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Contributions

I We prove that, under a strong growth condition on the stochastic gradients, SGD with
Nesterov momentum attains the accelerated convergence rate of the deterministic setting.

I Under this growth condition, we prove that SGD converges as fast as full-batch gradient
descent for (strongly)-convex and non-convex functions.

I We show that a weaker growth condition is satisfied for smooth, convex losses for
over-parametrized models that interpolate the data.

I We show that these results lead to a modified perceptron algorithm that has an accelerated
rate of decrease on the number of mistakes.

General Setup

Objective: Find w∗ ∈ arg min f (w) assuming access to unbiased noisy gradients ∇f (w , z) such
that Ez [∇f (w , z)] = ∇f (w). Assumptions on f (x):

I L-smoothness and µ-strong convexity.

I Strong Growth Condition (SGC): Ez ‖∇f (w , z)‖2 ≤ ρ ‖∇f (w)‖2.

I Important special case: Finite sums: f (w) = 1
n

∑n
i=1 fi(w).

I SGC =⇒ Ei ‖∇fi(w)‖2 ≤ ρ ‖∇f (w)‖2.

I Interpolation: ∇fi(w∗) = 0.

———————————————————————————————–
———————————————————————————————–

Algorithms

I Constant step-size Stochastic Gradient Descent (SGD):

wk+1 = wk − η∇f (wk, zk) (1)

I Constant step-size SGD with Nesterov acceleration:

wk+1 = ζk − η∇f (ζk, zk) (2)

ζk = αkvk + (1− αk)wk (3)

vk+1 = βkvk + (1− βk)ζk − γkη∇f (ζk, zk). (4)

Convergence of constant step-size SGD with Nesterov acceleration

Theorem (Strongly convex)

Under L-smoothness, µ-strong-convexity, ρ-SGC, SGD with Nesterov acceleration with
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results in the following convergence rate:

Ef (wk+1)− f (w∗) ≤
(

1−
√

µ

ρ2L

)k [
f (w0)− f (w∗) +
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]
.

Theorem (Convex)

Under L-smoothness, convexity, ρ-SGC, SGD with Nesterov acceleration with
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results in the following convergence rate:

Ef (wk+1)− f (w∗) ≤ 2ρ2L

k2
‖w0 − w∗‖2 .

I First result showing that SGD with Nesterov momentum matches the rates of the
deterministic accelerated method.

Convergence of constant step-size SGD

I Constant step-size SGD matches the deterministic rates of convergence for
(strongly)-convex functions (Schmidt, Le Roux ’13).

Theorem (Non-Convex)

Under L-smoothness, ρ-SGC, SGD with a constant step-size η = 1
ρL attains the following

convergence rate:

min
i=0,1,...k−1

E
[
‖∇f (wi)‖2

]
≤
(

2ρL

k

)
[f (w0)− f ∗] .

I First result for non-convex functions under interpolation-like conditions.

Theorem (Non-Convex + PL)

Under L-smoothness, ρ-SGC and if f satisfies the Polyak- Lojasiewicz inequality with constant
µ, then SGD with a constant step-size η = 1

ρL attains the following convergence rate:

E [f (wk+1)− f ∗] ≤
(

1− µ

ρL

)k

[f (w0)− f ∗] .

I Under specific conditions, the PL inequality is satisfied for non-convex functions occurring in
neural networks, matrix completion and phase retrieval.

Relaxing the assumptions

I Weak growth condition (WGC):

Ez ‖∇f (w , z)‖2 ≤ 2ρL[f (w)− f (w∗)]. (5)

Equivalently, in the finite-sum setting,

Ei ‖∇fi(w)‖2 ≤ 2ρL[f (w)− f (w∗)]. (6)

I Relation between the WGC and SGC:

L-smoothness, ρ-WGC, µ-PL =⇒ ρL

µ
-SGC

L-smoothness, ρ-SGC, =⇒ ρ-WGC

Convergence of constant step-size SGD under the WGC

Theorem (Strongly-convex)

Under L-smoothness, µ-strong-convexity, ρ-WGC, SGD with a constant step-size η = 1
ρL

achieves the following rate:

E ‖wk+1 − w∗‖2 ≤
(

1− µ

ρL

)k

‖w0 − w∗‖2 .

Theorem (Convex)

Under L-smoothness, convexity, ρ-WGC, SGD with a constant step-size η = 1
4ρL and iterate

averaging achieves the following rate:

E[f (w̄k)]− f (w∗) ≤ 4L (1 + ρ) ‖w0 − w∗‖2

k
.

Here, w̄k =
[
∑k

i=1wi]
k is the averaged iterate after k iterations.

Growth conditions in practice

Proposition

If the function f (·) is convex and has a finite-sum structure for a model that interpolates the
data and Lmax is the maximum smoothness constant amongst the functions fi(·), then for all
w, Ei ‖∇fi(w)‖2 ≤ 2Lmax [f (w)− f (w∗)]

Accelerated perceptron using squared-hinge loss:

I For linearly separable data with margin τ and a finite support of size c , the squared-hinge
loss satisfies the SGC with the constant ρ = c

τ 2.

I If f (w , x , y) represents the loss on the point (x , y) and P(yx>wk > 0) is the number of
mistakes made by the algorithm after k iterations, then P(yx>w 6 0) 6 Ex ,y f (w , x , y).

I Above lemmas + Theorem 2 =⇒ O
(

1
τ 6k2

)
mistake-bound while only requiring one

gradient per iteration.

Experiments

(a) τ = 0.1 (b) τ = 0.05 (c) τ = 0.01 (d) τ = 0.005

Figure: Comparison of SGD and variants of accelerated SGD on a synthetic linearly separable dataset with margin
τ . Accelerated SGD with η = τ/L leads to faster convergence as compared to SGD with η = 1/L.

(a) CovType (b) Protein

Figure: Comparison of SGD and accelerated SGD for learning a linear classifier with RBF features on the (a)
CovType and (b) Protein datasets. Accelerated SGD leads to better performance as compared to SGD with
η = 1/L.

I Can use the line-search procedure in (Schmidt, Le Roux, Bach’13) to obtain better
convergence in practice.
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