Structured Bandits and Applications

Exploiting Problem Structure for Better Decision-making under Uncertainty

Candidate: Sharan Vaswani

PhD Defence
University of British Columbia

11th December, 2018



@ Introduction

© Influence Maximization
@ |IM bandits under the IC model
@ Model-independent IM Bandits

© Content-based Recommendation

@ Bootstrapping for Bandits

e Summary



© Introduction



Motivating Example: Clinical Trials

Figure 1: Clinical trial to infer the “best” drug.

® Do not have complete information about the effectiveness or
side-effects of the drugs.

® Aim: Infer the “best” drug by running a sequence of trials.



Abstraction to Multi-armed Bandits

i BER

Figure 2: Mapping a clinical trial to the multi-armed bandit framework.

® Each drug choice is mapped to an arm and the drug'’s
effectiveness is mapped to the arm’s reward.

® Administering a drug is an action that is equivalent to pulling the
corresponding arm.
® The trial goes on for T rounds.



Bandits 101

Algorithm: GENERIC BANDIT FRAMEWORK (K arms, T rounds)

1 Initialize the expected rewards according to some prior knowledge.

2fort=1— T do

3 SELECT: Use a bandit algorithm to decide which arm(s) to pull.

4 OBSERVE: Pull the selected arm(s) and observe the reward and
associated feedback.

5 UPDATE: Update the estimated reward for the arm(s).

® How do we model the reward of an arm? What is the “best” arm?

® Stochastic and stationarity assumptions: The reward for each
arm is sampled i.i.d from its underlying stationary distribution.
The best arm is the one with the highest expected reward.
—> UPDATE step involves computing the empirical mean of
the past observations.

® Multi-armed bandits assumption: The reward for each arm is
independent of the others.



Bandits 101

® \What is the objective function?

® Minimize the expected cumulative regret E[R(T)]. If a* is the
best action in hindsight and a; is the action chosen at round t,
then

T

E[R(T Z [E[Reward for a*] — E[Reward for a;]]
=1

® Minimizing R(T) results in a exploration-exploitation trade-off:
Exploration: Pull an arm to learn more about it.
Exploitation: Pull the arm that has a higher empirical reward.

e Common bandit algorithms: Epoch-Greedy, Optimism under
uncertainty, Thompson sampling.



Structured Bandits

® In problems with large number of arms, learning about each arm
separately is inefficient.

® Can the rewards for arms depend on each other?

¢ Contextual bandits: Each arm j has a feature vector x; and
there exists an unknown vector 8* such that

E[reward for arm j] = m(x;, 6*)

¢ Linear bandits: The function m is linear = m(x,0) = (x,0).

e Combinatorial bandits: The chosen arms are required to satisfy
a combinatorial constraint.
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Influence maximization (IM)

Figure 3: Information diffusion in a social network

® Underlying principle: Influence propagates through
word-of-mouth in a social network.

® Idea: Give discounts to “influential” users who will trigger off
word-of-mouth epidemics.

e Aim: Find the subset of users (seed or source set) that will result
in the maximum number of people becoming aware of the

product.
10



Problem formulation

Figure 4: Modelling the social network for IM

¢ Input: Graph G = (V, &), Influence probabilities p : £ — [0, 1],
Set of feasible seed sets C, Stochastic diffusion model D.

® Formal objective: Find §* € C that maximizes the expected
number of influenced nodes f(-) under the diffusion model D.

S* € argmax (S, p)
Sec
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Practical problems with IM

x IM is not robust to the influence probabilities p.

® |n practice, we do not have knowledge of p and it is difficult to
obtain relevant data to learn from.

x IM is not robust to the choice of the diffusion model.

® In practice, it is not clear how to choose from amongst different
plausible diffusion models.

x Number of parameters to be learned scales with the size of the
network.

® |n practice, this is not scalable to large real-world networks.

< ldea 1: Perform multiple attempts of IM and learn how to
influence through repeated interaction in the bandit framework.

¢ ldea 2: Reparametrize the problem so that the diffusion process
can be learned efficiently.
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Mapping IM to Bandits

¢ Round < IM attempt
e SELECT <« Choose a seed set S.

® OBSERVE < Edge/Node semi-bandit feedback from the
network.

e UPDATE <« Sufficient statistics for estimating the diffusion.

e Cumulative regret: If S; is the chosen seed set, w; summarizes
the diffusion in round t and the offline problem can be solved to
an approximation factor of € (0,1) ,

T

RIT) =Y [f(S*,wt) - 717f(8t,wt)

t=1
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Parametrization

® Assume that the diffusion takes place according to the
Independent Cascade (IC) model.

® Possible to obtain edge semi-bandit feedback
== can observe the state of all directed edges (u, v) for which
the node v is activated in a diffusion.

¢ Linear parametrization for the influence probability of edge e:

p(e) = (xe, 07)

Xe <> Topological features for edge e
0* < Unknown parameter mapping x. to its corresponding p(e).

v' Casts the IM bandits problem into the linear bandit framework

v" Number of parameters to be learned is independent of the
network size.
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Contributions

¢ Propose a scalable upper confidence bound-based algorithm.

¢ Identify a topology-dependent complexity metric C, and use it to
prove an upper bound on the regret.

Assuming that the offline IM problem can be solved to within an
n-approximation factor, then

E[R(T)] < O (d- Cv/m-VT/(n))

v" Near-optimal dependence on T, d.
v First topology-dependent upper bounds on the regret.
< Experimentally verify the tightness of the theoretical bounds.

¢ Show the advantage of linear parametrization on a real dataset.
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Contributions - Parametrization

¢ Define pairwise reachability probabilities q,,, = f({u}, v) and
maximal pairwise reachability as f(S, v, q) = maxues qu,v-

® Formulate a surrogate objective: f(S,q) =) ), f(S,v,q).

v" Model independence: Depends only on the state after the
diffusion has occurred and not on the nature of the diffusion
process.

v" Optimization: Function (S, q) is monotone and submodular in
S regardless of the diffusion model.

v" Guaranteed approximation: If the original objective f(S) is
monotone and submodular in S, then the surrogate approximation
factor p € [1/K, 1].
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Contributions - Formulation

o Propose pairwise reachability feedback: Can observe whether each
node v € V was influenced by each source node u € S.

o Linear parametrization of pairwise reachability probabilities:

Qu,y = <XV7 03>

X, €4 Topological features for the node v.
07 <+ Learnable parameter modelling the influence of node u.

v Casts model-independent IM bandits as n independent
linear-bandit problems.

v Amount of feedback (O(K - n)) is of the same order as the
number of parameters (O(d - n)) to be learned.
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Contributions - Analysis

© Propose an upper confidence bound-based algorithm for which
the regret can be bounded as follows:

Assuming that the offline problem can be solved to within an
n-approximation factor, then

E[R(T)] < O(d - n* - VT /(up))

v" Near-optimal dependence on T, d.
v First upper bounds for model-independent IM bandits.



Contributions - Experimental Results
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Figure 5: Comparing DILinUCB and CUCB on the Facebook subgraph with
K =10.
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Problem formulation

® Setup: Newly established recommender system without any user
meta-data or rating information. Have access to the content for
the items to be recommended.

e Common solution: Model the recommendation problem as a
contextual bandit for each user. Learn the users’ preferences
simultaneously while making recommendations.

e Additional structure: Users of the recommender system are part
of an existing social network. E.g: Facebook, Quora.

o ldea: Exploit homophily between connected users using Laplacian
regularization. Share information between users to learn their
preferences faster.
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Mapping to bandits
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Figure 6: Content-based recommendation with a user-user network.

SELECT < Choose item j; to recommend to the target user /.
OBSERVE < Rating rj, j,.

UPDATE < Preference vector estimate 6, ; for user / at round t.
Linear reward model: E[r; ;] = (67, x;)

X <+ item content information; 6* <+ “true” preference vector.

.
E[R(T) = [ max (05, x;) — (0%, Xj.¢) |-

—1 LXj€le
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Contributions

Estimate users’ preferences by solving:

et_argmm[z 5 (@m0 = + 00, (L5 )|

=1 kEM,t

% Previous approach requires O(d?n?) memory and computation.

o ldea: Interpret it as MAP estimation in a Gaussian Markov
Random Field (GMRF) under the generative model:

rij ~ N{0:,%)),0%), 0~ N(©O,(AL® I)7}).

v Posterior = N (f:,X; 1) ; L is a block diagonal + sparse matrix
= Require O (r(nd® + md)) memory and computation.
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Contributions

¢ Use the connection to GMRF and sampling by perturbation in
order to design an efficient Thompson sampling algorithm.

© Prove an upper bound on the regret for Thompson sampling:

With probability 1 — 9,

< (dnVT 3Tr(L-Y)  Tr(L-H)T
E[R(T)}—O< o \/log< L ))

< Prove an analogous regret bound for Epoch-Greedy.

v" Near-optimal dependence on T, dependence on the graph
connectivity.

o Experimental comparison showing that using graph information
leads to lower regret.
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@ Bootstrapping for Bandits
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e Complex non-linear functions are necessary for modelling
structured data such as images or text. Need to resolve the
exploration-exploitation trade-off for these complicated models.

x Can construct only approximate confidence sets in the non-linear
setting

= bad empirical performance of UCB-like algorithms.

x No closed form posteriors for non-linear models
= need computationally-expensive approximate sampling
techniques for Thompson sampling.

x Typically use e-Greedy in practice, but it is sensitive to
hyper-parameter tuning.

¢ ldea: Use bootstrapping to incorporate complex models in the
bandit framework.
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General bootstrapping algorithm for bandits

Algorithm: Bootstrapping for contextual bandits
1: Input: K arms, Model class m
2: Initialize history: Vj € [K], Dj = {}
3: fort=1to T do
Observe context vector x; N
For all j, compute the bootstrap sample 6;

Select arm: jr = arg max;c[x] m(xt, 0;)
Observe reward r;
Update history: Dj, = Dj, U {X¢, r¢}

© N o &

e Computing a bootstrap sample:
® Formulate a bootstrapping log-likelihood function £(6, Z) such
that E; [Z(e, Z)} = £(6).

* Given Z = z, generate a bootstrap sample: 0 € arg maxy £(0, z).
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Bootstrapping for Bandits

v" Requires only point estimates instead of characterizing the entire
posterior distribution.

v Performance is not sensitive to hyper-parameter tuning.

% Popular non-parametric bootstrapping (NPB) procedure has no
theoretical guarantee even in the simple Bernoulli or Gaussian
bandit setting.

x Uses ensembling and other heuristics to approximate the
bootstrapping procedure that requires tuning additional
hyper-parameters.
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Contributions - Analysis

¢ Prove that the NPB procedure can be provably inefficient in the
Bernoulli MAB setting.

For any v € (0,1) and any T > exp [% exp (%0

bootstrapping can result in

)} , non-parametric

T

E[R(T)] > —;

— Q(T').

o Prove that NPB with appropriate forced exploration (done in
practice) can result in sub-linear though sub-optimal O(T?/3)
regret.



Contributions - Algorithms

o Propose weighted bootstrapping (WB) that involves a random
weighted transformation of the rewards.
® For Bernoulli rewards, WB involves

® Generate exponential weights: Vi € D, w; ~ Exp(1).
® Transform labels: y; :— w; - y; and (1 — y;) :—= w; - (1 — yi).
—> Bootstrapping log-likelihood: L(#) = Ziepj w; - £;(0)
v Easy and computationally efficient to implement.

v Results in near-optimal regret bounds in the Bernoulli and
Gaussian MAB setting.
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Contributions - Experimental results
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e Summary
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¢ Chapter 2 [VKWGLS, ICML'17], [WKVV, NIPS'17]: Mapped
the influence maximization problem to the linear bandit
framework.

e Chapter 3 [VLS, AISTATS'17]: Mapped content-based
recommendation in the presence of a network to a graph-based
contextual bandit framework.

¢ Chapter 4 [VKWRSY, Under submission'18]: Investigated
bootstrapping to model complex non-linear functions in the
bandits framework.

e Other work not included in this thesis:

® Fast and Faster Convergence of SGD for Over-Parametrized
Models and an Accelerated Perceptron [VBS, Under submission'18]

® Combining Bayesian Optimization and Lipschitz Optimization
[AVS, Under submission'18]
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