

Fast and Faster Convergence of SGD for **Over-Parameterized Models**

Sharan Vaswani¹ Francis Bach² Mark Schmidt¹ ² University of British Columbia ² INRIA, ENS, PSL Research University

Contributions

- ▶ We prove that, under a strong growth condition on the stochastic gradients, SGD with Nesterov momentum attains the accelerated convergence rate of the deterministic setting.
- Under this growth condition, we prove that SGD converges as fast as full-batch gradient descent for (strongly)-convex and non-convex functions.
- ▶ We show that a weaker growth condition is satisfied for smooth, convex losses for over-parametrized models that interpolate the data.
- ▶ We show that these results lead to a modified perceptron algorithm that has an accelerated rate of decrease on the number of mistakes.

General Setup

Objective: Find $w^* \in \arg\min f(w)$ assuming access to unbiased noisy gradients $\nabla f(w, z)$ such that $\mathbb{E}_{z}[\nabla f(w, z)] = \nabla f(w)$. Assumptions on f(x):

- \blacktriangleright *L*-smoothness and μ -strong convexity.
- **Strong Growth Condition (SGC)**: $\mathbb{E}_{z} \|\nabla f(w, z)\|^{2} \leq \rho \|\nabla f(w)\|^{2}$. • Important special case: Finite sums: $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$.

Relaxing the assumptions

Weak growth condition (WGC):

$$\mathbb{E}_{z} \left\| \nabla f(w, z) \right\|^{2} \leq 2\rho L[f(w) - f(w^{*})].$$

(5)

(6)

Equivalently, in the finite-sum setting,

$$\mathbb{E}_i \left\|\nabla f_i(w)\right\|^2 \leq 2\rho L[f(w) - f(w^*)].$$

Relation between the WGC and SGC:

L-smoothness,
$$\rho$$
-WGC, μ -PL $\implies \frac{\rho L}{\mu}$ -SGC
L-smoothness, ρ -SGC, $\implies \rho$ -WGC

Convergence of constant step-size SGD under the WGC

Theorem (Strongly-convex)

- ► SGC $\implies \mathbb{E}_i \|\nabla f_i(w)\|^2 \le \rho \|\nabla f(w)\|^2$.
- Interpolation: $\nabla f_i(w^*) = 0$.

Algorithms

Constant step-size Stochastic Gradient Descent (SGD):

$$w_{k+1} = w_k - \eta \nabla f(w_k, z_k) \tag{1}$$

Constant step-size SGD with Nesterov acceleration:

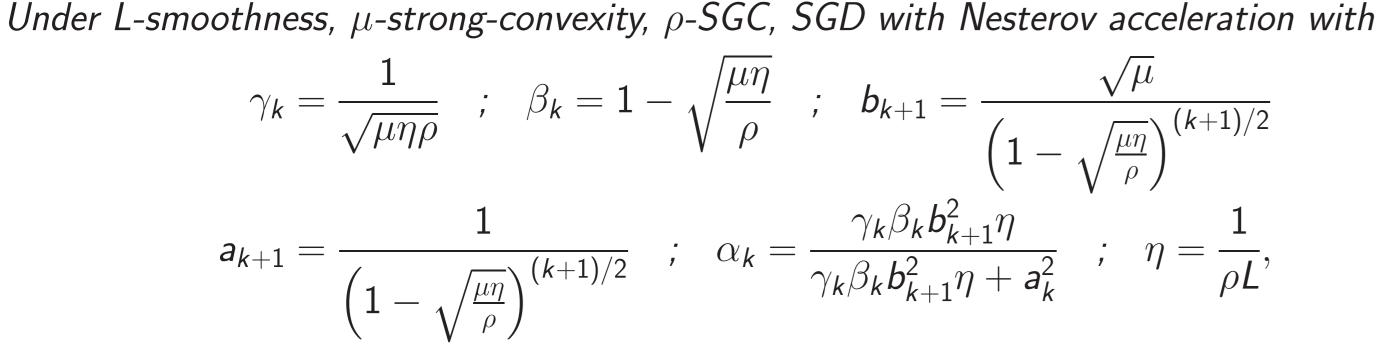
$$w_{k+1} = \zeta_k - \eta \nabla f(\zeta_k, z_k)$$

$$\zeta_k = \alpha_k v_k + (1 - \alpha_k) w_k$$

$$v_{k+1} = \beta_k v_k + (1 - \beta_k) \zeta_k - \gamma_k \eta \nabla f(\zeta_k, z_k).$$

Convergence of constant step-size SGD with Nesterov acceleration

Theorem (Strongly convex)



Under L-smoothness, μ -strong-convexity, ρ -WGC, SGD with a constant step-size $\eta = \frac{1}{\rho L}$ achieves the following rate:

$$\mathbb{E} \| w_{k+1} - w^* \|^2 \le \left(1 - \frac{\mu}{\rho L} \right)^k \| w_0 - w^* \|^2.$$

Theorem (Convex)

(2)

(3)

(4)

Under L-smoothness, convexity, ho-WGC, SGD with a constant step-size $\eta = \frac{1}{4\rho L}$ and iterate averaging achieves the following rate:

$$\mathbb{E}[f(\bar{w}_k)] - f(w^*) \leq \frac{4L(1+\rho) \|w_0 - w^*\|^2}{k}.$$

Here, $\bar{w}_k = \frac{\left[\sum_{i=1}^k w_i\right]}{k}$ is the averaged iterate after k iterations.

Growth conditions in practice

Proposition

If the function $f(\cdot)$ is convex and has a finite-sum structure for a model that interpolates the data and L_{max} is the maximum smoothness constant amongst the functions $f_i(\cdot)$, then for all $w, \mathbb{E}_{i} \|\nabla f_{i}(w)\|^{2} \leq 2L_{max} [f(w) - f(w^{*})]$

Accelerated perceptron using squared-hinge loss:

results in the following convergence rate:

$$\mathbb{E}f(w_{k+1}) - f(w^*) \leq \left(1 - \sqrt{\frac{\mu}{\rho^2 L}}\right)^k \left[f(w_0) - f(w^*) + \frac{\mu}{2} \|w_0 - w^*\|^2\right].$$

Theorem (Convex)

Under L-smoothness, convexity, ρ -SGC, SGD with Nesterov acceleration with

$$\gamma_{k} = \frac{\frac{1}{\rho} + \sqrt{\frac{1}{\rho^{2}} + 4\gamma_{k-1}^{2}}}{2} \quad ; \quad a_{k+1} = \gamma_{k}\sqrt{\eta\rho} \quad ; \quad \alpha_{k} = \frac{\gamma_{k}\eta}{\gamma_{k}\eta + a_{k}^{2}} \quad ; \quad \eta = \frac{1}{\rho L}$$

results in the following convergence rate:

$$\mathbb{E}f(w_{k+1}) - f(w^*) \leq \frac{2\rho^2 L}{k^2} \|w_0 - w^*\|^2.$$

First result showing that SGD with Nesterov momentum matches the rates of the deterministic accelerated method.

Convergence of constant step-size SGD

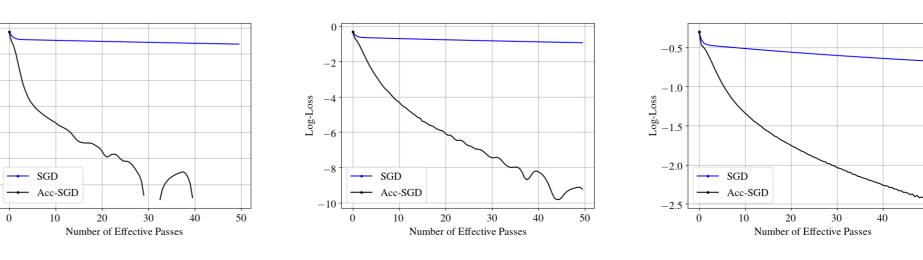
Constant step-size SGD matches the deterministic rates of convergence for (strongly)-convex functions (Schmidt, Le Roux '13).

Theorem (Non-Convex)

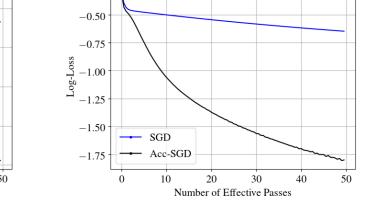
Under L-smoothness, ρ -SGC, SGD with a constant step-size $\eta = \frac{1}{\rho I}$ attains the following convergence rate:

- For linearly separable data with margin τ and a finite support of size c, the squared-hinge loss satisfies the SGC with the constant $\rho = \frac{c}{\tau^2}$.
- ▶ If f(w, x, y) represents the loss on the point (x, y) and $\mathbb{P}(yx^{\top}w_k \ge 0)$ is the number of mistakes made by the algorithm after k iterations, then $\mathbb{P}(yx^{\top}w \leq 0) \leq \mathbb{E}_{x,y}f(w, x, y)$.
- Above lemmas + Theorem 2 $\implies O\left(\frac{1}{\tau^6 k^2}\right)$ mistake-bound while only requiring one gradient per iteration.

Experiments



(b) au = 0.05



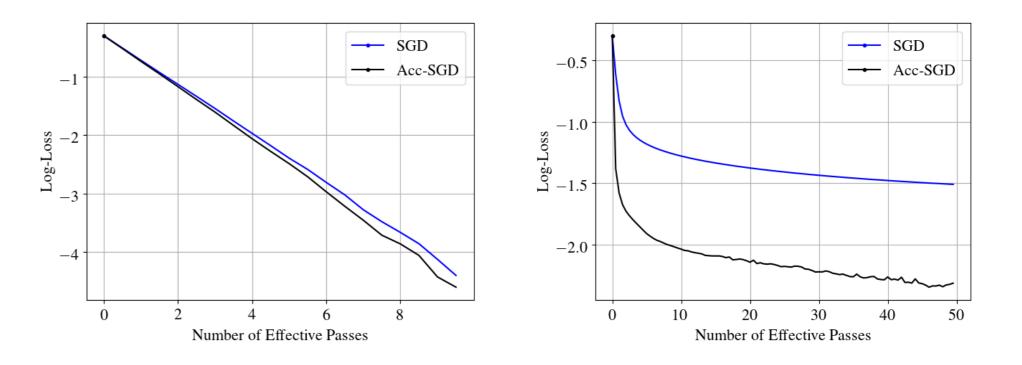
(a) au= 0.1

(c) $\tau = 0.01$

(b) Protein

(d) $\tau = 0.005$

Figure: Comparison of SGD and variants of accelerated SGD on a synthetic linearly separable dataset with margin τ . Accelerated SGD with $\eta = \tau/L$ leads to faster convergence as compared to SGD with $\eta = 1/L$.

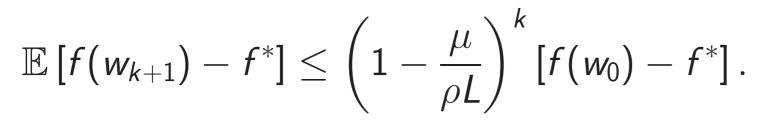


$$\min_{k=0,1,\ldots,k-1} \mathbb{E}\left[\left\| \nabla f(w_i) \right\|^2 \right] \leq \left(\frac{2\rho L}{k} \right) \left[f(w_0) - f^* \right].$$

First result for non-convex functions under interpolation-like conditions.

Theorem (Non-Convex + PL)

Under L-smoothness, p-SGC and if f satisfies the Polyak- Lojasiewicz inequality with constant μ , then SGD with a constant step-size $\eta = \frac{1}{\rho L}$ attains the following convergence rate:



Under specific conditions, the PL inequality is satisfied for non-convex functions occurring in neural networks, matrix completion and phase retrieval.

(a) CovType

Figure: Comparison of SGD and accelerated SGD for learning a linear classifier with RBF features on the (a) CovType and (b) Protein datasets. Accelerated SGD leads to better performance as compared to SGD with $\eta = 1/L.$

Can use the line-search procedure in (Schmidt, Le Roux, Bach'13) to obtain better convergence in practice.

Related Work

- Schmidt, Le Roux'13: "Fast convergence of stochastic gradient descent under a strong" growth condition."
- Cevher, Vu'18: "On the linear convergence of the stochastic gradient method with constant step-size."
- ► Ma, Bassily, Belkin'18: "The power of interpolation: Understanding the effectiveness of SGD in modern over-parametrized learning."
- ► Liu, Belkin'18: "Mass: an accelerated stochastic method for over-parametrized learning."