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Contributions

» We prove that, under a strong growth condition on the stochastic gradients, SGD with » Weak growth condition (WGC):
Nesterov momentum attains the accelerated convergence rate of the deterministic setting.

» Under this growth condition, we prove that SGD converges as fast as full-batch gradient 2 .
v ° e - E, [VE(w, 2)||” < 2pL[f(w) — f(w")]. (5)
descent for (strongly)-convex and non-convex functions. |
» We show that a weaker growth condition is satisfied for smooth, convex losses for Equivalently, in the finite-sum setting,
over-parametrized models that interpolate the data. E; vai(W)H2 < 2pL[f(w) — f(w¥)]. (6)
» We show that these results lead to a modified perceptron algorithm that has an accelerated > Relation between the WGC and SGC-

rate of decrease on the number of mistakes.
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General Setup [

[-smoothness, p-SGC, — p-WGC

Objective: Find w* € arg min f(w) assuming access to unbiased noisy gradients Vf(w, z) such
that |, [Vf(w, z)] = Vf(w). Assumptions on f(x): Convergence of constant step-size SGD under the WGC

» [-smoothness and pi-strong convexity.
» Strong Growth Condition (SGC): E, |V (w, 2)||* < p ||V Ff(w)]*. Theorem (Strongly-convex)
> Important special case: Finite sums: f(w) =27, fi(w).
> SGC = E;|VAi(w)|" < p[|[VF(w)|"

» Interpolation: V£ (w*) = 0.

k
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Algorithms E w1 — w'||” < ( - ﬁ) lwo — w|”.

» Constant step-size Stochastic Gradient Descent (SGD):
Wir1 = wi — 0V F(wi, z¢) (1) Theorem (Convex)

» Constant step-size SGD with Nesterov acceleration:

Under L-smoothness, pi-strong-convexity, p-WGC, SGD with a constant step-size n =
achieves the following rate:

Under L-smoothness, convexity, p-WGC, SGD with a constant step-size n = V}L and iterate
wii1 = Ck — VI (Ck, zk) (2) averaging achieves the following rate:
G = v (1= iy (3) e AL p) o — wf
Vir1 = Brvk + (1 — Bk)Ck — mn VI (Cks 2k)- (4) [F(wi)] = f(w) = B '
k .
Here, w, = [Z;le] Is the averaged iterate after k iterations.

Growth conditions in practice

— e If the function f(-) is convex and has a finite-sum structure for a model that interpolates the
Hie P (1 — /E data and L.x is the maximum smoothness constant amongst the functions f,(-), then for all

Vi

w, Ei |V A(w)[|* < 2Lmax [F(w) — F(w*)]

1 | WOkb 1
Fht1 = (k+1)/2 k= B b2 m+ =D : :
(1 _ M) VBkbiam + a P Accelerated perceptron using squared-hinge loss:
_ _ " » For linearly separable data with margin 7 and a finite support of size ¢, the squared-hinge
results in the following convergence rate: oss satisfies the SGC with the constant p — <.
k T
Ef(wy ) — F(w*) < (1— 3 {f(Wo) _ f(w") + H lwo — W*Hz} » If f(w,x,y) represents the loss on the point (x,y) and P(yx ' w, > 0) is the number of
i - p°L 2 | mistakes made by the algorithm after k iterations, then P(yx'w < 0) < E, ,f(w, x, y).

» Above lemmas + Theorem 2 — O ( 6k2) mistake-bound while only requiring one
gradient per iteration.

Theorem (Convex)

Under L-smoothness, convexity, p-SGC, SGD with Nesterov acceleration with
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results in the following convergence rate:
o 20°L
Ef(wicin) = F(w') < =7 llwo — w7 (a)7 = 0.1 (b) 7 = 0.05 (€)= 0.01 (d) = 0.005

Figure: Comparison of SGD and variants of accelerated SGD on a synthetic linearly separable dataset with margin
7. Accelerated SGD with = 7/L leads to faster convergence as compared to SGD with n = 1/L.

» First result showing that SGD with Nesterov momentum matches the rates of the
deterministic accelerated method.
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Convergence of constant step-size SGD

» Constant step-size SGD matches the deterministic rates of convergence for 7
(strongly)-convex functions (Schmidt, Le Roux '13).

Theorem (Non-Convex)

Under L-smoothness, p-SGC, SGD with a constant step-size 1 = - attains the following (a) CovType (b) Protein

pL
convergence rate: Figure: Comparison of SGD and accelerated SGD for learning a linear classifier with RBF features on the (a)

CovType and (b) Protein datasets. Accelerated SGD leads to better performance as compared to SGD with

min [E {HVIC(W,')HQ} < (2'0L> [f(wg) — F7]. n=1/L.

i=0.1,...k—1

» Can use the line-search procedure in (Schmidt, Le Roux, Bach'13) to obtain better
convergence In practice.
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