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under interpolation

e First order methods:

o Cheap iterations.
e Slow convergence for ill-conditioned problems.

e Second order methods:

e Faster convergence by explicitly adapting to

the local curvature of the objective. g = 5 5 :
e Forming the Hessian and computing the .
update direction is expensive.
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e Sub-sampling the training set:

e Reduces the iteration cost.

e Slower convergence due to approximate
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update direction.




Sub-sampled Newton’s method under

e In modern ML applications we often use overparameterized models that satisfies the
interpolation condition.

e Means that they can complete fit the training data.
e Examples:

e Logistic regression on linearly-separable data.
e Non-parametric regression.

e Boosting.

e Over-parameterized neural networks.
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e In modern ML applications we often use overparameterized models that satisfies the
interpolation condition.

e Means that they can complete fit the training data.
e Examples:

e Logistic regression on linearly-separable data.
e Non-parametric regression.

Boosting.
e Over-parameterized neural networks.

e |t's been shown that sub-sampled first-order methods converge faster under
interpolation [Vaswani et al., 2019a].

What'’s the behaviour of sub-sampled Newton’s method
in this setting?
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Unconstrained minimization: finite-sum objective.

min f(w Zf

weRd

where the f;'s are twice continuously differentiable, and n is the number of training examples.

e f is p-strongly convex and L-smooth, = ul < V2f(w) < LI.

e Define i=21%" piand L=2%7 1L
— For any sub-sample S, the function ﬁ > ics fi is Ls-smooth and is-strongly convex.
Define i = ming us > 0 and L = maxs Ls.

° . For smooth, strongly convex,
finite-sum objectives, interpolation —-



Regularized sub-sampled Newton method (R-SSN)
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Algorithm

Regularized sub-sampled Newton method (R-SSN)

Wiyl = Wi — Tk [ 17 Vg, (wi)

regularized sub-sampled Newton direction

1k is the step size.

Gk, Sk C [n] are index sets chosen independently, uniformly at random.

Sub-sampled gradient:
Vfgk Wk Z Vf Wk

g“ i€G

Levenberg-Marquardt (LM)-regularized sub-sampled Hessian:

—7ZV2 Wk

Sk €Sk
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Theorem | - Global convergence

e Similar to SGD [Vaswani et al., 2019a], we show that interpolation allows R-SSN with a constant batch

size to obtain global Q-linear convergence rate.

Under (a) p-strong convexity, (b) L-smoothness, (c) [fi + 7, L 4 7]-bounded eigenvalues of the regularized
sub-sampled Hessian and (d) p-SGC, R-SSN with constant batch sizes converges at a Q-linear rate
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o If by = bs = n (full-batch) and 7 = 0, we recover deterministic rate.

e In the absence of interpolation, SSN can only achieve an R-linear rate with geometrically increasing batch
size for the sub-sampled gradient [Bollapragada et al., 2018a].
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Under the same assumptions (a) - (d) of Theorem I, along with (e) M-Lipschitz continuity of the Hessian, (f)
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e Rate of growth for G is the same as that’s required to obtain linear convergence by SGD without variance
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e In the absence of interpolation, SSN can only achieve an asymptotic superlinear rate, with batch size G,
growing faster than a geometric rate [Bollapragada et al., 2018a].
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e |f we decay the regularization sequence, we can obtain a stronger result, similar to the
quadratic convergence of Newton’s method in the deterministic setting.
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, R-SSN can achieve local quadratic convergence

for some c3 > 0.



Corollary

e |f we decay the regularization sequence, we can obtain a stronger result, similar to the
quadratic convergence of Newton’s method in the deterministic setting.

Under the same assumptions as Theorem |l, if we decrease the regularization term as
Tk < [|VF(wi))|

, R-SSN can achieve local quadratic convergence

for some c3 > 0.

e This decay rate is inversely proportional to the growth of the batch size for the

3 __n
sub-sampled Hessian, by, > 7wl

e Larger batch sizes require smaller regularization.
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Self-concordance

e Newton's method is invariant to affine transformations of the parameters [Boyd and
Vandenberghe, 2004].
e But this is not reflected in the classical analysis — the convergence rate obtained depends on
the strong-convexity and Lipschitz constants that change with affine transformations.

e However, for self-concordant functions, the analysis yields an affine-invariant rate in the
deterministic case.

Definition 1 (Self-concordance)
A convex function f : R — R is self-concordant if for all w € R,

£ (w)] < 20" ()2

Can we obtain an affine-invariant rate for R-SSN
under self-concordance and interpolation?



R-SSN under self-concordance

Regularized Newton decrement:
_ 1/2
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R-SSN under self-concordance

Regularized Newton decrement:
_ 1/2
)\ = ||Vf(W)||[v2f(W)+7—/]*1 = <Vf(W), [V2f(w) + 7'/] IVf(W)>
Regularized Newton decrement:

S = VA s = (W), )] V()

Newton-decrement SGC:
E,-[:\2] < ppaX?,  for all w, j.

Modified R-SSN update

Wiyl = Wk — [Hj(wi)]~ V fi(wi)

where S\k is \ evaluated at W.
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where 3 € (0,1).
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e Although strong-convexity is not required, the rate is still problem-dependent as 3
depends on fi and L as in previous work [Zhang and Lin, 2015].
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Stochastic BFGS as preconditioned SGD

e Quasi-Newton methods allow us to incorporate approximate second-order information
without computing the Hessian.

Stochastic BFGS update as preconditioned SGD

W41 = Wi — T)kB/\fogk(Wk)

where By is a positive-definite matrix constructed to approximate the inverse Hessian.
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Stochastic BFGS as preconditioned SGD

e Quasi-Newton methods allow us to incorporate approximate second-order information
without computing the Hessian.

Stochastic BFGS update as preconditioned SGD
W41 = Wi — T]kBkagk(Wk)

where By is a positive-definite matrix constructed to approximate the inverse Hessian.

What’s the behaviour of stochastic quasi-Newton
methods when interpolation is satisfied?
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Theorem |V - Stochastic BFGS as preconditioned SGD

Under (a) , (b) L-smoothness, (c) p-SGC, and (d) [A1, A\g]-bounded eigenvalues of the
preconditioner By, the sequence {wy },>0 generated by stochastic BFGS with constant step-size

Nk =1n= - >£1)\2 and constant batch size by converges globally to w* at a Q-linear rate
gty

2 T
Blf(wr)] - f(w") < (1= 255 ) () = F(w°))
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e This rate matches the global linear rate for R-SSN up to constants without having to

compute the subsampled Hessian.
e Previous works required a growing batch size [Bollapragada et al., 2018b] or
variance-reduction [Lucchi et al., 2015, Moritz et al., 2016].
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e This rate matches the global linear rate for R-SSN up to constants without having to
compute the subsampled Hessian.
e Previous works required a growing batch size [Bollapragada et al., 2018b] or
variance-reduction [Lucchi et al., 2015, Moritz et al., 2016].
e Our theoretical result holds for all preconditioners with bounded eigenvalues, but we only

focus on stochastic L-BFGS in the experiments.
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Experiments



Experimental setup

e Synthetic, linearly separable datasets, linear model = Interpolation satisfied.

e n = 10k examples, d = 20 features, with varying margins :[0.01, 0.05, 0.1, 0.5].
e R-SSN-const: constant batch size.
e R-SSN-grow: grow both batch sizes geometrically.

e Hessian-free implementation:

e Inexact CG with tuned 7 that decreases as the batch size grows.

e Compare against SGD/Acceleration (line search), SVRG (tuned step size), Adam and
AdaGrad (default), and deterministic, unregularized Newton.

e All subsampled second-order methods use stochastic line search to select the step
size [Vaswani et al., 2019b].
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Experimental results

Logistic Loss
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Conclusion

We showed that in the interpolation setting:

e Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.
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e Regularized Sub-sampled Newton (R-SSN) with a constant batch size can achieve global
linear convergence.

Growing the batch size allows R-SSN to achieve local quadratic convergence.

R-SSN for self-concordant functions achieves a linear rate.

Stochastic BFGS converges globally at a Q-linear rate with only constant batch-size.

Stochastic second-order methods converge faster than first-order methods in practice.
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Thank youl!

Paper: https://arxiv.org/abs/1910.04920
Code: https://github.com/IssamLaradji/ssn


https://arxiv.org/abs/1910.04920
https://github.com/IssamLaradji/ssn
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