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Motivation

Policy Gradient (PG) methods are widely used in practice.
✓ The policy gradient objective is non-concave. Under smoothness assumptions, PG methods

can attain convergence to a stationary point.
✓ In certain settings (e.g. with a tabular parameterization), vanilla PG methods can achieve

global convergence to the optimal policy [Agarwal et al., 2021, Mei et al., 2020, 2023, Yuan
et al., 2022].

Prior theoretically principled PG methods:
× Require oracle-like knowledge about the environment (e.g. optimal action, the reward gap in

multi-armed bandits) to set algorithm parameters, making them impractical.
× Use conservative choices of algorithm parameters and result in poor empirical performance.

Aim: Design practical PG algorithms while retaining theoretical guarantees.
This talk: An optimization perspective on (stochastic) unregularized softmax policy
gradient methods in the tabular setting (finite states/actions) with a focus on developing
practical algorithms.
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Problem Formulation

Infinite-horizon discounted MDP: M = ⟨S,A, p, r , ρ, γ⟩ with finite states and actions
(S = |S| and A = |A|).

Distributions induced by policy π: For each state s ∈ S, π(·|s) over actions. State
occupancy measure: dπ(s) = (1 − γ)

∑∞
τ=0 γ

τP(sτ = s | s0 ∼ ρ, aτ ∼ π(·|sτ )).
Expected discounted return for π: J(π) = Es0,a0,...[

∑∞
τ=0 γ

τ r(sτ , aτ )], where
s0 ∼ ρ, aτ ∼ π(·|sτ ), and sτ+1 ∼ p(·|sτ , aτ ).
Objective: Given a set of feasible policies Π, maxπ∈Π J(π). π∗ := argmaxπ∈Π J(π).

Softmax tabular parameterization: For parameters θ ∈ RS×A, the set Π consists of policies
πθ : S → ∆A s.t. πθ(a|s) = exp(θ(s,a))/

∑
a′∈A exp(θ(s,a′)).

Abstract out the objective as f (θ) := J(πθ) with f ∗ := maxθ f (θ) to potentially extend the
results to convex/constrained MDPs.
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Problem Formulation

Properties of f :

f is twice-differentiable but non-concave in θ.

f is uniform smooth i.e. there exists a constant L ∈ (0,∞) s.t. ∀θ, ∇2f (θ) ⪯ L ISA.
E.g. L = 5

2 for bandit problems.

f is non-uniform smooth i.e. there exists a constant L1 ∈ (0,∞) s.t. ∀θ,
∇2f (θ) ⪯ L1 ∥∇f (θ)∥ ISA, i.e. optimization landscape is flatter closer to a stationary point.
E.g. L1 = 3 for bandit problems.

f satisfies a non-uniform Łojasiewciz condition, i.e. for all θ, there exists a C (θ) ∈ (0,∞)

s.t. ∥∇f (θ)∥2 ≥ C (θ) [f ∗ − f (θ)]. E.g. C (θ) ∝ πθ(a
∗) for bandit problems.

Sufficient exploration assumption for MDPs: Similar to Mei et al. [2020], we assume that
the starting state distribution satisfies mins ρ(s) > 0 and hence C∞ := maxπ

∥∥∥ dπ
ρ

ρ

∥∥∥
∞

< ∞.
Allows us to exclusively focus on the optimization aspects of the problem.
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Softmax policy gradient

Softmax policy gradient: At iteration t ∈ [T ], the SPG update is:

θt+1 = θt + ηt∇f (θt) ,

where ηt is the step-size. For finite MDPs, [∇f (θ)]s,a =
dπθ (s)πθ(a|s)Aπθ (s,a)

1−γ .

Assume ∇f (θ) can be computed exactly. It is possible to account for the estimation error in
the policy gradients [Agarwal et al., 2021].

What is known for softmax PG∗: For a target ϵ > 0,

✓ SPG with ηt =
1
L and T = O(1/ϵ) ensures that f ∗ − f (θT ) ≤ ϵ [Mei et al., 2020].

× In practice, using a step-size that depends on global smoothness constants is often too
conservative and results in poor empirical performance.

✓ Normalized SPG with an update: θt+1 = θt + η ∇f (θ)
∥∇f (θ)∥ , η = 1

2L1
and T = O(log(1/ϵ))

ensures that f ∗ − f (θT ) ≤ ϵ [Mei et al., 2021b].
× For finite MDPs, L1 depends on C∞ for which we can only obtain loose upper-bounds.

∗Natural policy gradient with an exact line-search/adaptive step-sizes can obtain a linear convergence rate [Bhandari and
Russo, 2021, Khodadadian et al., 2021].
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Softmax policy gradient

Idea: Use a line-search to exploit the uniform smoothness and automatically set the step-size.

Backtracking Armijo line-search: At every iteration t, start from an initial guess for the step-size
(ηmax) and backtrack until the Armijo condition is satisfied.

f (θt + ηt∇f (θt)) ≥ f (θt) + h ηt∥∇f (θt)∥2
2 , (Armijo condition)

where h ∈ (0, 1) is a hyper-parameter.

Above procedure guarantees that ηt ≥ min{2(1−h)/L, ηmax}.
Theorem [LARV’24]: SPG with the backtracking Armijo line-search (with h = 1

2 ) and
T = O(1/ϵ) iterations ensures that f ∗ − f (θT ) ≤ ϵ

Proof : Exploit the Łojasiewciz property with the standard proof for Armijo line-search on
smooth functions. Guarantee that the non-uniform Łojasiewciz constant C (θt) > 0 for all t.

Q: Can we design a line-search to exploit the non-uniform smoothness and attain linear
convergence for SPG?
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Softmax policy gradient

Idea: If f is L1 non-uniform smooth, then, g(θ) = ln(f ∗ − f (θ)) is O(L1)-uniform smooth
(similar property holds for the logistic loss [Ji and Telgarsky, 2018]). Use backtracking Armijo
line-search on g(θ).

Backtracking Armijo line-search: At every iteration t, start from an initial guess for the step-size
(ηmax) and backtrack until the following condition is satisfied.

ln(f ∗ − f (θt + ηt ∇f (θt))) ≤ ln(f ∗ − f (θt))− h ηt
∥∇f (θt)∥2

2
f ∗ − f (θt)

(Armijo condition for log-loss).

Above procedure guarantees that ηt ≥ min
{
ηmax,

2(1−h)
O(L1) [f ∗−f (θt)]

}
.

Theorem [LARV’24]: SPG with the backtracking line-search using the Armijo condition for
the log-loss (with h = 1

2 ) and and T = O(log(1/ϵ)) ensures that f ∗ − f (θT ) ≤ ϵ.
× Similar to the Polyak step-size [Polyak, 1987], the above condition requires knowledge of f ∗.

In practice, if the rewards are in [0, 1], estimate f ∗ by 1
1−γ .

✓ Experimentally, on tabular MDPs, given a starting state distribution with fulll support, SPG
+ line-search can attain linear convergence and match the performance of policy iteration.

8



Softmax policy gradient

Idea: If f is L1 non-uniform smooth, then, g(θ) = ln(f ∗ − f (θ)) is O(L1)-uniform smooth
(similar property holds for the logistic loss [Ji and Telgarsky, 2018]). Use backtracking Armijo
line-search on g(θ).

Backtracking Armijo line-search: At every iteration t, start from an initial guess for the step-size
(ηmax) and backtrack until the following condition is satisfied.

ln(f ∗ − f (θt + ηt ∇f (θt))) ≤ ln(f ∗ − f (θt))− h ηt
∥∇f (θt)∥2

2
f ∗ − f (θt)

(Armijo condition for log-loss).

Above procedure guarantees that ηt ≥ min
{
ηmax,

2(1−h)
O(L1) [f ∗−f (θt)]

}
.

Theorem [LARV’24]: SPG with the backtracking line-search using the Armijo condition for
the log-loss (with h = 1

2 ) and and T = O(log(1/ϵ)) ensures that f ∗ − f (θT ) ≤ ϵ.
× Similar to the Polyak step-size [Polyak, 1987], the above condition requires knowledge of f ∗.

In practice, if the rewards are in [0, 1], estimate f ∗ by 1
1−γ .

✓ Experimentally, on tabular MDPs, given a starting state distribution with fulll support, SPG
+ line-search can attain linear convergence and match the performance of policy iteration.

8



Softmax policy gradient

Idea: If f is L1 non-uniform smooth, then, g(θ) = ln(f ∗ − f (θ)) is O(L1)-uniform smooth
(similar property holds for the logistic loss [Ji and Telgarsky, 2018]). Use backtracking Armijo
line-search on g(θ).

Backtracking Armijo line-search: At every iteration t, start from an initial guess for the step-size
(ηmax) and backtrack until the following condition is satisfied.

ln(f ∗ − f (θt + ηt ∇f (θt))) ≤ ln(f ∗ − f (θt))− h ηt
∥∇f (θt)∥2

2
f ∗ − f (θt)

(Armijo condition for log-loss).

Above procedure guarantees that ηt ≥ min
{
ηmax,

2(1−h)
O(L1) [f ∗−f (θt)]

}
.

Theorem [LARV’24]: SPG with the backtracking line-search using the Armijo condition for
the log-loss (with h = 1

2 ) and and T = O(log(1/ϵ)) ensures that f ∗ − f (θT ) ≤ ϵ.

× Similar to the Polyak step-size [Polyak, 1987], the above condition requires knowledge of f ∗.
In practice, if the rewards are in [0, 1], estimate f ∗ by 1

1−γ .
✓ Experimentally, on tabular MDPs, given a starting state distribution with fulll support, SPG

+ line-search can attain linear convergence and match the performance of policy iteration.

8



Softmax policy gradient

Idea: If f is L1 non-uniform smooth, then, g(θ) = ln(f ∗ − f (θ)) is O(L1)-uniform smooth
(similar property holds for the logistic loss [Ji and Telgarsky, 2018]). Use backtracking Armijo
line-search on g(θ).

Backtracking Armijo line-search: At every iteration t, start from an initial guess for the step-size
(ηmax) and backtrack until the following condition is satisfied.

ln(f ∗ − f (θt + ηt ∇f (θt))) ≤ ln(f ∗ − f (θt))− h ηt
∥∇f (θt)∥2

2
f ∗ − f (θt)

(Armijo condition for log-loss).

Above procedure guarantees that ηt ≥ min
{
ηmax,

2(1−h)
O(L1) [f ∗−f (θt)]

}
.

Theorem [LARV’24]: SPG with the backtracking line-search using the Armijo condition for
the log-loss (with h = 1

2 ) and and T = O(log(1/ϵ)) ensures that f ∗ − f (θT ) ≤ ϵ.
× Similar to the Polyak step-size [Polyak, 1987], the above condition requires knowledge of f ∗.

In practice, if the rewards are in [0, 1], estimate f ∗ by 1
1−γ .

✓ Experimentally, on tabular MDPs, given a starting state distribution with fulll support, SPG
+ line-search can attain linear convergence and match the performance of policy iteration.

8



Softmax policy gradient

Idea: If f is L1 non-uniform smooth, then, g(θ) = ln(f ∗ − f (θ)) is O(L1)-uniform smooth
(similar property holds for the logistic loss [Ji and Telgarsky, 2018]). Use backtracking Armijo
line-search on g(θ).

Backtracking Armijo line-search: At every iteration t, start from an initial guess for the step-size
(ηmax) and backtrack until the following condition is satisfied.

ln(f ∗ − f (θt + ηt ∇f (θt))) ≤ ln(f ∗ − f (θt))− h ηt
∥∇f (θt)∥2

2
f ∗ − f (θt)

(Armijo condition for log-loss).

Above procedure guarantees that ηt ≥ min
{
ηmax,

2(1−h)
O(L1) [f ∗−f (θt)]

}
.

Theorem [LARV’24]: SPG with the backtracking line-search using the Armijo condition for
the log-loss (with h = 1

2 ) and and T = O(log(1/ϵ)) ensures that f ∗ − f (θT ) ≤ ϵ.
× Similar to the Polyak step-size [Polyak, 1987], the above condition requires knowledge of f ∗.

In practice, if the rewards are in [0, 1], estimate f ∗ by 1
1−γ .

✓ Experimentally, on tabular MDPs, given a starting state distribution with fulll support, SPG
+ line-search can attain linear convergence and match the performance of policy iteration.

8



Outline

Problem Formulation

Softmax Policy Gradient

Stochastic Softmax Policy Gradient

Conclusion

9



Stochastic Softmax Policy Gradient

Cannot compute the policy gradient exactly, and need to estimate it via interactions with
the environment.

Require stochastic policy gradients ∇f̃ (θ) that are unbiased and have bounded variance: ∀θ,

E[∇f̃ (θ)] = ∇f (θ) ; E
∥∥∥∇f̃ (θ)−∇f (θ)

∥∥∥2

2
≤ σ2 < ∞

Running example: Stochastic multi-armed bandits for which f (θ) = ⟨πθ, r⟩.
At iteration t, sample action at ∼ πθt and construct the importance sampling (IS) reward
estimate r̂t(a) =

1{at=a}
πθt

(a)
Rt for each a ∈ A, and calculate ∇f̃ (θ) = ∇θ⟨πθ, r̂t⟩.

∇f̃ (θ) is unbiased and has bounded variance.
Can also construct such a gradient estimator for MDPs (rolling out trajectories and
truncating them at a random stopping time (dependent on γ)).
Stochastic softmax PG: At iteration t, construct ∇f̃ (θt), and update the parameters as:

θt+1 = θt + ηt∇f̃ (θt)

.
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Stochastic Softmax Policy Gradient

What is known for stochastic SPG∗: For a target ϵ > 0, Stochastic SPG:

with ηt ∝ ∥∇f (θt)∥ and T = O(1/ϵ2) ensures that E[f ∗ − f (θT )] ≤ ϵ [Mei et al., 2021a].
× The full gradient cannot be computed in the stochastic setting.
with ηt that depends on µ ∝ E[inft≥1[C (θt)]

2] and T = O(1/ϵ3) ensures that
mint∈[T ] E[f ∗ − f (θt)] ≤ ϵ [Yuan et al., 2022].
× For bandit problems, C (θ) ∝ πθ(a

∗) and hence µ is unknown.

Q: Can we design a practical stochastic SPG method that ensures global convergence and does
not require unknown problem-dependent constants?

Observation: Problem is equivalent to constructing a step-size schedule for SGD when
minimizing a smooth, non-convex function satisfying a gradient domination condition (with
parameter µ) without the knowledge of µ.

∗ Both natural policy gradient (NPG) and normalized SPG are too aggressive, do not explore enough and can commit to the
sub-optimal action in the stochastic on-policy setting [Mei et al., 2021a, Chung et al., 2021].
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Digression – SGD with exponentially decreasing step-sizes

Idea: Use exponentially decreasing step-sizes [Li et al., 2021,
Vaswani et al., 2022]. Specifically, for a fixed T , ηt := η0 αt

where η0 = 1
L and αt = αt where α :=

( 1
T

)1/T .

Exponential step-sizes lie between the constant and 1/t

decreasing step-sizes, implying that for t ∈ [T ], αt ∈
[ 1
t , 1

]
.

✓ When minimizing smooth, non-convex functions satisfying the
Polyak Łojasiewciz (PL) condition (with constant µ), SGD
with exponentially decreasing step-sizes requires
O(log(1/ϵ) + σ2/ϵ2) iterations to ensure an ϵ

sub-optimality [Li et al., 2021].

✓ The step-sizes do not require knowledge of µ.

× Compared to the PL condition, the softmax policy
optimization objective only satisfies a weaker (non-uniform)
gradient domination condition.
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Stochastic Softmax Policy Gradient

Theorem [LARV’24]: For a given ϵ ∈ (0, 1), running stochastic SPG with exponentially decreasing

step-sizes ηt = η0 α
t where η0 = 1

L and α =
( 1
T

) 1
T , results in the following convergence:

If E[f ∗ − f (θt)] > ϵ for all t ∈ [1,T ], µ ∝ E[inft≥1[C (θt)]
2] > 0 and κ := L

µ , then,

E[f ∗ − f (θT+1)] ≤ [f ∗ − f (θ1)]C1 exp

(
− α ϵT

κ ln(T )

)
+

C1 C2

2 L
ln2(T )σ2

ϵ2 T

Setting T = Õ
(
1/ϵ + σ2

/ϵ3
)

iterations ensures mint∈[1,T+1] E[f ∗ − f (θt)] ≤ ϵ.

✓ The rate is noise-adaptive and depends on σ. Recovers O(1/ϵ) convergence in the exact
setting (when σ = 0). The O(1/ϵ3) rate matches that of SGD when minimizing smooth
non-convex functions satisfying the Łojasiewciz condition [Fontaine et al., 2021].

✓ The algorithm does not require unknown problem-dependent constants.
Ensuring µ > 0 requires that πθt (a

∗) > 0. This is true for any finite T .
× The rate depends on µ which depends on the initialization/trajectory and can be small.
× Slower rate (in terms of T ) compared to [Mei et al., 2021a, 2023].
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Stochastic Softmax Policy Gradient

Observation [Mei et al., 2023]: In the bandit setting, stochastic gradients satisfy the strong
growth condition (SGC) [Schmidt and Roux, 2013, Vaswani et al., 2019] meaning that there
exists a problem-dependent constant ϱ ≥ 1 s.t ∀θ,

E
∥∥∥∇f̃ (θ)

∥∥∥2

2
≤ ϱ ∥∇f (θ)∥

As ∥∇f (θ)∥ → 0, ∥∇f̃ (θ)∥ → 0 =⇒ the variance decreases closer to a stationary point.

✓ Do not need to decrease the step-size. Running stochastic SPG with a constant step-size
η ∝ 1/ϱ and T = O(1/ϵ) ensures that E[f ∗ − f (θT )] ≤ ϵ [Mei et al., 2023]. Moreover, the
algorithm ensures that πθt (a

∗) > 0 for all t and limt→∞ πθt (a
∗) → 1.

× For bandit problems, ϱ ∝ ∆ := mini ̸=a∗ |r(a∗)− r(i)|. The mean reward vector r is
unknown in the stochastic setting, and the resulting algorithm cannot be implemented.

Q: Can we design a practical stochastic SPG method that achieves the faster O(1/ϵ) rate and
does not require unknown problem-dependent constants?
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unknown in the stochastic setting, and the resulting algorithm cannot be implemented.

Q: Can we design a practical stochastic SPG method that achieves the faster O(1/ϵ) rate and
does not require unknown problem-dependent constants?
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Stochastic Softmax Policy Gradient

Observation: Stochastic SPG with exponential step-sizes can adapt to the decreasing σt .

Theorem [LARV’24]: For a given ϵ ∈ (0, 1), running stochastic SPG with unbiased stochastic
gradients that are bounded, i.e. ∥∇f̃ (θ)∥ ≤ B , satisfy the SGC with ϱ ≥ 1 and using exponentially

decreasing step-sizes ηt = η0 α
t where η0 < 1

L2
1B

and α =
( 1
T

) 1
T results in the following

convergence:
If E[f ∗ − f (θt)] > ϵ for all t ∈ [1,T ] and T0 := T max

{
ln(ϱ η0)
ln(T ) , 0

}
, then,

E[f ∗ − f (θT+1)] ≤ [f ∗ − f (θ1)]C1 exp

(
− α ϵT

κ ln(T )

)
+

C2
∑T0−1

t=1 E[f ∗ − f (θt)]

ϵ2 T 2

Best case: Have knowledge of ϱ and can set η0 ≤ 1/ϱ. T0 = 0 and setting T = Õ(1/ϵ)

ensures that mint∈[1,T+1] E[f ∗ − f (θt)] ≤ ϵ. Matches the result in [Mei et al., 2023].
Worst case: Since ρ is unknown, setting η0 to be large can result in T0 = O(T ). Ensuring
mint∈[1,T+1] E[f ∗ − f (θt)] ≤ ϵ requires T = Õ(1/ϵ3) iterations.

✓ Using exponential step-sizes makes stochastic SPG robust to ϱ.
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Stochastic Softmax Policy Gradient for Bandits

✓ For stochastic multi-armed bandit problems with rewards in [0, 1], setting η0 ≤ 1
18 and using

importance-weighted reward estimates ensures the convergence rate on the previous slide.

✓ The result does not require the knowledge of problem-dependent constants (e.g. reward gap,
variance or distribution of the rewards) nor does it require any explicit exploration.
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Conclusion

✓ Developed practical, principled variants of (stochastic) softmax PG in the tabular setting.
✓ Similar results for softmax PG with entropy regularization.
× Step-sizes guaranteeing convergence of stochastic SPG are still quite conservative.

Q: Can we use larger (constant) step-sizes (beyond those dependent on smoothness, SGC)
and still guarantee theoretical convergence?
Yes! Recent paper (with Jincheng Mei, Bo Dai, Alekh Agarwal, Anant Raj, Dale
Schuurmans, Csaba Szepesvári) shows that stochastic SPG with any (potentially large)
constant step-size guarantees that limt→∞ πθt (a

∗) → 1.
Open questions: Do not have a handle on the algorithm’s non-asymptotic behaviour or the
convergence rate.

Future work:

Generalize to (non)-linear policy parameterization.
Generalize beyond softmax policies.
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Questions?

Papers: https://arxiv.org/abs/2405.13136
Contact: vaswani.sharan@gmail.com, michael_lu_3@sfu.ca
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