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Sub-sampled Newton’s method under interpolation

• First order methods:
• Cheap iterations.
• Slow convergence for ill-conditioned problems.

• Second order methods:
• Faster convergence by explicitly adapting to

the local curvature of the objective.
• Forming the Hessian and computing the

update direction is expensive.

• Sub-sampling the training set:
• Reduces the iteration cost.
• Slower convergence due to approximate

update direction.
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Sub-sampled Newton’s method under interpolation

• In modern ML applications we often use overparameterized models that satisfies the
interpolation condition.

• Means that they can complete fit the training data.

• Examples:
• Logistic regression on linearly-separable data.
• Non-parametric regression.
• Boosting.
• Over-parameterized neural networks.

• It’s been shown that sub-sampled first-order methods converge faster under
interpolation [Vaswani et al., 2019a].

What’s the behaviour of sub-sampled Newton’s method
in this setting?
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Setup

Unconstrained minimization: finite-sum objective.

min
w∈Rd

f (w) := 1
n

n∑
i=1

fi (w)

where the fi ’s are twice continuously differentiable, and n is the number of training examples.

• f is µ-strongly convex and L-smooth, =⇒ µI � ∇2f (w) � LI.

• Define µ̄ = 1
n
∑n

i=1 µi and L̄ = 1
n
∑n

i=1 Li .
=⇒ For any sub-sample S, the function 1

|S|
∑

i∈S fi is LS -smooth and µS -strongly convex.
Define µ̃ = minS µS ≥ 0 and L̃ = maxS LS .

• Interpolation: ∇f (w∗) = 0 =⇒ ∇fi (w∗) = 0 for all i . For smooth, strongly convex,
finite-sum objectives, interpolation =⇒ strong growth condition:

ρ-SGC: Ei ‖∇fi (w)‖2 ≤ ρ ‖∇f (w)‖2.
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Regularized sub-sampled Newton method (R-SSN)

3



Algorithm

Stochastic gradient descent (SGD)

wk+1 = wk − ηk ∇fGk (wk )︸ ︷︷ ︸
subsampled gradient

• ηk is the step size.

• Sub-sampled gradient:
∇fGk (wk ) = 1

bgk

∑
i∈Gk

∇fi (wk )

• Levenberg-Marquardt (LM)-regularized sub-sampled Hessian:

HSk (wk ) = 1
bsk

∑
i∈Sk

∇2fi (wk ) + τ Id
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Algorithm

Regularized sub-sampled Newton method (R-SSN)

wk+1 = wk − ηk [HSk (wk )]−1∇fGk (wk )︸ ︷︷ ︸
regularized sub-sampled Newton direction

• ηk is the step size.
• Gk , Sk ⊆ [n] are index sets chosen independently, uniformly at random.
• Sub-sampled gradient:

∇fGk (wk ) = 1
bgk

∑
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Theorem I - Global convergence

• Similar to SGD [Vaswani et al., 2019a], we show that interpolation allows R-SSN with a constant batch
size to obtain global Q-linear convergence rate.

Global linear convergence
Under (a) µ-strong convexity, (b) L-smoothness, (c) [µ̃+ τ, L̃ + τ ]-bounded eigenvalues of the regularized
sub-sampled Hessian and (d) ρ-SGC, R-SSN with constant batch sizes converges at a Q-linear rate

E[f (wT )]− f (w∗) ≤ (1− α)T (f (w0)− f (w∗))

where α = min
{

(µ̄+τ)2

2κcg (L̃+τ) ,
(µ̄+τ)

2κ(L̃+τ)

}
, κ = L

µ
and cg = (ρ−1) (n−bg )

bg (n−1) .

• If bg = bs = n (full-batch) and τ = 0, we recover deterministic rate.

• In the absence of interpolation, SSN can only achieve an R-linear rate with geometrically increasing batch
size for the sub-sampled gradient [Bollapragada et al., 2018a].
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Theorem II - Local convergence

• With interpolation, we obtain linear-quadratic convergence in expectation with a geometric batch growth.

Local linear-quadratic convergence
Under the same assumptions (a) - (d) of Theorem I, along with (e) M-Lipschitz continuity of the Hessian, (f)
bounded moments of iterates, and (g) σ-bounded variance of the regularized sub-sampled Hessian, R-SSN
with (i) unit step size ηk = 1 and (ii) growing batch sizes satisfying

bgk ≥
n(

n−1
ρ−1

)
‖∇f (wk )‖2 + 1

, and bsk ≥
n

n
σ2 ‖∇f (wk )‖+ 1

converges to w∗ in a local neighbourhood ‖w0 − w∗‖ ≤ δ at a linear-quadratic rate

E ‖wk+1 − w∗‖ ≤ c1 (E ‖wk − w∗‖)2 + c2 E ‖wk − w∗‖ for some c1 > 0 and c2 ∈ (0, 1).

• Rate of growth for Gk is the same as that’s required to obtain linear convergence by SGD without variance
reduction or interpolation [Friedlander and Schmidt, 2012].

• In the absence of interpolation, SSN can only achieve an asymptotic superlinear rate, with batch size Gk
growing faster than a geometric rate [Bollapragada et al., 2018a].
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Corollary

• If we decay the regularization sequence, we can obtain a stronger result, similar to the
quadratic convergence of Newton’s method in the deterministic setting.

Local quadratic convergence for decaying τk

Under the same assumptions as Theorem II, if we decrease the regularization term as
τk ≤ ‖∇f (wk )‖, R-SSN can achieve local quadratic convergence

E ‖wk+1 − w∗‖ ≤ c3 (E ‖wk − w∗‖)2 for some c3 ≥ 0.

• This decay rate is inversely proportional to the growth of the batch size for the
sub-sampled Hessian, bsk ≥ n

n
σ2 ‖∇f (wk )‖+1

• Larger batch sizes require smaller regularization.
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Self-concordance

• Newton’s method is invariant to affine transformations of the parameters [Boyd and
Vandenberghe, 2004].

• But this is not reflected in the classical analysis – the convergence rate obtained depends on
the strong-convexity and Lipschitz constants that change with affine transformations.

• However, for self-concordant functions, the analysis yields an affine-invariant rate in the
deterministic case.

Definition 1 (Self-concordance)
A convex function f : R→ R is self-concordant if for all w ∈ R,

|f ′′′(w)| ≤ 2[f ′′(w)]3/2.

Can we obtain an affine-invariant rate for R-SSN
under self-concordance and interpolation?
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R-SSN under self-concordance

Regularized Newton decrement:

λ := ‖∇f (w)‖[∇2f (w)+τ I]−1 =
〈
∇f (w) , [∇2f (w) + τ I]−1∇f (w)

〉1/2

Regularized stochastic Newton decrement:

λ̃ := ‖∇fi (w)‖[Hj (w)]−1 =
〈
∇fi (w) , [Hj (w)]−1∇fi (w)

〉1/2

Newton-decrement SGC:
Ei [λ̃2] ≤ ρndλ

2, for all w , j .

Modified R-SSN update

wk+1 = wk −
c η

1 + ηλ̃k
[Hj (wk )]−1∇fi (wk )

where λ̃k is λ̃ evaluated at wk .
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Theorem III - R-SSN under self-concordance

Two-phased analysis
Under (a) self-concordance (b) L-smoothness, (c) [µ̃+ τ, L̃ + τ ]-bounded values of the regularized
sub-sampled Hessian, (d) ρnd -Newton decrement SGC with ρnd = ρL

µ̃+τ , and (e) bounded iterates
‖w − w∗‖ ≤ D, then there exists c ∈ (0, 1] and a constant step size η such that the first phase {wk}k∈[0,m]
converges at an R-linear rate

E[f (wk+1)] ≤ f (wk )− εk ,

where εk is some positive sequence. Furthermore, in a local neighbourhood where λm ≤ 1/6, the sequence
{wk}k≥m converges to w∗ at a Q-linear rate

E [f (wT )]− f (w∗) ≤ (1− β)T−m (E [f (wm)]− f (w∗)),

where β ∈ (0, 1).

• Although strong-convexity is not required, the rate is still problem-dependent as β
depends on µ̃ and L̃ as in previous work [Zhang and Lin, 2015].
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Stochastic BFGS as preconditioned SGD
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Stochastic BFGS as preconditioned SGD

• Quasi-Newton methods allow us to incorporate approximate second-order information
without computing the Hessian.

Stochastic BFGS update as preconditioned SGD

wk+1 = wk − ηkBk∇fGk (wk )

where Bk is a positive-definite matrix constructed to approximate the inverse Hessian.

What’s the behaviour of stochastic quasi-Newton
methods when interpolation is satisfied?
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Theorem IV - Stochastic BFGS as preconditioned SGD

Global linear convergence
Under (a) µ-strongly convex, (b) L-smoothness, (c) ρ-SGC, and (d) [λ1, λd ]-bounded eigenvalues of the
preconditioner Bk , the sequence {wk}k≥0 generated by stochastic BFGS with constant step-size
ηk = η = λ1

cg Lλ2
d

and constant batch size bg converges globally to w∗ at a Q-linear rate

E[f (wT )]− f (w∗) ≤
(

1−
µλ2

1
cg Lλ2

d

)T
(f (w0)− f (w∗))

where cg = (n−bg ) (ρ−1)
(n−1) bg

+ 1.

• This rate matches the global linear rate for R-SSN up to constants without having to
compute the subsampled Hessian.

• Previous works required a growing batch size [Bollapragada et al., 2018b] or
variance-reduction [Lucchi et al., 2015, Moritz et al., 2016].

• Our theoretical result holds for all preconditioners with bounded eigenvalues, but we only
focus on stochastic L-BFGS in the experiments.
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Experiments
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Experimental setup

• Synthetic, linearly separable datasets, linear model =⇒ Interpolation satisfied.
• n = 10k examples, d = 20 features, with varying margins :[0.01, 0.05, 0.1, 0.5].

• R-SSN-const: constant batch size.
• R-SSN-grow: grow both batch sizes geometrically.
• Hessian-free implementation:

• Inexact CG with tuned τ that decreases as the batch size grows.

• Compare against SGD/Acceleration (line search), SVRG (tuned step size), Adam and
AdaGrad (default), and deterministic, unregularized Newton.

• All subsampled second-order methods use stochastic line search to select the step
size [Vaswani et al., 2019b].
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Experimental results

Logistic Loss
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Conclusion

We showed that in the interpolation setting:

• Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.

• Growing the batch size allows R-SSN to achieve local quadratic convergence.
• R-SSN for self-concordant functions achieves a linear rate.
• Stochastic BFGS converges globally at a Q-linear rate with only constant batch-size.
• Stochastic second-order methods converge faster than first-order methods in practice.

15



Conclusion

We showed that in the interpolation setting:

• Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.

• Growing the batch size allows R-SSN to achieve local quadratic convergence.

• R-SSN for self-concordant functions achieves a linear rate.
• Stochastic BFGS converges globally at a Q-linear rate with only constant batch-size.
• Stochastic second-order methods converge faster than first-order methods in practice.

15



Conclusion

We showed that in the interpolation setting:

• Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.

• Growing the batch size allows R-SSN to achieve local quadratic convergence.
• R-SSN for self-concordant functions achieves a linear rate.

• Stochastic BFGS converges globally at a Q-linear rate with only constant batch-size.
• Stochastic second-order methods converge faster than first-order methods in practice.

15



Conclusion

We showed that in the interpolation setting:

• Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.

• Growing the batch size allows R-SSN to achieve local quadratic convergence.
• R-SSN for self-concordant functions achieves a linear rate.
• Stochastic BFGS converges globally at a Q-linear rate with only constant batch-size.

• Stochastic second-order methods converge faster than first-order methods in practice.

15



Conclusion

We showed that in the interpolation setting:

• Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.

• Growing the batch size allows R-SSN to achieve local quadratic convergence.
• R-SSN for self-concordant functions achieves a linear rate.
• Stochastic BFGS converges globally at a Q-linear rate with only constant batch-size.
• Stochastic second-order methods converge faster than first-order methods in practice.

15



Thank you!

Paper: https://arxiv.org/abs/1910.04920
Code: https://github.com/IssamLaradji/ssn
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