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Abstract

Inverse optimization involves inferring unknown parameters of an optimization problem
from known solutions and is widely used in fields such as transportation, power systems,
and healthcare. We study the contextual inverse optimization setting that utilizes additional
contextual information to better predict the unknown problem parameters. We focus on
contextual inverse linear programming (CILP), addressing the challenges posed by the non-
differentiable nature of LPs. For a linear prediction model, we reduce CILP to a convex
feasibility problem, allowing the use of standard algorithms such as alternating projections.
The resulting algorithm for CILP is equipped with a linear convergence guarantee without
additional assumptions such as degeneracy or interpolation. Next, we reduce CILP to empirical
risk minimization (ERM) on a smooth, convex loss that satisfies the Polyak-Lojasiewicz
condition. This reduction enables the use of scalable first-order optimization methods to solve
large non-convex problems while maintaining theoretical guarantees in the convex setting.
Subsequently, we use the reduction to ERM to quantify the generalization performance of
the proposed algorithm on previously unseen instances. Finally, we experimentally validate
our approach on synthetic and real-world problems, and demonstrate improved performance
compared to existing methods.
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Chapter 1

Introduction and Related works

1.1 Introduction

Inverse optimization [Heuberger, 2004] is the reverse of standard optimization and uses
a known output (decision) of an optimization problem to infer the unknown problem
parameters. For example, in the context of linear programming (LP), inverse optimization
uses the optimal solutions to the LP in order to learn the coefficients (costs) that can produce
these solutions. Inverse optimization has found applications in transportation [Bertsimas
et al., 2015], power systems [Birge et al., 2017] and healthcare [Chan et al., 2022] (refer
to Chan et al. [2023] for a recent survey).

We focus on integrating additional contextual information into the inverse optimization
framework. In particular, we leverage historical data and a machine learning (ML) model to
predict the (unknown) optimization problem parameters that can render (known) optimal de-
cisions. This setting is commonly referred to as contextual inverse optimization (CIO) [Besbes
et al., 2023, Sun et al., 2023] or data-driven inverse optimization [Mohajerin Esfahani et al.,
2018]. CIO requires a combination of prediction and optimization and has found applications
in optimal transport and vehicle routing [Li et al., 2022], financial modeling [Cornuejols
and Tütüncü, 2006], power systems [Bansal, 2005, Li et al., 2018], healthcare [Angalakudati
et al., 2014], circuit design [Boyd et al., 2001], robotics [Raja and Pugazhenthi, 2012]. Some
use-cases for CIO are as follows.

Example 1 : Energy-cost aware scheduling [Wahdany et al., 2023], which involves using
weather data to forecast wind-energy generation and hence energy prices (prediction). These
predictions can be used to schedule jobs (optimization) to minimize energy costs. For the
CIO, the contextual information corresponds to weather data, and the solutions (decisions)
correspond to past schedules.

Example 2 : Shortest path planning [Guyomarch, 2017], which involves predicting the
time taken through different routes or terrain (prediction). These predictions can be used to
determine the shortest path between two locations (optimization). For CIO, the contextual
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Figure 1.1: CIO framework: model fθ takes input z and predicts the cost vector c = fθ(z).
This cost vector is the input of an optimization procedure that outputs decision x(c). Given
the optimal decision x∗, the objective is to learn the model parameters such that the predicted
decision x(c) is close to the optimal decision. To train the model in an end-to-end fashion,
the key challenge is to compute the gradient of c w.r.t decision x(c) (shown in red in the
figure).

information corresponds to images or features of the terrain, and the decisions correspond to
known shortest paths for pairs of locations. Refer to Fig. C.4 for a sample from the dataset.

Example 3 : Inverse reinforcement learning (IRL) [Ng et al., 2000], which involves learning
the underlying reward function in a Markov decision process (MDP) from the observed
behaviour of a human expert. The learned reward function can be used to infer a good
policy for an artificial agent. Assuming that the human expert acts in order to maximize
the implicit reward functions, for the CIO, the context corresponds to features of the MDP,
and decisions correspond to the observed expert behaviour.

Example 4 : In rational choice theory, a common way to model agents (e.g. users interacting
with a recommendation system) is to assume that the (i) agent is rational and is making
decisions to optimize some unknown implicit utility function and that (ii) the form (but
not the parameters) of this utility function is known (e.g. whether it is linear or concave).
For recommendation systems, the user’s demographics and other metadata correspond
to the context. In CIO, this context is used to predict the unknown parameters of the
utility function, such that when it is maximized, it can explain the users’ past purchases
(corresponding to the known decisions) [Wilder et al., 2019]. The estimated utility function
can then be used to make better recommendations.

Since numerous combinatorial problems, including shortest path, max-flow, and perfect
matching, can be cast as linear programs, we will mainly focus on cases where the optimization
problem is a Linear Program (LP) (in Section 2.3.4, we briefly consider more general non-
linear problems). The examples of CIO presented earlier fall within the LP framework. For
LPs, the key challenge of contextual inverse linear programming (CILP) lies in the non-

2



Figure 1.2: Warcraft SP dataset sample; Left: The input (refers to context z) image; Center:
ground truth shortest path (refers to x∗); Right: the ground truth vertex weights (a valid
c∗ that retrieves the same x∗). The task is to learn the edge weights to retrieve the same
shortest path.

differentiable nature of LPs. This limitation precludes the direct use of auto-differentiation
techniques.

1.2 Thesis Contributions

To overcome the problem, we make the following contributions.
Contribution 1: For a linear prediction model, we reduce CILP to a convex feasi-

bility problem (Section 2.3). This reduction enables the use of standard algorithms such
as alternating projections. Unlike existing work [Sun et al., 2023], the resulting method
(Algorithm 1) guarantees linear convergence to the solution without additional assumptions
such as degeneracy or interpolation.

Contribution 2: To efficiently handle large-scale problems, we reduce the feasibility
problem (and hence CILP) to empirical risk minimization (ERM) on a smooth, convex
loss function satisfying the Polyak-Łojasiewicz condition [Polyak, 1964] (Chapter 3). This
reduction allows us to employ scalable first-order optimization methods while retaining
strong theoretical guarantees.

Contribution 3: In Section 4.1, we discuss the shortcomings of the previous measures
of performance for CILP, and propose a new sub-optimality metric. Subsequently, we use
the reduction to ERM to quantify the performance of the proposed algorithm on previously
unseen instances.

Contribution 4: In Chapter 5, we validate the effectiveness of our approach with
experiments on synthetic shortest path and fractional knapsack problems [Sun et al., 2023],
and real-world Warcraft shortest path and MNIST perfect matching tasks [Vlastelica et al.,

3



2019]. Our empirical results demonstrate that the proposed algorithm results in improved
performance compared to the prior work.

1.3 Related Work

In this section, we review the related works, contrasting them with our proposed approach.
Inverse Optimization: Iyengar and Kang [2005], uses the Karush–Kuhn–Tucker (KKT)

optimality conditions for the LP to define the feasible set of cost vectors. Similarly, Mo-
hajerin Esfahani et al. [2018], uses the Wasserstein metric to find a set of robust cost
vectors by formulating an inverse optimization problem. However, they do not consider
the contextual setting, so no learning is required. In contrast, we use the KKT conditions
to train a prediction model, mapping contextual information to optimal decisions. More
recently, Besbes et al. [2023] consider solving CIO in both the online and offline settings.
Their offline setting is similar to our problem formulation, but does not make any linearity
or convexity assumptions. They derive bounds on the worst-case suboptimality for a specific
mapping from features to cost vectors. However, it is unclear whether this mapping can
be efficiently computed even in the special case of LPs. Furthermore, Besbes et al. [2023]
assume realizability i.e. there is no noise in the decisions and the model can perfectly fit
(interpolate) the data. This further limits the practical utility of their framework. In contrast,
we make no realizability assumptions and develop efficient algorithms for CILP.

Using the reduced cost optimality condition: Sun et al. [2023] proposed a method
to use the reduced cost optimality conditions Luenberger et al. [1984] for LPs. The method
constructs a surrogate loss function that encourages the prediction to satisfy the reduced
cost optimality conditions. The resulting method has theoretical convergence guarantees,
assuming that the LPs are non-degenerate and that the model can interpolate the training
data. Both of these are strong assumptions and are not necessarily satisfied in practice. In
contrast, we use the KKT conditions that are equivalent to the reduced cost optimality
conditions for non-degenerate LPs (see Section B.2 for proof). Since the KKT conditions can
also be used for degenerate LPs, our proposed framework provides theoretical guarantees
without relying on this assumption. Moreover, our guarantees hold even without assuming
interpolation.

Differentiating through LPs: Vlastelica et al. [2019] estimate the gradient “through”
the LP by calculating the change in the decision by perturbing the prediction. However,
it introduces additional hyper-parameters that are non-trivial to tune. Another common
technique is to use the straight-through-estimator (ST) [Sahoo et al., 2022]. Given a set of
predictions from the model, the ST method uses the LP to estimate the decisions. However,
it does not consider the LP (treats the corresponding Jacobian as an identity matrix) while
back-propagating the gradient from the decisions to the model parameters. Though successful
in practice, this method is not theoretically principled. Moreover, the method in [Tan et al.,
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2020] attempts to learn linear programs from optimal decisions. However, for the setting
considered in this work, the gradient updates for this method are equivalent to that of the ST
method. The method in Berthet et al. [2020] computes expected gradients by perturbing the
prediction target in different directions. While this method accurately models the gradient,
it is not practically feasible because of the computational cost of solving LPs multiple times
for each update to the model. One advantage of these techniques is their “black-box” nature,
meaning that they only rely on the outputs from an LP, thus allowing the use of faster
problem-specific solvers. In contrast, our work leverages LP properties (and some other
problems described in Section 2.3.4), allowing us to develop a more efficient and principled
approach.

Implicit Differentiation: The methods in [Amos and Kolter, 2017, Amos, 2019] focuses
on (strongly)-convex optimization problems. It calculates the gradient through such problems
by differentiating through its optimality (KKT) conditions. However, since the solutions of
LPs are located at the corners of the feasible polytope, this method will yield zero gradients
for LPs. To address this, QPTL [Wilder et al., 2019] add a quadratic regularization to the
LP, thus relaxing the problem to a non-linear strongly-convex quadratic program (QP) and
then use the technique in Amos and Kolter [2017]. Similarly, Cameron et al. [2022] relax
Mixed Integer Programs (MIP) by using a log-barrier regularization followed by the use
of the techniques in Amos and Kolter [2017]. These approaches suffer from two notable
limitations: (i) they introduce additional hyper-parameters (the regularization strength),
and (ii) they are only guaranteed to converge in the vicinity of the optimal solution (because
of the bias introduced by the regularization). While our proposed framework also uses KKT
conditions, it ensures convergence to the optimal solution without introducing additional
hyper-parameters.

Predict and Optimize: The CIO problem is related to the predict and optimize (PO)
framework [Elmachtoub and Grigas, 2022]. In contrast to the CIO, PO requires the knowledge
of ground-truth costs. Our work does not assume access to this additional information, but
we note that the proposed algorithms can be directly used in the PO setting.

In the next chapter, we formally formulate the problem and highlight the technical
challenges.

5



Chapter 2

Problem Formulation and
Reduction to Feasibility

2.1 Problem Formulation

We consider the optimization procedure to be a linear program (LP). Without loss of
generality, we assume the standard form of the LP and define x̂(c) as the solution to the LP
with cost-vector c ∈ Rm,

x̂(c) := arg min
x

⟨c, x⟩ s.t Ax = b, x ≥ 0 ,

where A ∈ Rn×m and b ∈ Rn. The CILP problem consists of a training dataset D = {zi, x
∗
i }N

i=1
where zi ∈ R1×d is the input (Z ∈ RN×d is the corresponding feature matrix) and x∗

i ∈ Rm

is the corresponding optimal decision. We assume that the LP parameters (A, b) encoding
the constraints are known, whereas the cost vector c is unknown and will be predicted using
the data.

Example: In the context of the shortest path problem (Example 2 in Section 1.1), consider
an arbitrary x, c ∈ Rm; for all j ∈ [m], x∗

j ∈ {0, 1} variables denote whether an edge is
included in the shortest path and the weight of each edge is represented by the cost cj . To
ensure a valid path from the start vertex s to the target vertex t, the “flow” constraints are
encoded via A and b. These constraints ensure that every vertex, except s and t, maintains
an equal number of incoming and outgoing edges. Vertex s is constrained to have exactly
one outgoing edge, and vertex t has precisely one incoming edge.

When using a model fθ with parameters θ to predict the cost-vector, we define x̂(ĉ) as:

x̂(ĉ) := arg min
x

⟨ĉ, x⟩ s.t Ax = b, x ≥ 0, ĉ = fθ(z) .

Given the dataset D and knowledge of (A, b), the CILP objective is to learn θ s.t. x̂(fθ(zi)) ≈
x∗

i for all i ∈ [N ]. During inference, we only have access to input z and we predict x̂(fθ(z)).

6



2.2 Challenge in Gradient Estimation

To gain some intuition as to why the typical end-to-end learning approach via auto-
differentiation Paszke et al. [2019] will not work for CILP, consider using the squared loss
to quantify the discrepancy between x̂(fθ(zi)) and x∗

i , i.e. ℓ(θ) := 1
2
∑N

i=1 ∥x̂(fθ(zi)) − x∗
i ∥2.

Using the chain rule to compute the gradient with respect to θ, we get that ∂l
∂θ = ∂l

∂x
∂x
∂c

∂c
∂θ .

The first and last terms can be easily calculated. However, for an LP, the decision x is
piece-wise constant with respect to c, and ∂x

∂c is either 0 or undefined.
Consequently, in the next section, we aim to develop an algorithm that does not rely on

directly calculating ∂x
∂c .

2.3 Reduction to Convex Feasibility

For a linear model, we reduce the CILP problem to convex set feasibility (Section 2.3.1).
In Section 2.3.2, we use alternating projections onto convex sets (POCS) to solve the
feasibility problem and completely instantiate Algorithm 1. In Section 2.3.3, we describe
some practical considerations when using Algorithm 1. In Section 2.3.4, we describe how to
extend these ideas to handle non-linear but convex objectives and constraints.

2.3.1 Reduction

Recall that for an input (z, x∗) ∈ D, we aim to find a c such that x̂(c) = x∗. However, due to
the non-uniqueness of the mapping from x to c, there are potentially infinitely many values
of c that can yield x∗. We define C to represent the set encompassing all such values of c. The
set C can be represented by exploiting the optimality conditions for the LP. KKT conditions
[Kuhn and Tucker, 1951] give necessary and sufficient conditions for the optimality of the LP.
If x∗ is the solution to the standard LP, then the KKT conditions can be written as follows:

νTA+ λ− c = 0 , x∗ · λ = 0 , λ ≥ 0 , Ax∗ = b , x∗ ≥ 0

where λ ∈ Rm
+ , ν ∈ Rn are the dual variables, x∗

iλi = 0 (for all i) represents the complementary
slackness condition and Ax∗ = b, x∗ ≥ 0 represents the feasibility of x∗. At optimality, there
exist dual variables (λ, ν) such that the tuple (x∗, λ, ν, c) satisfies the KKT conditions.

Since the KKT optimality conditions are both necessary and sufficient, given an optimal
solution x∗, we can identify the set of cost vectors c that satisfy these conditions. This
enables us to define the convex set C as:

C = {c | ∃λ, ν s.t. νTA+ λ− c = 0,

x∗ · λ = 0, λ ≥ 0} (2.1)

7



Figure 2.1: Projection onto Convex Sets (POCS) algorithm. The figure is taken from Rzepka
et al. [2018]. POCS alternatively projects a point onto the two sets. Consider a point u0; its
projection on the first set is v0. Then, the projection of point v0 is u1 on the second set. By
repeating the projection steps, POCS converges to û.

Note that we omit the condition Ax∗ = b, x∗ ≥ 0 as it is satisfied by definition for the
optimal solution x∗. For any λ, ν, the set C is affine and hence convex in c.

We define F as the set of cost vectors that are realizable by the linear model parameterized
by θ ∈ Rd×m. Formally, F can be written as:

F = {c |∃θ s.t. c = zθ}. (2.2)

For a linear model, the set F is linear and hence convex in c. The objective of CILP is to
find a c ∈ C (resulting in the optimal solution x∗) and is also realizable by the model, i.e. it
lies in set F . Hence, we aim to find a c that lies in the intersection (C ∩ F ). Therefore, CILP

is equivalent to a convex feasibility problem in this setting.

2.3.2 Algorithm

The commonly employed method for solving convex feasibility problems is the alternating
projections or Projection onto Convex Sets (POCS) algorithm [Von Neumann, 1949, Bauschke
and Borwein, 1996]. The POCS algorithm alternatively projects a point onto the two sets. A
geometrical interpretation is given in Fig. 2.1. The algorithm is guaranteed to converge to
a point in the intersection if the intersection is non-empty; otherwise, it converges to the
closest point between the two sets [Deutsch, 1984, Bauschke and Borwein, 1993]. Moreover,
the rate of convergence is linear in the number of POCS iterations. In order to use the POCS
algorithm for the CILP problem for a single training point, we require the projection of an
arbitrary point q ∈ Rm onto the set C. This corresponds to solving the quadratic program
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(QP) as follows:

PC(q) := arg min
c

||c− q||22

subject to νTA− c+ λ = 0, λ · x∗ = 0, λ ≥ 0 (2.3)

Eq. (2.3) returns a point PC(q), the Euclidean projection of q onto C. For the projection of
a point q onto the set F , we require solving the following regression problem,

θ̂ := arg min
θ

1
2 ||q − zθ||2 ; PF (q) = zθ̂ (2.4)

Eq. (2.4) returns a point PF (q), the Euclidean projection of q onto F . Hence, POCS
consists of alternatively solving the optimization problems in Eq. (2.3) and Eq. (2.4). In

Algorithm 1 for CILP
Input: A, b, Training dataset D ≡ (zi, x

∗
i )N

i=1, Model fθ

Initialize θ1
for t = 1, 2, .., T do

ĉi = fθt(zi), ∀i ∈ [N ]
for i = 1, 2, .., N do

qi = PCi(ĉi) by solving the optimization problem in Eq. (2.3)
end
θt+1 = arg minθ

1
2N

∑N
i=1 ||qi − fθ(zi)||2

end
Output: θT +1

order to extend the above idea to N training points, we will define sets Ci analogous
to Eq. (2.1) for each i ∈ [N ]. We define C := C1 × C2 . . .× CN to be the Cartesian product
of these sets. Hence, C consists of concatenated vectors (c1, c2, . . . , cN ) ∈ RNm where ci ∈ Ci.
Similarly, we define F := {(c1, c2, . . . , cN )|∃θ s.t. ∀i ∈ [N ] , ci = ziθ}. Hence, the projection
onto C corresponds to solving the QP in Eq. (2.3) for every point i ∈ [N ]. Projecting an
arbitrary point q̃ = (q̃1, q̃2, . . . , q̃N ) ∈ RNm onto F involves solving the regression problem,
θ̂ := arg minθ

1
2N

∑N
i=1 ∥q̃i − ziθ∥2. Since the Cartesian product of sets is convex, both C and

F are convex and hence the resulting POCS algorithm will converge at a linear rate.
Finally, we note that our algorithmic framework can handle a generic model fθ, though

our theoretical results only hold for a linear model. The complete algorithm for a generic
model fθ is described in Algorithm 1. Next, we describe practical considerations when
implementing the algorithm.

2.3.3 Practical considerations: Margin

Recently, Sun et al. [2023] have noted the benefits of using a margin with the LP optimality
conditions [Luenberger et al., 1984]. In Section B.2, we show how to modify their margin
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formulation for the KKT conditions, resulting in the modified set C below:

C = {c | ∃λ, ν s.t. νTA− c+ λ = 0, λi I{x∗
i ̸= 0} = 0, λi I{x∗

i = 0} ≥ χ} (2.5)

There are two key motivations for adding the margin: (i) it ensures that the algorithm does
not converge to a trivial solution corresponding to c = 0, (ii) it ensures that the algorithm
will converge to the interior (rather than the boundary) of C making it more robust to
perturbations and improving the algorithm’s generalization performance [El Balghiti et al.,
2019] to previously unseen instances. We note that our framework and the resulting algorithm
is not limited to LPs. Next, we describe how to extend these ideas to handle non-linear but
convex objectives and constraints.

2.3.4 Handling non-linear optimization problems

Similar to the linear case, the KKT optimality conditions can be used to derive a convex set
C for a class of non-linear convex objectives and constraints [Iyengar and Kang, 2005]. As
an example, we instantiate C for a specific quadratic program (QP) below and defer the
general case to Chapter B.

x̂(c) := arg min
x≥0

−⟨c, x⟩ + γ

2x
TQx s.t

m∑
i=1

xi = 1 (2.6)

Example: For the portfolio optimization problem [Fabozzi et al., 2008] common in econo-
metrics, xj and cj in Eq. (2.6) represent the fraction of investment and the expected return
for stock j ∈ [m] respectively. The matrix Q ∈ Rm×m represents the risk associated with
selecting similar stocks, and γ is the given risk tolerance. The task is to maximize the
return while minimizing the risk, subject to simplex constraints. Given historical data and
a model that can be used to predict the expected return and risk matrix, and the “best”
portfolios in hindsight, the CIO problem is to infer the model parameters. In this case,
the convex set C consisting of χ := {c∗, Q∗} that satisfy the KKT conditions of the QP
is given as: C = {c,Q | ∃λ, ν s.t. ν1m + λ + c − γ

2 (Q + QT )x∗ = 0, x∗ · λ = 0, λ ≥ 0}
where λ ∈ Rm

+ , ν ∈ R1, 1m = (1, 1, . . . , 1). The set C is linear and therefore convex in
{c,Q}. Consequently, when using a linear prediction model, the inverse problem for portfolio
optimization can also be reduced to convex feasibility.

For a general non-linear convex objective ϕ(x, ω) where ω represents a general cost
vector, set C is convex in ω if ∂ϕ(x,ω)

∂x |x=x∗ , the derivative of the objective function ϕ w.r.t
x evaluated at x∗ is convex in ω. For instance, this condition also applies to semi-definite
programs. Finally, we note that our framework is not limited to linear constraints, and can
easily handle non-linear convex constraints. Please refer to Section B.1 for the derivation.
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2.3.5 Challenges for solving large-scale problems

The POCS approach described above requires computing the exact projection of point
q onto the set F . For high-dimensional problems, computing these exact projections is
computationally expensive. Moreover, for non-linear models such as neural networks, F is
non-convex and the resulting projection is ill-defined. Additionally, computing the exact
projection requires iterating through the entire dataset of N points, which can be prohibitive
for large datasets typical in practice.

Consequently, in the next chapter, we reduce the problem to empirical risk minimization
on an appropriate smooth, convex loss satisfying the PL condition. This reduction enables
the use of computationally efficient (stochastic) first-order optimization algorithms common
in the machine learning literature.
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Chapter 3

Reduction to Empirical Risk
Minimization

For a linear model, in Section 3.1, we reduce the feasibility problem to empirical risk
minimization (ERM) on an appropriate smooth, convex loss satisfying the PL condition
and prove that the preconditioned gradient method (with a specific preconditioner) on this
loss is equivalent to the POCS approach of Algorithm 1. Subsequently, in Section 3.3, we
consider using computationally efficient (stochastic) first-order methods for minimizing the
loss functions.

3.1 Reduction

We define the loss function h(θ) as follows:

h(θ) := 1
2N

N∑
i=1

min
qi∈Ci

∥fθ(zi) − qi∥2 , (3.1)

where Ci represents the set of feasible cost vectors (defined in Eq. (2.1)) for data-point i.
Hence, h(θ) represents the mean (across the data-points) of squared distances between the
predicted cost vector fθ(zi) and the set Ci. In order to better interpret h(θ), consider a point
cθ = (c1, c2, . . . , cN ) ∈ RNm such that ci = fθ(zi). Hence, h(θ) = d2(cθ,C)

N where d2(w,W) is
the squared Euclidean distance of point w to the set W. Since cθ ∈ F , minimizing h(θ) is
related to minimizing the distance between the sets F and C. Formally, in Proposition 3.1.1
(proved in Section B.4), we can reduce the feasibility problem in Section 2.3 to minimizing
h(θ).

Proposition 3.1.1. Point ĉ := (c1, c2, . . . , cN ) where ci = ziθ̃ and θ̃ ∈ arg min h(θ) lies in
the intersection C ∩ F if it exists, else ĉ ∈ F is the point closest to C.
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3.2 Properties of h(θ)

For a linear model where fθ(z) = zθ, we show that h(θ) has desirable properties that allow
it to be minimized efficiently. In the proposition below, we establish the convexity and
smoothness of h(θ). The smoothness of a function means that its gradients are Lipschitz
continuous and that the function can be upper-bounded by its quadratic approximation.
This is formally defined in Eq. (Smoothness).

Proposition 3.2.1. For a linear model fθ(z) = zθ parameterized by θ ∈ Rd×m, assuming
(without loss of generality) that ∀i, ∥zi∥ ≤ 1, h(θ) is a 1-smooth convex function.

The proof of the above proposition is included in Section B.3. In addition to convexity,
we prove that when using a linear model, h(θ) satisfies the Polyak-Lojasiewicz (PL) inequal-
ity [Polyak, 1964, Karimi et al., 2016]. The PL condition is a gradient domination property
that implies curvature near the minima and entails that every stationary point is a global
minimum. Formally, the PL inequality states that there exists a constant µ > 0 such that
for all θ,

h(θ) − h∗ ≤ 1
2µ ||∇h(θ)||2 , (3.2)

where h∗ is the minimum of h.

Proposition 3.2.2. For a linear model fθ(z) = zθ and assuming (i) (without loss of
generality) that ∀i, ∥zi∥ ≤ 1 and (ii) λmin[ZTZ] > 0, h(θ) is not necessarily strongly-convex

but satisfies the PL inequality with µ = λmin

[∑N

i=1 ziz
⊤
i

N

]
.

We include the proof in Section B.6 and note that such a result showing that square
distance functions to (non)-convex sets is PL was also recently shown in [Garrigos, 2023].
Importantly, we note that convexity coupled with the PL condition implies that the function
satisfies the restricted secant inequality (RSI) [Zhang and Yin, 2013], a stronger condition
than PL but weaker than strong-convexity [Karimi et al., 2016, Theorem 2].

Since we have reduced the CILP to a problem of minimizing a loss function with desirable
properties, we can use computationally efficient techniques like gradient descent and its
stochastic and adaptive variants [Kingma and Ba, 2014, Duchi et al., 2011].

3.3 First-order Methods

We first show that for a linear model, Algorithm 1 is equivalent to the preconditioned gradient
method on h(θ). With Z ∈ RN×d being the feature matrix, the preconditioned gradient
update for minimizing h(θ) at iteration t ∈ [T ] with step-size η and the preconditioner equal
to
[

ZT Z
N

]−1
, is given as:

θt+1 = θt − η [ZTZ]−1 ZT (Zθt − qt) , (3.3)

13



where qt = PC(Zθt) and ∥Zθt − qt∥ is the Euclidean distance to the set C at iteration
t. Consequently, point Zθt+1 is exactly the Euclidean projection of qt onto the set F .
In Section B.5, we prove the following proposition.

Proposition 3.3.1. For a linear model fθ(z) = zθ, the iterates corresponding to the
preconditioned gradient method on h(θ) with η = 1 are identical to Algorithm 1.

We note that for general non-linear models, this connection to POCS and hence Algo-
rithm 1 does not necessarily hold.

Next, we consider minimizing h(θ) using gradient descent (GD) with step-size ηt at
iteration t. This results in the following general update:

θt+1 = θt − ηt

∑N
i=1

∂fθ(zi)
∂θ |θ=θt [fθ(zi) − qi,t]

N
(3.4)

where qi,t = PCi(fθt(zi)) and ∂fθ(zi)
∂θ |θ=θt is the Jacobian of fθ at iterate θt. For a linear

model, this simplifies to:

θt+1 = θt − ηt

N

[
ZT (Zθt − qt)

]
, (3.5)

where qt = PC(Zθt) and ∥Zθt − qt∥ is the Euclidean distance to the set C at iteration t. The
update in Eq. (3.5) can be interpreted as an inexact projection of qt onto F .

If θ̃ ∈ arg minθ h(θ), standard convergence results [Karimi et al., 2016] for smooth,
convex and PL loss functions guarantee that GD, after T iterations, returns θT such
that h(θT ) − h(θ̃) = O(exp(−T )). To illustrate what this convergence rate implies for
the feasibility and consequently the CILP problem, consider the case where C ∩ F is non-
empty. In this case, Proposition 3.1.1 guarantees that h(θ̃) = 0 and hence, using GD with
T = O

(
ln(

√
N/ϵ)

)
iterations is guaranteed to return a point ĉ := (c1, c2, . . . , cN ) ∈ F where

ci = ziθT that is ϵ close to C. Compared to Algorithm 1, we see that GD retains the fast
linear convergence rate to a point in C ∩ F .

GD requires iterating through the entire dataset for each update, which is inefficient
for large datasets. To address this, we use stochastic gradient descent (SGD) [Robbins and
Monro, 1951]. Writing h(θ) = 1

N

∑N
i=1 hi(θ) where hi(θ) = 1

2 minqi∈Ci ∥fθ(zi) − qi∥2, the
SGD update with step-size ηt at iteration t is:

θt+1 = θt − ηt
∂fθ(zit)
∂θ

∣∣∣∣
θ=θt

[fθ(zit) − qit,t] , (3.6)

where it ∈ [N ] is the index of the loss function sampled uniformly at random at iteration t.
For a linear model,

θt+1 = θt − ηt z
T
it

(zitθt − qit,t) , (3.7)
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where qit,t = PCi(zitθt). Similar to GD, the update in Eq. (3.7) can be interpreted as an
inexact projection of qit onto Ci. Compared to GD, which has an O(N) per-iteration cost,
SGD has an O(1) iteration cost, making it preferable for large datasets. However, in general,
SGD has a slower rate of convergence compared to GD. Specifically, when minimizing smooth,
convex functions and PL functions, T iterations of SGD with a decreasing O(1/T ) step-size
is guaranteed to return θT such that E[h(θT )] − h(θ̃) = O(1/T ) [Karimi et al., 2016, Gower
et al., 2021], where the expectation is over the random sampling in each iteration.

If an additional interpolation property is satisfied, SGD with a constant step-size can
match the convergence rate of GD [Ma et al., 2018, Vaswani et al., 2019, Bassily et al., 2018,
Raj and Bach, 2021]. Formally, for convex loss functions, interpolation is satisfied when
θ̃ := arg min h(θ) also simultaneously minimizes each hi, i.e. ||∇hi(θ̃)|| = 0 for all i ∈ [N ].
In the context of the feasibility problem, interpolation is satisfied if fθ̃(zi) ∈ Ci and hence
hi(θ̃) = 0 for all i ∈ [N ]. This implies that the intersection C ∩ F is non-empty and in
this case, SGD with a constant step-size requires T = O

(
ln(

√
N/ϵ)

)
iterations to return a

point ϵ-close to C ∩ F . Notably, the PL condition is not required for convergence; smooth
and convex functions (even without the PL condition) ensure convergence with first-order
methods, though at a slower rate (e.g., O(1/

√
T ) instead of O(1/T ) for SGD).

The above results hold when using a linear model, ensuring convexity in the resulting
function h(θ). Similar guarantees extend to non-parametric techniques like kernel methods,
demonstrating the generality of our results. However, for expressive models such as deep
neural networks, convexity is not necessarily satisfied. In certain regimes of over-parametrized
neural networks, conditions resembling PL or variations thereof are satisfied [Liu et al., 2022,
2023]. In these cases, SGD can still achieve linear convergence [Vaswani et al., 2019, Bassily
et al., 2018], matching the results in the convex case.

The above results are concerned with minimizing the loss on the training dataset. In
the next chapter, we study the generalization performance of SGD on previously unseen
instances sampled from the same distribution.
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Chapter 4

Generalization Guarantees and
Sub-optimality

4.1 Generalization Guarantees

In this section, we use the existing results on algorithmic stability [Bousquet and Elisseeff,
2002, Hardt et al., 2016, Lei and Ying, 2020] to control the generalization error and
subsequently bound the suboptimality for CILP.

We first define the necessary notation and recall the necessary results from the al-
gorithmic stability literature. We define ρ to be the probability measure on the sam-
ple space Y = Z × X ∗, where Z ⊆ Rd and X ∗ ⊆ Rm. We assume that the training
dataset D = {(z1, x

∗
1), · · · , (zN , x

∗
N )}, is drawn independently and identically from ρ. We

define h(θ, (z, x∗)) := 1
2 minq∈C(x∗) ∥fθ(z) − q∥2, where C(x∗) is the set constructed ac-

cording to Eq. (2.1). Furthermore, we denote the population loss for parameter θ as:
ĥ(θ) = E(z,x∗)∼ρ[h(θ, (z, x∗))] where (z, x∗) ∼ ρ implies the sample (z, x∗) is drawn in-
dependently from ρ.s

Based on algorithmic stability, Lei and Ying [2021] prove the following generalization
result for learning with smooth loss functions satisfying the PL condition.

Theorem 4.1.1. (Theorem 1 in [Lei and Ying, 2021]) Let θD denote the output of a
randomized algorithm A when minimizing an L-smooth function h that satisfies PL inequality
with constant µ. Under the condition N ≥ 4L/µ, we have,

E[ĥ(θD) − inf
θ
h(θ)] = O

(E[infθ h(θ)]
Nµ

+E[h(θD) − infθ h(θ)]
µ

)
(4.1)

The expectation in the above theorem is w.r.t the randomness in selecting the training
dataset of size N and w.r.t the stochasticity in the learning algorithm. In our context, since
the randomized algorithm A is SGD, the bound on its generalization is a direct consequence
of Theorem 4.1.1. In particular, since ED[infθ h(θ)] ≤ infθ ED[h(θ)] = infθ ĥ(θ), we can
obtain the following result from Lei and Ying [2021].
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Corollary 4.1.2. (Theorem 6 in [Lei and Ying, 2021]) When minimizing an L-smooth,
µ-RSI function, SGD with step-size ηt = 1

µ(t+1) for all t > 0 has the following guarantee,

E[ĥ(θT )] − inf
θ
ĥ(θ) = O

( 1
Nµ

+ 1
µ2T

)
.

The expectation in the above result is only over the stochasticity in SGD. The LHS
represents the excess risk, while the first term on the RHS decreases as N increases, and the
second term on the RHS represents the average (over D) optimization error that decreases
as T increases.

In the interpolation setting, since the model can fit any training dataset of size N using
SGD, infθ E[h(θ)] = 0. In this case, we obtain the following result from Lei and Ying [2021,
Theorem 7].

Corollary 4.1.3. When minimizing an L-smooth, µ-RSI function and if infθ E[h(θ)] = 0
for any choice of training dataset D of size N , SGD with step-size ηt = η = 1

L for all t > 0
has the following guarantee,

E[ĥ(θT )] = O

(
L(1 − µ

L)T

2µ

)
.

The above result shows that in the interpolation setting, the expected (over the random-
ness in SGD) population loss decreases at a linear rate (depending on T ). Importantly, the
above bound does not depend on N . Intuitively, if h(θ) is smooth and N is large enough s.t.
it satisfies the PL condition with µ > 0, minimizing the loss over a single dataset results in
minimizing the population loss.

The above results bound the population loss ĥ(θ), which serves as a proxy for the decision
quality of SGD. Subsequently, we establish a connection between h(θ) and the suboptimality
in the CIO framework.

4.2 Sub-optimality

In this section, we first argue about the shortcomings of previous definitions of sub-optimality
to measure performance for CILP and then propose a new sub-optimality metric.

Recently, Sun et al. [2023] define the suboptimality gap as Γ1(θ, (z, x∗)) := ⟨cθ, x
∗−x̂(cθ)⟩

where cθ = fθ(z), and prove theoretical guarantees for this loss. We argue that Γ1(z, x∗) is
not the right metric as the predicted cθ can be made arbitrarily small, resulting in smaller
values of Γ1(z, x∗) without ensuring that x∗ ≈ x̂(cθ). On the other hand, work in predict-
and-optimize [Elmachtoub and Grigas, 2022] assumes access to the ground-truth cost-vector
c∗ and proposes to use a sub-optimality Γ2(θ, (z, c∗, x∗)) := ⟨c∗, x̂(cθ) − x∗⟩. Since we do not
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have access to c∗, we cannot directly use this measure of sub-optimality. Consequently, we use
the projection of cθ onto C as a proxy for the ground-truth c∗ and define the suboptimality
gap as:

Γ(z, x∗) =
〈

PC(cθ)
∥PC(cθ)∥2

, x̂(cθ) − x∗
〉

(4.2)

It is important to note that we divide PC(cθ) by its corresponding ℓ2 norm to make the
sub-optimality scale-invariant i.e. small values of PC(cθ) do not necessarily imply small
sub-optimality (unlike Γ1). We now relate the sub-optimality to the loss h(θ) and prove the
following result in Section B.7.

Proposition 4.2.1. For cθ ∈ Rm := fθ(z), assuming that ∀j ∈ [m], [x̂(cθ)]j , x∗
j ∈ [0, 1],

Γ(θ, (z, x∗)) ≤
√

2m h(θ)
δ where δ := O(χ/

√
m), χ is the margin and the O notation hides

constants that depend on the LP.

As the sub-optimality is upper-bounded by O(
√
h(θ)), we can control it by controlling

the loss h(θ). Putting together the results in Corollaries 4.1.2 and 4.1.3 and Proposition 4.2.1,
we observe that T iterations of SGD result in the following bounds on the expected sub-
optimality:

E(z,x∗)∼ρ [ED∼ρ [E[Γ(θT , (z, x∗))]]] = O

(√
2m
δ

[
inf

θ
ĥ(θ) +

[ 1
Nµ

+ 1
µ2T

]]1/2
)

(4.3)

in the general setting and O
(√

2m
δ [exp(−µT )]1/2

)
(independent of N) in the interpolation

setting. Compared to these results, Sun et al. [2023] derive an O(1/
√

N) bound on the
expected sub-optimality in terms of Γ1 for both the interpolation and general settings. In the
next chapter, we compare our method against several baselines on real-world and synthetic
datasets and present the results.
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Chapter 5

Experimental Results

In this chapter, we present the experimental setup and present our findings.1

5.1 Datasets and Model

To validate the effectiveness of our approach, we experiment with both synthetic and real-
world benchmarks. We consider two real-world tasks [Vlastelica et al., 2019] – Warcraft
Shortest Path and Perfect Matching below and defer the synthetic experiments to Chapter C.

Warcraft Shortest Path (SP): The dataset consists of (z, x∗) pairs where the input z
is an RGB image generated from the Warcraft II tileset. The output x∗ corresponds to the
shortest path between given source-target pairs. The model predicts the edge weights for
each tile in a k × k grid (where k ∈ {12, 18}). Given these edge-weights, the optimization
problem is to find the shortest path.

Perfect Matching (PM): The dataset consists of (z, x∗) pairs where the input z is a
grey-scale image consisting of MNIST digits on a k× k grid. The output x∗ is a matching for
each digit to one of its neighbors on the grid. The model predicts the edge-weights between
each pair of neighbouring digits. Given these edge-weights, the optimization problem is to
find a matching that has the minimal cumulative weight of the selected edges.

Both datasets consist of 10000 training samples, 1000 validation samples and 1000 test
samples each. For both SP and PM, we use Resnet-18 [He et al., 2016] followed by a softplus
function s(x) = log(1 + exp (x)) to ensure the predicted cost is non-negative. Please refer
to Section C.2 for additional details about the model and datasets.

Methods: We compare the proposed method against several existing methods, including
ST [Sahoo et al., 2022], MOM [Sun et al., 2023], BB [Vlastelica et al., 2019], QPTL [Wilder

1The code is available here.
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et al., 2019] and SPO+ [Bertsimas and Kallus, 2020]. We use adaptive first-order methods:
AdaGrad [Duchi et al., 2011] and Adam [Kingma and Ba, 2014] to minimize the loss
in Eq. (3.1) for our method and the corresponding losses for the other baselines. We train all
the methods for 50 epochs with a batch size of 100. We employ a grid search to find the best
constant step size in {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}, across both the
Adam and Adagrad optimizers. The optimal settings are determined based on performance
on the validation set. For optimal settings, we consider 5 independent runs and plot the
average result and standard deviation. Following Sun et al. [2023], we set χ = 1 for all our
experiments. In Section C.4, we also provide an ablation study varying χ in Table C.1 and
show that the algorithm is robust to χ. We note that the QPTL approach is excluded from
real-world experiments as it is prohibitively slow for large problems [Amos and Kolter, 2017,
Geng et al., 2023]. For all the methods, we implement the LPs and QPs using the CVXPY
library Diamond and Boyd [2016]. For LPs, we use the ECOS solver Domahidi et al. [2013],
and for QPs, we use the OSQP solver Stellato et al. [2020].

5.2 Metrics

For each method, we plot the standard metrics: estimate-loss and decision-loss on both the
train and test set, defined as:

Estimate-Loss(θ) =
N∑

i=1
⟨c∗

i , x̂(fθ(zi))⟩ − ⟨c∗
i , x

∗
i ⟩ (5.1)

Decision-Loss(θ) =
N∑

i=1
∥x̂(fθ(zi)) − x∗

i ∥2 (5.2)

Since all the datasets consist of (zi, c
∗
i , x

∗
i ) pairs where x∗

i = x̂(c∗
i ), the estimate-loss and

decision-loss are commonly used to measure performance in these tasks2. We note that SPO+
requires access to the ground-truth cost-vector c∗, while other methods, including ours,
do not. Though the MOM method does not require access to c∗ in principle, the paper’s
implementation3 uses this ground-truth information to calculate the basis and use the LP
optimality conditions. We continue using this information for MOM, thereby overestimating
its performance.

2Experimentally, we found that the sub-optimality in Eq. (4.2) has a similar trend as the estimate-loss.

3See MOM code
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5.3 Results

In Fig. 5.1 with respect to the decision-loss, our method consistently outperforms the
baselines by a considerable margin across tasks. In Fig. 5.2, with respect to the estimate-loss,
our method outperforms all the baselines except for SPO+ on the SP problem. In Section C.3,
we plot the wall-clock time/epoch for all the methods, and observe that our method is
comparable to the baselines and scales gracefully as the dimension and the number of
training examples increase. These results demonstrate the strong empirical performance of
our method compared to other baselines.
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Figure 5.1: Decision loss: Training and Test plot for the real world experiments. Our method
significantly outperforms the other methods (ST, BB, MOM, SPO+).
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Figure 5.2: Estimate loss: training and test plots for real-world experiments. Our method
significantly outperforms existing methods (ST, BB, MOM) and is comparable to SPO+,
which uses the knowledge of c∗.
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Chapter 6

Discussion

We presented a reduction of CIO to convex feasibility, which enabled us to guarantee
linear convergence to the solution without additional assumptions such as degeneracy or
interpolation. We further reduced it to ERM on a smooth, convex loss that satisfies the PL
condition. This enabled us to use first-order optimizers and demonstrate strong empirical
performance on real-world tasks while being computationally efficient. For future work, we
aim to address the following areas: (1) since solving the QP takes a substantial amount of
time, we plan to incorporate techniques from Lavington et al. [2023] to allow for multiple
updates to the model for every solve of the QP, (2) we intend to extend our framework
to accommodate unknown constraints, broadening its applicability (3) finally, we aim to
experiment with general non-linear convex objectives.
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Appendix A

Definitions

If the function f is differentiable and L-smooth, then for all v and w,

f(v) ≤ f(w) + ⟨∇f(w), v − w⟩ + L

2 ∥v − w∥2 , (Smoothness)

If f is convex, then for all v and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩, (Convexity)

If f is µ strongly-convex, then for all v and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩ + µ

2 ∥v − w∥2 (Strong Convexity)
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Appendix B

Theoretical Results

B.1 Generalizing our method to other classes of optimization
problem:

In this section, we relax our assumption on the class of problem from LP to non-linear
convex optimization objectives and constraints. We specify the condition on the objective
for our reduction to hold; there is no extra condition (apart from convexity) on optimization
constraints for reduction to hold. Similar to Section 2.3.1, we consider a single data-point
(z, x∗) ∈ D with |D|= N , where z ∈ Rd, x∗ ∈ Rm we aim to find a c ∈ Rp such that x̂(c) = x∗.
Consider a non-linear convex optimization problem defined as :

x̂(c) = arg min
x

ϕ(x, c)

subject to G(x) = 0
H(x) ≤ 0

(B.1)

where G(x), H(x) consist of k, l convex constraints respectively and, ϕ(x, c), Gi(x), Hi(x)
are (non-linear) convex function with respect to parameter x.

Assumptions: For this reduction to hold, the condition we have is ∂ϕ(c,x)
∂x |x=x∗ should be

convex. Example: For LPs, the condition ∂<c,x>
∂x |x=x∗ simplifies to c which is convex in c.

Writing the KKT optimality conditions for Eq. (B.1), we get:

∂ϕ(x, c)
∂x

+ ν · ∂G(x)
∂x

+ λ · ∂H(x)
∂x

∈ 0 (stationary condition)

λ ≥ 0 (dual feasibility)
λ ·H(x) = 0 (complementary slackness)

G(x) = 0 (primal feasibility)
H(x) ≤ 0 (primal feasibility)
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where λ ∈ Rl, ν ∈ Rk are referred to as the dual-variables. The equations, G(x) = 0, H(x) ≤ 0
come from problem definition. The first term is derived by differentiating the Lagrangian.
The term λ ·H(x) = 0 represents the complementary slackness condition.

Morever, after substituing the value of x∗ in Eq. (primal feasibility), we get:

∂ϕ(x, c)
∂x

∣∣∣
x=x∗

+ ν · ∂G(x)
∂x

∣∣∣
x=x∗

+ λ · ∂H(x)
∂x

∣∣∣
x=x∗

∈ 0

λ ≥ 0
λ ·H(x∗) = 0

(B.2)

Now, for a given optimal decision x∗, H(x∗), G(x∗) are inherently satisfied. Thus, we omit
them from the Eq. (B.2). The term ∂G(x)

∂x |x=x∗ represents gradient of G(x) taken w.r.t x
and evaluated at x∗.

From our assumption, ∂ϕ(x,c)
∂x

∣∣
x=x∗ is convex in c and as λ, ν are multiplied with constants.

Thus the Eq. (B.2) is convex in c, λ, ν.

Therefore, the feasible set C encompassing all the values of c s.t. x̂(c) = x∗ can be written
as:

C =
{
c | ∃λ, ν s.t. ∂ϕ(x, c)

∂x

∣∣∣
x=x∗

+ν · ∂G(x)
∂x

∣∣∣
x=x∗

+λ · ∂H(x)
∂x

∣∣∣
x=x∗

∈ 0, λ ≥ 0, λ·H(x∗) = 0
}

(B.3)

Moreover, the projection of point ĉ onto set C can be attained by solving the below QP:

q(ĉ) = arg min
c

∥c− ĉ∥2 (B.4)

subject to ∂ϕ(x, c)
∂x

∣∣∣
x=x∗

+ ν · ∂G(x)
∂x

∣∣∣
x=x∗

+ λ · ∂H(x)
∂x

∣∣∣
x=x∗

∈ 0 (B.5)

λ ≥ 0 (B.6)
λ ·H(x∗) = 0 (B.7)

Thus, our framework can be used for a non-linear convex class of functions where the
first-order KKT conditions are both sufficient and necessary and ∂ϕ(x,c)

∂x |x=x∗ is convex in
c. Moreover, we do not assume any additional condition on constraints G,H apart from
convexity.

B.2 Equivalence between margin in KKT formulation and
Sun et al. [2023]

In this section, we derive the equivalent margin for the KKT formulation as in Sun et al.
[2023]. We further show that our margin formulation can be extended to the degenerate
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LPs. Additionally, our margin formulation does not require specific handling in the case of
degenerate/non-degenerate cases.

First, we will derive the same margin formulation as in Sun et al. [2023] for non-degenerate
LPs in terms of KKT conditions.

In the case of non-degenerate LP, we denote B as the basis set defined as B := {j | x∗
j > 0}

and M as the set of indices not in B, i.e. M = [n] − B. AB represents the columns
corresponding to the indices in set B, is invertible by definition. The reduced cost is given
as cM − cB(AB)−1AM ≥ 0 from LP optimality conditions. And to add margin χ in the
reduced cost optimality conditions, Sun et al. [2023] proposed the following modification:
cM − cB(AB)−1AM ≥ χ.

Recall the the KKT conditions for LP:

νTA− c+ λ = 0 (B.8)
λ ≥ 0 (B.9)

λ · x∗ = 0 (B.10)

From KKT conditions, we have the condition νTA− c+ λ = 0. Separating it row-wise for
index B,M respectively for matrix A , we get:

νTAB − cB + λB = 0 (B.11)
νTAM − cM + λM = 0 (B.12)

where AB, AM are the the corresponding columns of matrix A defined by set B and M
respectively.

Now, from Eq. (B.10), we have λ · x∗ = 0. For non-degenerate LPs, we have xB > 0; this
implies that λB = 0. Substituting this value in Eq. (B.11), we get:

νT = cB(AB)−1 (substituting λB = 0)
λM = cM − νTAM (rearranging Eq. (B.12))
λM = cM − cB(AB)−1AM (B.13)

From Eq. (B.9), we have λ ≥ 0 that implies λM ≥ 0. Thus, in Eq. (B.13), we retrieve
the reduced cost optimality condition from KKT formulation. Therefore, the equivalent of
cM − cB(AB)−1AM ≥ χ to the KKT formulation would be to impose the same constraint
on λM , i.e. λM ≥ χ.

B.2.1 Extension to degenerate case

In the case of degenerate LPs, ∃i ∈ B s.t. xi = 0. Moreover, the set B is no longer unique.
Our experiments found that a choice of B affects the results in Sun et al. [2023].

Here, let us define a separate set of basis Bd,Md as: Bd := {i | x∗
i > 0}, Md := {i | x∗

i = 0}.
Note that Bd,Md differ from the standard definition of basis in LPs.
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For the degenerate case, we propose the following modification for margin, λMd
≥ χ. This

can be written as:
∀i ∈ [n]; λiI{x∗

i = 0} ≥ χ (B.14)

Note that margin modification in Eq. (B.14) is exactly the same as in the non-degenerate
case. Thus, unifying the margin formulation for the degenerate and non-degenerate LPs.
Moreover, this also resolves the problem of determining the basis for degenerate LPs.

B.3 Proof of Proposition 3.2.1

Proposition 3.2.1. For a linear model fθ(z) = zθ parameterized by θ ∈ Rd×m, assuming
(without loss of generality) that ∀i, ∥zi∥ ≤ 1, h(θ) is a 1-smooth convex function.

To prove that the loss function h(θ) is a smooth, convex function for a linear model, we
define ζi(θ) such that,

h(θ) = 1
N

N∑
i=1

ζi(θ) where ζi(θ) := 1
2 min

q∈Ci

∥ziθ − q∥2 = 1
2 d2(ziθ, Ci) , (B.15)

where d2(ziθ, Ci) represents squared Euclidean distance of a point ziθ from set Ci and Ci

represents the set of feasible cost vectors (defined in Eq. (2.1)) for corresponding solution x∗
i .

We will prove that for an arbitrary z, ζ(θ) := 1
2 minq∈C ∥zθ−q∥2 is 1-smooth and convex. This

will prove the desired statement since the mean of 1-smooth convex functions is 1-smooth
and convex.

For this, we define

ψ(θ) := min
c∈C

∥zθ − c∥ = d(zθ, C) , (B.16)

where d(zθ, C) represents Euclidean distance of a point zθ from set C and C represents
the set of feasible cost vectors (defined in Eq. (2.1)) for corresponding solution x∗. We will
first prove that ψ(θ) is 1-Lipschitz and convex and use that to prove the smoothness and
convexity of ζ(θ).

Lemma B.3.1. For ∥z∥ ≤ 1, loss ψ(θ) is 1-Lipschitz.

Proof. : We first prove that the projection of a point onto a closed convex set C is non-
expansive. Consider two arbitrary points x, y ∈ Rd for this. Now, for a point p ∈ C s.t. p is
the projection of y on C, we know that d(y, C) = d(y, p) and d(x,C) ≤ d(x, p).

d(x,C) ≤ d(x, p) ≤ d(x, y) + d(y, p) = d(x, y) + d(y, C) (Triangle inequality)
=⇒ d(x,C) − d(y, C) ≤ d(x, y) (B.17)
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Similarly, now consider point q ∈ C s.t. q is the projection of x on C, we know d(x,C) = d(x, q)
and d(y, C) ≤ d(y, q). For the same reason,

d(y, C) ≤ d(y, q) ≤ d(y, x) + d(x,C) = d(y, x) + d(x,C) (B.18)
=⇒ d(y, C) − d(x,C) ≤ d(x, y) (B.19)

As, d(y, x) = d(x, y), from Eq. (B.17), Eq. (B.19), we get |d(y, C) − d(x,C)| ≤ d(x, y) =
∥x− y∥. Thus, the projection to a convex closed set C is non-expansive.

Now consider two points θ1, θ2 for function ψ,

∥ψ(θ1) − ψ(θ2)∥ = ∥d(zθ1, C) − d(zθ2, C)∥ (By definition of ψ)
≤ d(zθ1, zθ2) (From the above relation)
= ∥zθ1 − zθ2∥ (B.20)
≤ ∥z∥∥θ1 − θ2∥ (Cauchy-Schwartz)
≤ 1∥θ1 − θ2∥ (Since ∥z∥ ≤ 1 by assumption)

Lemma B.3.2. Loss function ψ(θ) is convex.

Proof. Consider two parameter values θ1, θ2 and let the projection of zθ1, zθ2 on C be
c1, c2 respectively. Additionally, consider θ3 to be the convex combination of θ1, θ2 i.e.
θ3 := λθ1 + (1 − λ)θ2 for a arbitrary λ ∈ (0, 1).

Now, we can write:

λψ(θ1) + (1 − λ)ψ(θ2) = λ∥zθ1 − c1∥ + (1 − λ)∥zθ2 − c2∥ (B.21)
≥ ∥λ(zθ1 − c1) + (1 − λ)(zθ2 − c2)∥ (Triangle Inequality)
= ∥λ zθ1 + (1 − λ) zθ2 − λc1 − (1 − λ)c2∥ (B.22)
= ∥λzθ1 + (1 − λ)zθ2 − c∥ (c := λc1 + (1 − λ)c2)
= ∥zθ3 − c∥ (By definition of θ3)
= d(zθ3, c) ≥ d(zθ3, C) (Since C is convex, c ∈ C)
= ψ(θ3) (By definition of ψ)

=⇒ λψ(θ1) + (1 − λ)ψ(θ2) ≥ ψ(θ3) (B.23)
=⇒ λψ(θ1) + (1 − λ)ψ(θ2) ≥ ψ(λθ1 + (1 − λ)θ2) (B.24)

Thus, the function ψ is convex from the definition of convexity.
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Lemma B.3.3. For ∥z∥ ≤ 1, loss ζ(θ) is 1-smooth.

Proof. Consider two parameter values θ1, θ2 and denote the projection of zθ1 and zθ2 on C
as c1 and c2 respectively. Function ζ is L-smooth if its gradient is Lipschitz continuous with
constant L.

∥∇ζ(θ1) − ∇ζ(θ2)∥ =
∥∥∥∥∇(1

2∥zθ1 − c1∥2
)

− ∇
(1

2∥zθ2 − c2∥2
)∥∥∥∥ (By definition of ζ)

= ∥zT (zθ1 − c1) − zT (zθ2 − c2)∥ (B.25)
≤ ∥z∥∥d(zθ1, C) − d(zθ2, C)∥ (Cauchy Schwarz)
≤ ∥ψ(θ1) − ψ(θ2)∥

(Since ∥z∥ ≤ 1 by assumption and by definition of ψ)
≤ ∥θ1 − θ2∥ (Lemma B.3.1)

Thus, the function ζ(θ) is 1-smooth.

Lemma B.3.4. Loss ζ(θ) is convex.

Proof. Consider a function g(x) = 1
2x

2 and note that ζ(θ) = g(ψ(θ)). From Lemma B.3.2,
we know that ψ is convex. g(x) is convex and non-decreasing for x ∈ {R+ ∪ 0} and ψ(θ) is
always non-negative. The composition of two functions is convex if g is convex and non-
decreasing and ψ is convex [Boyd and Vandenberghe, 2004]. Thus, the composite function ζ
is convex.

B.4 Proof for Proposition 3.1.1

Proposition 3.1.1. Point ĉ := (c1, c2, . . . , cN ) where ci = ziθ̃ and θ̃ ∈ arg min h(θ) lies in
the intersection C ∩ F if it exists, else ĉ ∈ F is the point closest to C.

Proof. Loss h(θ) is defined as:

h(θ) = 1
2N

N∑
i=1

min
qi∈Ci

∥fθ(zi) − qi∥2 (B.26)

where Ci represents the set of feasible cost vectors (defined in Eq. (2.1)) for data-point i.
We assume fθ is a linear model for this proof for which the function h(θ) is convex.

In order to better interpret h(θ), consider a point cθ = (c1, c2, . . . , cN ) ∈ RNm such that
ci = fθ(zi). Since cθ ∈ F , h(θ) = d2(cθ,C)

N where d2(w,W) is the squared Euclidean distance
of point w to the set W. Hence, minimizing h(θ) is related to minimizing the distance
between the sets F and C.
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Consequently, our loss can be reformulated as:

h(θ) = 1
2N d(cθ, C)2 (B.27)

Let us denote θ̃ ∈ arg min h(θ) and the predicted point as ĉ := Z θ̃ ∈ F . Therefore,
h(θ̃) = 1

2N d(ĉ, C)2.

We can prove the proposition by contradiction. Assume, ĉ := Z θ̃ ∈ F and is not the closest
point to set C. Conversely, assume the closest point to the set C in F is given by Z θp.
Now, the loss h(θp) = 1

2N d(Zθp, C)2 and since, Zθp is the closest point in the set C in
F , this means, that θp is also the arg min of h(θ). As θ̃ is also the arg min, this implies
that h(θ̃) = h(θp), Thus, d(Zθ̃, C) = d(Zθp, C). This implies that minimizing h(θ) leads to
convergence to a point ĉ = Zθ̃, which is the closest distance to C. In the case where an
intersection exists, the closest distance to C = 0; therefore, it converges in F ∩ C.

B.5 Proof of Proposition 3.3.1

Proposition 3.3.1. For a linear model fθ(z) = zθ, the iterates corresponding to the
preconditioned gradient method on h(θ) with η = 1 are identical to Algorithm 1.

Proof. Consider iteration t, and the current value of model parameters at iteration t is
denoted by θt. Let us denote the updated parameter at time t + 1 as θt+1(POCS) and
θt+1(ERM) for POCS update and first order pre-conditioned update on h(θ) respectively.

Let qt = PC(Zθt) denote the projection of Zθt.

In POCS, the θt+1 = arg minθ
1

2N ∥Zθ − qt∥2. Solving it exactly gives the projection of qt

onto the set F , which can be written as:

PF (qt) = Zθt+1 s.t. θt+1 = (ZTZ)−1ZT qt (B.28)

Thus, θt+1(POCS) = (ZTZ)−1ZT qt

Considering first order update for function h(θ) with step-size η and pre-conditioner
[

ZT Z
N

]−1

can be written as:

θt+1 = θt − η

[
ZTZ

N

]−1

∇h(θt) (from definition of preconditioner update)

where, ∇h(θt) = 1
NZ

T (Zθt − qt).
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Now, putting the values back in preconditioned update, we get the following:

θt+1 = θt − η[ZTZ]−1(ZT (Zθt − qt)) (B.29)
= θt(1 − η) + [ZTZ]−1ZT qt (B.30)
= (ZTZ)−1ZT qt (for η = 1)

Thus, θt+1(ERM) = (ZTZ)−1ZT qt. Therefore, we can see that iterates produced by POCS
is equivalent to 1-step of preconditioned gradient update with η = 1.

B.6 Proof for Proposition 3.2.2

Proposition 3.2.2. For a linear model fθ(z) = zθ and assuming (i) (without loss of
generality) that ∀i, ∥zi∥ ≤ 1 and (ii) λmin[ZTZ] > 0, h(θ) is not necessarily strongly-convex

but satisfies the PL inequality with µ = λmin

[∑N

i=1 ziz
⊤
i

N

]
.

We prove that h(θ) is not necessarily a strongly convex function by contradiction. Let us
assume that h(θ) is α-strongly convex function with α > 0. From the definition of α-strong
convexity, h(θ) must satisfy this following inequality for all θ1, θ2.

Figure B.1: We can see two point x, y and their projection onto a linear boundary of set C
denoted as x1, y1 respectively. Moreover, the angle between x, y and x, x1 is the right angle;
thus, the two vectors are orthogonal.

h(θ1) ≥ h(θ2) + (∇h(θ2))T (θ1 − θ2) + α

2 ∥θ1 − θ2∥2 (B.31)

Consider a special case where N = 1 point and m = d = 1 and z = 1. Let y = zθ1 = θ1 and
x = zθ2 = θ2. Consider C as an affine set and two points (x, y) equidistant from C. Define
x1, y1 to be the projection of x and y onto C respectively (refer to Fig. B.1 above).

Since x and y are equidistant from C, ∥x− x1∥ = ∥y − y1∥. Moreover, since x and y are on
the same side of C, vector x − y is orthogonal vector x − x1. Hence, ⟨y − x, x − x1⟩ = 0.
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Substituting these values in Eq. (B.31), we get:

1
2∥y − y1∥2 ≥ 1

2∥x− x1∥2 + ⟨x− x1, y − x⟩ + α

2 ∥x− y∥2 (B.32)

0 ≥ α

2 ∥x− y∥2 (B.33)

=⇒ α = 0 (B.34)

As α = 0 therefore the function h(θ) is not strongly convex for this case when C is an affine
set. However, we can show that function h(θ) satisfies the PL inequality with µ = λmin[ZT Z]

N .
Recall, h(θ) is defined as 1

2N ∥Zθ − q∥2 where q = PC(Zθ) is projection of Zθ on C. Hence,
∇h(θ) = 1

NZ
T [Zθ − q].

∥∇h(θ)∥2 = 1
N2

∥∥∥ZT [Zθ − q]
∥∥∥2

(By definition of ∇h(θ))

≥ 1
N2σ

2
min(ZT ) ∥[Zθ − q]∥2 (∥Ax∥ ≥ σmin(A) ∥x∥)

= 1
N2λmin(ZTZ) ∥[Zθ − q]∥2 (using σ2

min(ZT ) = λmin(ZTZ))

= 2
N
λmin(ZTZ)h(θ) (By definition of h)

≥ 2
N
λmin(ZTZ)[h(θ) − h(θ∗)] (Since h is non-negative)

= 2
N
λmin

(
N∑

i=1
ziz

⊤
i

)
[h(θ) − h(θ∗)] (replacing ZTZ as

∑N
i=1 ziz

⊤
i )

= 2µ [h(θ) − h(θ∗)] (For µ = λmin

[∑N

i=1 ziz
⊤
i

N

]
)

Hence, h(θ) is µ-PL.
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B.7 Sub-optimality proofs

Proposition 4.2.1. For cθ ∈ Rm := fθ(z), assuming that ∀j ∈ [m], [x̂(cθ)]j , x∗
j ∈ [0, 1],

Γ(θ, (z, x∗)) ≤
√

2m h(θ)
δ where δ := O(χ/

√
m), χ is the margin and the O notation hides

constants that depend on the LP.

Proof.

Γ(θ, (z, x∗)) =
〈 PC(cθ)

∥PC(cθ)∥ , x̂(cθ) − x∗
〉

(By definition)

≤
〈PC(cθ)

δ
, x̂(cθ) − x∗

〉
(Since by Lemma B.7.1, ∥PC(cθ)∥ ≥ δ)

≤ ⟨PC(cθ)
δ

, x̂(cθ) − x∗⟩ + 1
δ

⟨cθ, x
∗ − x̂(cθ)⟩

(By definition of x̂(cθ), ⟨cθ, x
∗⟩ ≥ ⟨cθ, x̂(cθ)⟩)

= 1
δ

⟨PC(cθ) − cθ, x̂(cθ) − x∗⟩ (rearranging terms)

≤ 1
δ

∥PC(cθ) − cθ∥∥x̂(cθ) − x∗∥ (Cauchy-Schwartz)

≤ 1
δ

∥PC(cθ) − cθ∥
√
m (From assumption that ∀j, x̂j , x

∗
j ∈ [0, 1])

= 1
δ

√
2h(θ)

√
m (from definition of h(θ))

=
√

2mh(θ)
δ

(B.35)

Next, we give the lower-bound on the term δ which depends on the margin χ defined
in Section 2.3.3.

Lemma B.7.1. For c ∈ C defined using a margin χ, ∥c∥2 ≥ δ := χ√
m

maxj∈M min
{

1,minp∈B
1

|τpj |

}
.

Proof. We lower-bound ∥c∥2 for an arbitrary c ∈ C using the reduced cost optimality
conditions [Luenberger et al., 1984]. For this, we denote B as the basis set defined as
B := {j | x∗

j > 0} and M as the set of indices not in B, i.e. M = [m] −B. Let us define a
new term τij = [(AB)†Aj ]i where AB represents the columns corresponding to the indices in
set B, and A†

B is the pseudo-inverse of the matrix AB.

To prove this proposition, we first consider two arbitrary vectors a, b ∈ Rm and show
that ∥a∥1 ≥ χ

maxn
p=1 |bp| is a necessary condition to ensure that aT b ≥ χ. We do this by

contradiction: assume ∥a∥1 ≤ χ
maxm

p=1 |bp| , but aT b ≥ χ. In this case,

∥a∥1
mmax

p=1
|bp| ≤ χ =⇒ ∥a∥1 ∥b∥∞ ≤ χ
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By Holders inequality, since aT b ≤ ∥a∥1 ∥b∥∞, the above inequality implies that

aT b ≤ χ ,

which is a contradiction. Since ∥a∥1 ≥ χ
maxm

p=1 |bp| , it gives us a lower-bound on ∥a∥1. Now,
we can use this result to find the lower bound on ∥c∥1.

In Section B.2, we have shown that KKT conditions are equivalent to reduced cost optimality
conditions. We first find the lower bound to satisfy reduced cost inequality for a specific
index j ∈ [M ] and then extend the result for all indices in M to find the lower-bound on
∥c∥1.

The reduced cost for an index j ∈ M and margin χ is given by r(j) := cj − cB(AB)†Aj . The
reduced costs conditions imply that for all j ∈ M , r(j) ≥ χ. In terms of τ , these conditions
imply that cj −

∑
p∈B cpτpj ≥ χ. Equivalently, for all j ∈ M , cTαj ≥ χ, where αj represents

the coefficients of c in r(j).

Using the above result to obtain a lower-bound on ∥c∥1, we have that,

∥c∥1 ≥ χ

maxm
p=1 |(αj)p|

(B.36)

= χ

max{1,maxp∈B |τpj |}
(substituting the value of αj)

= χ min
{

1,min
p∈B

1
|τpj |

}
(rearranging terms)

Since we require that the reduced cost condition be satisfied for all j ∈ M , we get that,

∥c∥1 ≥ χ max
j∈M

min
{

1,min
p∈B

1
|τpj |

}

Finally, we use the relation between norms to lower-bound the value of ∥c∥2.

δ := min
c∈C

∥c∥2 (B.37)

≥ min
c∈C

1√
m

∥c∥1 (by norm inequality)

≥ χ√
m

max
j∈M

min
{

1,min
p∈B

1
|τpj |

}
(B.38)
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Appendix C

Experimental Results

C.1 Synthetic Experimental Results

We conduct numerical experiments for two LP problems – the shortest path (SP) problem
and the fractional Knapsack problems considered in Sun et al. [2023]. For both SP and
Knapsack, we generate 100 samples for training, validation and test sets. We used the
codebase provided by the Sun et al. [2023] to generate the dataset.

Shortest Path (SP-synth): The Shortest Path problem is defined on a 5 × 5 grid with
m = 40 directed edges associated with the ground truth cost-vector c∗ ∈ Rm. Input z ∈ Rd

with d = 6. Thus, θ ∈ Rd×m. To make the problem harder, we use the degree= 4 in the
data-generation process.

Fractional Knapsack: The Fractional Knapsack problem is defined with input z ∈ Rd

with d = 5. We have 10 items with associated cost-vectors, and slack variables are added
to convert the problem to standard form, making the dimension m = 21. Thus, θ ∈ Rd×m.
To make the problem harder, we use the degree= 2 in the data-generation process with the
attacking noise of attack-power= 3.0.

Methods and model: For the experiments, we compare both our variants, POCS (Algo-
rithm 1) and ERM (Chapter 3) with GD and show that they have similar performance. We
compare our method against against several existing methods, including ST Sahoo et al.
[2022], MOM Sun et al. [2023], BB Vlastelica et al. [2019], QPTL Wilder et al. [2019] and
SPO+ Elmachtoub and Grigas [2022]. We train all the models in a deterministic setting
employing a linear model.

Training Details For Ours (POCS), we solve the regression problem using closed-form
solutions obtained through matrix inversion. For the MOM, Ours (ERM) method, we employ
the Armijo line search algorithm [Armijo, 1966] with Gradient Descent. For the BB, ST,
QPTL, and SPO+ methods, a grid search is used to find the best constant step-size in
{10, 1, 0.1, 0.01, 0.001, 0.0001}. We also did a grid search for λ, regularizer in QPTL and the
perturbation weight in BB with λ ∈ {100, 10, 1, 0.1, 0.01, 0.001}. The optimal settings are
determined based on performance on the validation set, and we plot the training and test
plot for the best-performing model.
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Figure C.1: Estimate loss Figure C.2: Decision loss

Figure C.3: Training and Test plot for synthetic tasks. For both problems, our method
significantly outperforms the other methods (ST, QPTL, BB, MOM) and is comparable to
SPO+, which uses the knowledge of c∗

Results: In Fig. C.2 w.r.t to the decision-loss, all the methods have similar performance
except SPO+, BB. For Knapsack, our method outperforms all the other baselines except
SPO+. In Fig. C.1, w.r.t to the estimate-loss, our method significantly outperforms the other
methods (ST, QPTL, BB, MOM) and is comparable to SPO+, which uses the knowledge of c∗.
Moreover, we can see that both our variants, POCS and ERM, have negligible performance
differences.

C.2 Additional real-world experiment details

C.2.1 Warcraft shortest Path

In this section, we define the LP for the shortest path problem. Consider xij represents the
edge from vertex i to vertex j. Since all edges are bidirectional, xij is not the same as xji. s
and t denote source and target vertices, respectively. Let cij be the cost of selecting edge xij .
Before initializing the LP, let N(i) be the set of vertices with an outgoing edge from vertex
i, and I(i) be the set of vertices with an incoming edge to vertex i. The LP can be written
as follows:

minimize
x

cTx

subject to ∀i /∈ {s, t},
∑

j∈N(i)
xij =

∑
j∈I(i)

xji (flow conservation)

∑
j

xsj = 1 (source has one outgoing edge)

∑
j

xjt = 1 (target has one incoming edge)

x ≥ 0
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Figure C.4: Warcraft SP dataset sample: The input image (left), ground truth shortest path
(center), and the ground truth vertex weights (right). The task is to learn the edge weights
to retrieve the same shortest path.

In this case, the source is always in the top-left grid, and the target is in the bottom-right
grid. As in the dataset, ground-truth weights are defined on the vertex. To run it as LP
defined in Eq. (C.1), we directly predict the weights of the edges. Given that the ground-truth
cost c∗(BB) is defined for vertex weights in the dataset, we define c∗ for the edge-weighted
shortest path as:

∀i, ∀j ∈ N(i), c∗
ij = c∗

i (BB) (C.1)

Both approaches yield the same shortest path, validating the conversion. Please see Vlastelica
et al. [2019] for more details regarding the dataset.

C.2.2 Perfect Matching

In this section, we define the LP associated with the perfect matching problem. xij represents
the edge from vertex i to vertex j. N(i) represents the neighbors of vertex i. All the edges
in the graph are unidirectional, i.e. xij and xji represent the same edge. cij represent the
cost of selecting the edge xij . Thus, the LP can be written as:

minimize
c

cTx

subject to ∀i
∑

j∈N(i)
xij = 1 (each vertex should have exactly one incident edge)

x ≥ 0
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Figure C.5: Perfect Matching dataset sample: This figure shows the input image (left) and
the corresponding min-cost perfect matching overlayed on the input image on the right. Each
input is a 12 × 12 grid, with each grid containing an MNIST digit. In Perfect Matching(PM),
edges highlighted by the orange lines represent the edge selected by the solving min-cost
perfect matching optimization problem. Ground truth edge weights are inferred by reading
the digits connected by the edge as a two-digit number. The task is to predict edge weights
such that we get the same PM.

In our case, ground-truth edge weights are inferred by reading the digits on the two ends of
the vertex as two-digit numbers. Please see Vlastelica et al. [2019] for more details regarding
the dataset.

C.3 Runtime Comparison

Figure C.6: Training Time (in seconds) per epoch vs method for three real-world experiments.
We can see that our method is comparable to other methods and scales well with the dimension
of the problem
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To benchmark the computational efficiency of our method, we plot the average training time
per epoch for all methods in Fig. C.6. Our method is competitive with ST and SPO+, and
faster than MOM and BB. BB requires two solver calls per gradient evaluation, while MOM,
despite not needing solver calls, involves inverting a matrix AB, which scales poorly with
dimension. As shown in the plot, our method scales well with both the problem dimension
and dataset size.

C.4 Ablation study for margin

In order to verify the robustness of Algorithm 1 for varying χ, we do an ablation study
varying χ from [10, 0.01] for the synthetic datasets in the deterministic setting (refer to
Chapter C for details). We train each model for 150 epochs according to Algorithm 1 and
report the mean decision error (Eq. (5.2)) for both the train/test data for the synthetic
shortest-path (SP) and Knapsack (K) problems. We see that increasing the margin (from
0.01 to 1) leads to small sub-optimality and that increasing it beyond 1 does not improve
the performance.

Margin Train Sp-synth Test Sp-synth Train Knapsack Test Knapsack

10 0.779 1.95 2.033 2.32
1 0.779 1.89 2.033 2.32

0.1 0.699 2.11 2.08 2.39
0.01 2.63 3.23 2.11 2.32

Table C.1: Ablation results varing margin (χ) from 10 to 0.01 and their performance on
train/test set for the synthetic dataset
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