fixed at 2500 and the datamatrix is of full rank.

3.4 Experiment 3

This experiment verifies the dependence on the number of projections required to achieve a constant
error with increasing rank of the data matrix. The original proof in [19] derives this dependence
to be O(r log(r) where r is the rank of the matrix. In section 2 we improve this bound to a linear
dependence between the number of projections and rank. Figure 5(b) provides empirical proof of
this fact. Hence, we are able to empirically verify the correctness of our bound.

3.5 Experiment 4

The last set of experiments verify the iterative reduction in error by the dual random projection
algorithm. Figure 3.5 shows this result. We can in principle go beyond 5 iterations to reduce the
error further until round-off errors start to dominate. However, we lose the gain in time required for
classification if we use a larger number of iterations.

4 Conclusion and Future Work

In this paper, we empirically evaluate the dual random projection algorithm for optimal weight
recovery proposed in [19]. We see that it is possible to recover the weights with a sufficiently low
error using only a relatively small number of random projections. We conclude that dimensionality
reduction coupled with the proposed algorithm can be used for feature selection and lead to gains in
classification time especially for large high-dimensional datasets. We prove a tighter bound on the
number of projections required to achieve a certain error and empirically verify the bound. We also
verify it is possible to iteratively reduce the weight recovery error using the dual random projection
method.

Since support vector machine have been proved to the most efficient classifiers for feature selection
[13], we plan to extend the formalism to handle weight recovery using support vector machine as the
classifier. L1 regularization is a more effective way of enforcing sparsity in the feature weights and
hence more useful for feature selection. We plan to devise a similar algorithm with L1 regularization
on the weights. Since it is the order and number of non-zero weights which affect the feature
selection rather than the exact weight values, we can relax the problem and derive conditions such
that the order of the weight values are preserved in the low dimensional space.
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