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Motivating Example: Clinical Trials

Figure 1: Clinical trial to infer the “best” drug.

• Do not have complete information about the effectiveness or
side-effects of the drugs.

• Aim: Infer the “best” drug by running a sequence of trials.
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Abstraction to Multi-armed Bandits

Figure 2: Mapping a clinical trial to the multi-armed bandit framework.

• Each drug choice is mapped to an arm and the drug’s
effectiveness is mapped to the arm’s reward.

• Administering a drug is an action that is equivalent to pulling the
corresponding arm.

• The trial goes on for T rounds.
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Bandits 101

Algorithm: Generic Bandit Framework (K arms, T rounds)

1 Initialize the expected rewards according to some prior knowledge.
2 for t = 1→ T do
3 SELECT: Use a bandit algorithm to decide which arm(s) to pull.
4 OBSERVE: Pull the selected arm(s) and observe the reward and

associated feedback.
5 UPDATE: Update the estimated reward for the arm(s).

• How do we model the reward of an arm? What is the “best” arm?

• Stochastic and stationarity assumptions: The reward for each
arm is sampled i.i.d from its underlying stationary distribution.
The best arm is the one with the highest expected reward.
=⇒ UPDATE step involves computing the empirical mean of

the past observations.

• Multi-armed bandits assumption: The reward for each arm is
independent of the others.
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Bandits 101

• What is the objective function?

• Minimize the expected cumulative regret E[R(T )]. If a∗ is the
best action in hindsight and at is the action chosen at round t,
then

E[R(T )] =
T∑
t=1

[E[Reward for a∗]− E[Reward for at ]]

• Minimizing R(T ) results in a exploration-exploitation trade-off:
Exploration: Pull an arm to learn more about it.
Exploitation: Pull the arm that has a higher empirical reward.

• Common bandit algorithms: Epoch-Greedy, Optimism under
uncertainty, Thompson sampling.
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Structured Bandits

• In problems with large number of arms, learning about each arm
separately is inefficient.

• Can the rewards for arms depend on each other?

• Contextual bandits: Each arm j has a feature vector xj and
there exists an unknown vector θ∗ such that

E[reward for arm j ] = m(xj , θ
∗)

• Linear bandits: The function m is linear =⇒ m(x, θ) = 〈x, θ〉.
• Combinatorial bandits: The chosen arms are required to satisfy

a combinatorial constraint.

8



Outline

1 Introduction

2 Influence Maximization
IM bandits under the IC model
Model-independent IM Bandits

3 Content-based Recommendation

4 Bootstrapping for Bandits

5 Summary

9



Influence maximization (IM)

Figure 3: Information diffusion in a social network

• Underlying principle: Influence propagates through
word-of-mouth in a social network.

• Idea: Give discounts to “influential” users who will trigger off
word-of-mouth epidemics.

• Aim: Find the subset of users (seed or source set) that will result
in the maximum number of people becoming aware of the
product.
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Problem formulation

Figure 4: Modelling the social network for IM

• Input: Graph G = (V, E), Influence probabilities p : E → [0, 1],
Set of feasible seed sets C, Stochastic diffusion model D.

• Formal objective: Find S∗ ∈ C that maximizes the expected
number of influenced nodes f (·) under the diffusion model D.

S∗ ∈ arg max
S∈C

f (S, p)
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Practical problems with IM

× IM is not robust to the influence probabilities p.

• In practice, we do not have knowledge of p and it is difficult to
obtain relevant data to learn from.

× IM is not robust to the choice of the diffusion model.

• In practice, it is not clear how to choose from amongst different
plausible diffusion models.

× Number of parameters to be learned scales with the size of the
network.

• In practice, this is not scalable to large real-world networks.

� Idea 1: Perform multiple attempts of IM and learn how to
influence through repeated interaction in the bandit framework.

� Idea 2: Reparametrize the problem so that the diffusion process
can be learned efficiently.
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Mapping IM to Bandits

• Round ↔ IM attempt

• SELECT ↔ Choose a seed set S.

• OBSERVE ↔ Edge/Node semi-bandit feedback from the
network.

• UPDATE ↔ Sufficient statistics for estimating the diffusion.

• Cumulative regret: If St is the chosen seed set, wt summarizes
the diffusion in round t and the offline problem can be solved to
an approximation factor of η ∈ (0, 1) ,

Rη(T ) =
T∑
t=1

[
f (S∗,wt)−

1

η
f (St ,wt)

]
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Parametrization

• Assume that the diffusion takes place according to the
Independent Cascade (IC) model.

• Possible to obtain edge semi-bandit feedback
=⇒ can observe the state of all directed edges (u, v) for which

the node u is activated in a diffusion.

� Linear parametrization for the influence probability of edge e:

p(e) ≈ 〈xe , θ∗〉

xe ↔ Topological features for edge e
θ∗ ↔ Unknown parameter mapping xe to its corresponding p(e).

X Casts the IM bandits problem into the linear bandit framework

X Number of parameters to be learned is independent of the
network size.
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Contributions

� Propose a scalable upper confidence bound-based algorithm.

� Identify a topology-dependent complexity metric C∗ and use it to
prove an upper bound on the regret.

Theorem

Assuming that the offline IM problem can be solved to within an
η-approximation factor, then

E[R(T )] ≤ Õ
(
d · C∗

√
m ·
√
T/(η)

)
X Near-optimal dependence on T , d .

X First topology-dependent upper bounds on the regret.

� Experimentally verify the tightness of the theoretical bounds.

� Show the advantage of linear parametrization on a real dataset.
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Contributions - Parametrization

• Define pairwise reachability probabilities qu,v = f ({u}, v) and

maximal pairwise reachability as f̃ (S, v , q) = maxu∈S qu,v .

• Formulate a surrogate objective: f̃ (S, q) =
∑

v∈V f̃ (S, v , q).

X Model independence: Depends only on the state after the
diffusion has occurred and not on the nature of the diffusion
process.

X Optimization: Function f̃ (S, q) is monotone and submodular in
S regardless of the diffusion model.

X Guaranteed approximation: If the original objective f (S) is
monotone and submodular in S, then the surrogate approximation
factor ρ ∈ [1/K , 1].
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Contributions - Formulation

� Propose pairwise reachability feedback: Can observe whether each
node v ∈ V was influenced by each source node u ∈ S.

� Linear parametrization of pairwise reachability probabilities:

qu,v ≈ 〈xv , θ∗u〉

xv ∈↔ Topological features for the node v .
θ∗u ↔ Learnable parameter modelling the influence of node u.

X Casts model-independent IM bandits as n independent
linear-bandit problems.

X Amount of feedback (O(K · n)) is of the same order as the
number of parameters (O(d · n)) to be learned.
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Contributions - Analysis

� Propose an upper confidence bound-based algorithm for which
the regret can be bounded as follows:

Theorem

Assuming that the offline problem can be solved to within an
η-approximation factor, then

E[R(T )] ≤ Õ(d · n2 ·
√
T/(ηρ))

X Near-optimal dependence on T , d .

X First upper bounds for model-independent IM bandits.
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Contributions - Experimental Results
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Figure 5: Comparing DILinUCB and CUCB on the Facebook subgraph with
K = 10.
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Problem formulation

• Setup: Newly established recommender system without any user
meta-data or rating information. Have access to the content for
the items to be recommended.

• Common solution: Model the recommendation problem as a
contextual bandit for each user. Learn the users’ preferences
simultaneously while making recommendations.

• Additional structure: Users of the recommender system are part
of an existing social network. E.g: Facebook, Quora.

� Idea: Exploit homophily between connected users using Laplacian
regularization. Share information between users to learn their
preferences faster.
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Mapping to bandits

Figure 6: Content-based recommendation with a user-user network.

• SELECT ↔ Choose item jt to recommend to the target user it .
• OBSERVE ↔ Rating rit ,jt .
• UPDATE ↔ Preference vector estimate θi ,t for user i at round t.
• Linear reward model: E[ri ,j ] = 〈θ∗i , xj〉

x↔ item content information; θ∗ ↔ “true” preference vector.

E[R(T )] =
T∑
t=1

[
max
xj∈Ct

〈θ∗it , xj〉 − 〈θ
∗
it , xjt ,t〉

]
.
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Contributions

Estimate users’ preferences by solving:

θt = arg min
θ

[ n∑
i=1

∑
k∈Mi,t

(〈θi , xk〉 − ri ,k)2 + λ〈θ, (L⊗ Id)θ〉
]
,

× Previous approach requires O(d2n2) memory and computation.

� Idea: Interpret it as MAP estimation in a Gaussian Markov
Random Field (GMRF) under the generative model:

ri ,j ∼ N (〈θi , xj〉, σ2), θ ∼ N (0, (λL⊗ Id)−1).

X Posterior = N (θt ,Σ
−1
t ) ; Σt is a block diagonal + sparse matrix

=⇒ Require O
(
κ(nd2 + md)

)
memory and computation.
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Contributions

� Use the connection to GMRF and sampling by perturbation in
order to design an efficient Thompson sampling algorithm.

� Prove an upper bound on the regret for Thompson sampling:

Theorem

With probability 1− δ,

E[R(T )] = Õ

(
dn
√
T√
λ

√
log

(
3 Tr(L−1)

n
+

Tr(L−1)T

λdn2σ2

))

� Prove an analogous regret bound for Epoch-Greedy.

X Near-optimal dependence on T , dependence on the graph
connectivity.

� Experimental comparison showing that using graph information
leads to lower regret.
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Motivation

• Complex non-linear functions are necessary for modelling
structured data such as images or text. Need to resolve the
exploration-exploitation trade-off for these complicated models.

× Can construct only approximate confidence sets in the non-linear
setting
=⇒ bad empirical performance of UCB-like algorithms.

× No closed form posteriors for non-linear models
=⇒ need computationally-expensive approximate sampling

techniques for Thompson sampling.

× Typically use ε-Greedy in practice, but it is sensitive to
hyper-parameter tuning.

� Idea: Use bootstrapping to incorporate complex models in the
bandit framework.
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General bootstrapping algorithm for bandits

Algorithm: Bootstrapping for contextual bandits

1: Input: K arms, Model class m
2: Initialize history: ∀j ∈ [K ], Dj = {}
3: for t = 1 to T do
4: Observe context vector xt
5: For all j , compute the bootstrap sample θ̃j
6: Select arm: jt = arg maxj∈[K ]m(xt , θ̃j)
7: Observe reward rt
8: Update history: Djt = Djt ∪ {xt , rt}

• Computing a bootstrap sample:
• Formulate a bootstrapping log-likelihood function L̃(θ,Z ) such

that EZ

[
L̃(θ,Z )

]
= L(θ).

• Given Z = z , generate a bootstrap sample: θ̃ ∈ arg maxθ L̃(θ, z).
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Bootstrapping for Bandits

X Requires only point estimates instead of characterizing the entire
posterior distribution.

X Performance is not sensitive to hyper-parameter tuning.

× Popular non-parametric bootstrapping (NPB) procedure has no
theoretical guarantee even in the simple Bernoulli or Gaussian
bandit setting.

× Uses ensembling and other heuristics to approximate the
bootstrapping procedure that requires tuning additional
hyper-parameters.
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Contributions - Analysis

� Prove that the NPB procedure can be provably inefficient in the
Bernoulli MAB setting.

Theorem

For any γ ∈ (0, 1) and any T ≥ exp
[
2
γ exp

(
80
γ

)]
, non-parametric

bootstrapping can result in

E[R(T )] >
T 1−γ

32
= Ω(T 1−γ).

� Prove that NPB with appropriate forced exploration (done in
practice) can result in sub-linear though sub-optimal O(T 2/3)
regret.
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Contributions - Algorithms

� Propose weighted bootstrapping (WB) that involves a random
weighted transformation of the rewards.

• For Bernoulli rewards, WB involves
• Generate exponential weights: ∀i ∈ D, wi ∼ Exp(1).
• Transform labels: yi :→ wi · yi and (1− yi ) :→ wi · (1− yi ).

=⇒ Bootstrapping log-likelihood: L̃(θ) =
∑

i∈Dj
wi · `i (θ)

X Easy and computationally efficient to implement.

X Results in near-optimal regret bounds in the Bernoulli and
Gaussian MAB setting.
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Contributions - Experimental results
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Summary

• Chapter 2 [VKWGLS, ICML’17], [WKVV, NIPS’17]: Mapped
the influence maximization problem to the linear bandit
framework.

• Chapter 3 [VLS, AISTATS’17]: Mapped content-based
recommendation in the presence of a network to a graph-based
contextual bandit framework.

• Chapter 4 [VKWRSY, Under submission’18]: Investigated
bootstrapping to model complex non-linear functions in the
bandits framework.

• Other work not included in this thesis:
• Fast and Faster Convergence of SGD for Over-Parametrized

Models and an Accelerated Perceptron [VBS, Under submission’18]
• Combining Bayesian Optimization and Lipschitz Optimization

[AVS, Under submission’18]
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