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Motivating example: clinical trials

• Do not have complete information about the effectiveness or side-effects of the drugs.
• Aim: Infer the “best” drug by running a sequence of trials.

• Abstraction to Multi-armed Bandits: Each drug choice is mapped to an arm and the
drug’s effectiveness is mapped to the arm’s reward.

• Administering a drug is an action that is equivalent to pulling the corresponding arm. The
trial goes on for T rounds.
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Bandits 101: problem setup

Initialize the expected rewards according to some prior knowledge.
for t = 1→ T do

SELECT: Use a bandit algorithm to decide which arm to pull.
ACT and OBSERVE: Pull the selected arm and observe the reward.
UPDATE: Update the estimated reward for the arm(s).

end

• Stochastic bandits: Reward for each arm is sampled i.i.d from its underlying distribution.
• Objective: Minimize the expected cumulative regret R(T ):

R(T ) =
T∑

t=1

(
E[Reward for best arm]− E[Reward for arm pulled in round t]

)
• Minimizing R(T ) boils down to a exploration-exploitation trade-off.
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Bandits 101: structured bandits

• In problems with a large number of arms, learning about each arm separately is inefficient.
=⇒ use a shared parameterization for the arms.

• Structured bandits: Each arm i has a feature vector xi and
there exists an unknown vector θ∗ such that E[reward for arm i ] = g(xi , θ

∗).
• Linear bandits: g(xi , θ

∗) = 〈xi , θ
∗〉.

• Generalized linear bandits: g is a strictly increasing, differentiable link function.
E.g. g(x , θ∗) = 1/(1 + exp(−〈xi , θ

∗〉)) for logistic bandits.
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Bandits 101: algorithms

• Optimism in the Face of Uncertainty (OFU): Uses closed-form high-probability
confidence sets.

• Theoretically optimal. Does not depend on the exact distribution of rewards.
• Poor empirical performance on typical problem instances.

• Thompson Sampling (TS): Randomized strategy that samples from a posterior
distribution.

• Good empirical performance on typical problem instances.
• Depends on the reward distributions. Computationally expensive in the absence of

closed-form posteriors. Theoretically sub-optimal in the (generalized) linear bandit setting.

Can we obtain the best of OFU and TS?
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The RandUCB meta-algorithm

Theoretical study
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RandUCB Meta-algorithm

• Generic OFU algorithm: If µ̂i (t) is the mean reward for arm i at round t, Ci (t) is the
corresponding confidence set, pick the arm with the largest upper confidence bound.

it = arg max
i∈[K ]

{µ̂i (t) + β Ci (t)} .

Here, β is deterministic and chosen to trade off exploration and exploitation optimally.

• RandUCB: Replace deterministic β by a random variable Zt :

it = arg max
i∈[K ]

{µ̂i (t) + Zt Ci (t)} .

Z1, . . . ,ZT are i.i.d. samples from the sampling distribution.
• Uncoupled RandUCB:

it = arg max
i∈[K ]

{µ̂i (t) + Zi,t Ci (t)} .
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RandUCB Meta-algorithm

• General sampling distribution: Discrete distribution on the interval [L,U], supported on
M equally-spaced points, α1 = L, . . . , αM = U. Define pm := P (Z = αm).

• Default sampling distribution: Gaussian distribution truncated in the [0,U] interval with
tunable hyper-parameters ε, σ > 0 such that pM = ε and

For 1 ≤ m ≤ M − 1, pm ∝ exp(−α2
m/2σ2).

• Default choice across bandit problems: Coupled RandUCB with U = O(β), M = 10,
ε = 10−8, σ = 0.25.
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RandUCB for multi-armed bandits

• Let Yi (t) be the sum of rewards obtained for arm i until round t and si (t) be the number
of pulls for arm i until round t.
Mean µ̂i (t) = Yi (t)/si (t) and confidence interval Ci (t) =

√
1/si (t).

• OFU algorithm for MAB: Pull each arm once, and for t > K , pull arm

it = arg max
i

{
µ̂i (t) + β

√
1

si (t)

}
.

• UCB1 [Auer, Cesa-Bianchi and Fischer 2002]: β =
√

2 ln(T )
• RandUCB: L = 0,U = 2

√
ln(T ).

• We can also construct optimistic Thompson sampling and adaptive ε-greedy algorithms.
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Regret of RandUCB for multi-armed bandits

Theorem 1 (Instance-dependent regret of uncoupled RandUCB for MAB)

If ∆i = µ1 − µi is the gap for arm i, and Z takes M different values 0 ≤ α1 ≤ · · · ≤ αM with
probabilities p1, p2, . . . , pM , the regret R(T ) of uncoupled RandUCB can be bounded as:

O
(∑

∆i>0
∆−1

i

)
×
(

M
pM

+ Te−2α2
M + α2

M

)
.

• Using U = αM = 2
√

ln T results in the problem-dependent O
(
ln T ×

(∑
∆−1

i
))

regret.
• Standard reduction implies a problem-independent Õ(

√
KT ) regret matching that of

UCB1 and Thompson sampling [Agrawal and Goyal, 2012].
• We also show the same problem-independent regret for the default coupled variant of

RandUCB.
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RandUCB for linear bandits

• Let Xt = xit and Mt := λId +
∑t−1
`=1 X`X T

` . θ̂t := M−1
t
∑t−1
`=1 Y`X`. Mean µ̂i (t) = 〈θ̂t , xi〉

and confidence width Ci (t) = ‖xi‖M−1
t

.

• OFU algorithm for linear bandit: Pull arm:

it = arg max
i∈[K ]

{
〈θ̂t , xi〉+ β ‖xi‖M−1

t

}
.

• OFU [Abbasi-Yadkori, Pál and Szepesvári 2011]: β =
√
λ+ 1

2
√

ln(T 2λ−d det(Mt)).

• RandUCB: L = 0, U = 3
[√

λ+ 1
2
√

d ln (T + T 2/dλ)
]
.
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Regret of RandUCB for linear bandits

Theorem 2

Let c1 =
√
λ+ 1

2
√

d ln (T + T 2/dλ) and c3 := 2d ln
(
1 + T

dλ
)
. For any c2 > c1, the regret of

RandUCB for linear bandits is bounded by

(c1 + c2)
(

1 + 2
P (Z > c1)− P (|Z | > c2)

)
×
√

c3T + T P (|Z | > c2) + 1.

• Setting U = 3c1 < c2 ensures P (Z > c1) is a positive constant and P (|Z | > c2) = 0,
resulting in Õ(d

√
T ) regret bound.

• Regret bound does not depend on K and holds for infinite arms.
• Matches the bound of OFU in [Abbasi-Yadkori et al., 2011] and is better than the

O(d3/2
√

T ) bound for TS [Agrawal and Goyal, 2013].
• We prove a similar Õ(d

√
T ) bound for generalized linear bandits.

11



Regret of RandUCB for linear bandits

Theorem 2

Let c1 =
√
λ+ 1

2
√

d ln (T + T 2/dλ) and c3 := 2d ln
(
1 + T

dλ
)
. For any c2 > c1, the regret of

RandUCB for linear bandits is bounded by

(c1 + c2)
(

1 + 2
P (Z > c1)− P (|Z | > c2)

)
×
√

c3T + T P (|Z | > c2) + 1.

• Setting U = 3c1 < c2 ensures P (Z > c1) is a positive constant and P (|Z | > c2) = 0,
resulting in Õ(d
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√

T ) bound for generalized linear bandits.

11



Regret of RandUCB for linear bandits

Theorem 2

Let c1 =
√
λ+ 1

2
√

d ln (T + T 2/dλ) and c3 := 2d ln
(
1 + T

dλ
)
. For any c2 > c1, the regret of

RandUCB for linear bandits is bounded by

(c1 + c2)
(

1 + 2
P (Z > c1)− P (|Z | > c2)

)
×
√

c3T + T P (|Z | > c2) + 1.

• Setting U = 3c1 < c2 ensures P (Z > c1) is a positive constant and P (|Z | > c2) = 0,
resulting in Õ(d
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The RandUCB meta-algorithm

Empirical study
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Experiments - multi-armed bandit

• B-TS: Thompson Sampling with a beta posterior
• KL-UCB [Garivier and Cappé, 2011]: UCB with tighter confidence intervals.
• Randomized exploration baselines: Giro [Kveton et al., 2019c], PHE [Kveton et al., 2019b]
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Experiments - linear bandit

• Lin-TS: Thompson Sampling with a Gaussian posterior
• ε-greedy [Langford and Zhang, 2008]
• Randomized exploration baseline: LinPHE [Kveton et al., 2019a]
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Experiments - logistic bandit

• GLM-TS [Kveton et al., 2019d]: TS with a Laplace approximation to the posterior.
• GLM-UCB [Filippi et al., 2010] and UCB-GLM [Li et al., 2017]
• ε-greedy [Langford and Zhang, 2008]
• Randomized exploration baseline: LogPHE [Kveton et al., 2019d]
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Proposed RandUCB, a generic meta-algorithm achieving the
theoretical performance of UCB and the practical perfor-
mance of Thompson sampling.

Paper: https://arxiv.org/abs/1910.04928
Code: https://github.com/vaswanis/randucb
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