
Convergence of Softmax Policy Gradient:
Incorporating Entropy Regularization and
Handling Linear Function Approximation

by

Matin Aghaei

B.Sc., Amirkabir University of Technology, 2022

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Matin Aghaei 2025
SIMON FRASER UNIVERSITY

Spring 2025

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Matin Aghaei

Degree: Master of Science

Thesis title: Convergence of Softmax Policy Gradient:
Incorporating Entropy Regularization and Handling
Linear Function Approximation

Committee: Chair: Manolis Savva
Associate Professor, Computing Science

Sharan Vaswani
Supervisor
Assistant Professor, Computing Science

Mo Chen
Committee Member
Associate Professor, Computing Science

Hang Ma
Examiner
Assistant Professor, Computing Science

ii

Abstract

Policy gradient methods are a fundamental tool in reinforcement learning, enabling the direct
optimization of parameterized policies. This thesis studies the softmax policy gradient (PG)
method in two novel contexts: when (i) using entropy regularization and (ii) linear function
approximation. Entropy regularization helps maintain the stochasticity in the policy, and
has been shown to aid policy optimization by smoothing the loss landscape. By focusing on
multi-armed bandits and tabular Markov decision processes (MDPs), we demonstrate that
using softmax PG with a decaying entropy coefficient ensures robust global convergence to
the optimal policy. The second part of this thesis considers linear function approximation
which is important for handling large state-action spaces. In particular, we consider the
linear bandit setting, and prove that Softmax PG is guaranteed to converge to the globally
optimal policy only when the features exhibit a specific structure. For both parts of the
thesis, we empirically validate our theoretical results and illustrate how our findings can
inform the design of more scalable and reliable Softmax PG algorithms in practice.

Keywords: Reinforcement Learning; Bandits; Softmax Policy Gradient; Entropy Regular-
ization; Linear Function Approximation; Convergence Analysis

iii

Preface

The main matter of this thesis is based on two publications.

• Towards Principled, Practical Policy Gradient for Bandits and Tabular MDPs. Michael
Lu, Matin Aghaei, Anant Raj, and Sharan Vaswani, Reinforcement Learning Conference
(RLC), 2024 .

Matin Aghaei is the primary contributor to the “Policy Gradient with Entropy Regular-
ization” section which forms the basis of Chapter 3 of the thesis. Matin was responsible
for the writing, theoretical results and experimental evaluation. Michael Lu and Anant
Raj provided constructive feedback on the theoretical analysis.

• The second paper entitled On the Global Convergence of Softmax Policy Gradient for
Deterministic and Stochastic Linear Bandits. Qiushi Lin, Jincheng Mei, Matin Aghaei,
Michael Lu, Bo Dai, Alekh Agarwal, Dale Schuurmans, Csaba Szepesvári, and Sharan
Vaswani extends and improves the results in Mei et al. (2024a). This paper is under
preparation and forms the basis of Chapter 4 in this thesis.

The first three sections of Chapter 4 motivate the problem and are mainly adapted
from the original paper (Mei et al., 2024a). Matin Aghaei is the major contributor
to the writing and theoretical results for the exact setting, while Qiushi Lin is the
primary contributor to the theoretical results in the stochastic setting. Matin was
responsible for the design and implementation of all experiments. Michael Lu assisted
with the writing and theoretical results in both the exact and stochastic settings.

Both works were supervised by Sharan Vaswani, who provided valuable guidance, consis-
tent feedback, and support throughout the development of this research.

iv

Acknowledgements

I am profoundly grateful to many individuals whose guidance, support, and encouragement
have been indispensable throughout the journey of completing this thesis.

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr.
Sharan Vaswani. His unwavering guidance, insightful feedback, and constant support have
been the cornerstone of my research journey. Sharan’s expertise in reinforcement learning
and optimization, combined with his genuine encouragement, inspired me to push boundaries
and strive for excellence in my work.

I am sincerely thankful to my collaborators who contributed significantly to this research.
Michael Lu, Qiushi Lin, Jincheng Mei, and Anant Raj have been invaluable colleagues. Their
expertise, constructive discussions, and collaborative spirit greatly enriched my research
experience. I deeply appreciate Michael’s assistance with writing and theoretical insights,
Qiushi’s and Jincheng’s outstanding theoretical contributions, and Anant’s guidance and
feedback. Working alongside such talented and supportive peers has been both inspiring and
enriching.

I also owe a great debt of gratitude to my family for their unconditional love, faith,
and endless support. Their belief in me provided the strength and motivation to overcome
challenges and stay focused on my goals. To my family, thank you for always standing by
me and encouraging me to pursue my aspirations.

A special note of thanks goes to my old friend and current roommate, Shayan Shafaghi.
Shayan’s friendship, understanding, and constant encouragement provided not only a com-
forting presence but also a source of motivation and sanity amidst the rigors of research. His
support and companionship have been invaluable through both the highs and lows of this
journey.

This thesis stands as a testament to the collaborative efforts, mentorship, and support I
have received from all of these individuals. I am deeply thankful to each one of them for
their contributions, guidance, and unwavering belief in my potential.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Preface iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Background . 1
1.2 Related Works . 2

1.2.1 Limitations and Challenges . 3
1.3 Thesis Contributions . 3

2 Background and Preliminaries 5
2.1 Fundamentals of Reinforcement Learning 5
2.2 Policy Optimization . 5
2.3 Policy Parameterization . 6
2.4 Properties of the Objective Function . 7

2.4.1 Smoothness and Non-Concavity . 7
2.4.2 Łojasiewicz Conditions . 7

2.5 Softmax Policy Gradient . 8
2.5.1 Exact Setting . 8
2.5.2 Stochastic Setting . 8

3 Softmax Policy Gradient with Entropy Regularization 10
3.1 Introduction . 10
3.2 Problem Formulation . 11

vi

3.3 Exact Setting . 12
3.4 Stochastic Setting . 15

3.4.1 Experimental Evaluation . 18
3.5 Discussion . 19

4 Linear Softmax Policy Gradient 21
4.1 Introduction . 21
4.2 Setting and Background . 23
4.3 The Limitations of Approximation Error in Characterizing Convergence . . 24

4.3.1 Global Convergence is Achievable with Non-zero Approximation Error 25
4.3.2 Global Convergence is Irrelevant to Non-zero Approximation Error . 26

4.4 Global Convergence For Linear Bandits In The Exact Setting 27
4.4.1 Warm up: Global Convergence when K = 3 28
4.4.2 Global Convergence for all K ≥ 3 . 30

4.5 Global Convergence For Linear Bandits In The Stochastic Setting 31
4.5.1 Decomposition of Stochastic Process 32
4.5.2 Asymptotic Global Convergence . 33
4.5.3 Rates of Convergence Convergence 34

4.6 Discussion . 34

5 Conclusion 36

Bibliography 38

Appendix A Proofs of Chapter 3 43
A.1 Definitions . 43
A.2 Proofs of Section 3.3 . 44

A.2.1 Proof of Theorem 1 . 44
A.2.2 Lemmas for the Bandit Setting . 48
A.2.3 Lemmas for Tabular MDP Setting 52

A.3 Proofs of Section 3.4 . 54
A.3.1 Proof of Theorem 2 . 54

A.4 Additional Lemmas . 62
A.4.1 Smoothness . 62
A.4.2 Stochastic Policy Gradients . 63

Appendix B Proofs of Chapter 4 65
B.1 Definitions . 65
B.2 Proofs of Section 4.3 . 65

B.2.1 Proof of Proposition 3 . 65
B.3 Proofs of Section 4.4 . 66

vii

B.3.1 Warm up: Global Convergence when K = 3 66
B.3.2 Global Convergence for all K ≥ 3 . 70
B.3.3 Additional Lemmas . 73

B.4 Proofs of Section 4.5 . 77
B.4.1 Asymptotic Global Convergence . 77
B.4.2 Rate of Convergence . 82
B.4.3 Additional Lemmas . 85

B.5 Additional Lemmas . 93
B.6 Experiments . 104

viii

List of Tables

Table 2.1 Function and gradient expressions, uniform smoothness, and non-
uniform Łojasiewciz properties for bandits and MDPs with ξ = 0 (Mei
et al., 2020b). Here, a∗ is index of the optimal arm in the bandit problem,
and a∗(s) is the optimal action at state s in the MDP problem. . . . 7

Table 3.1 Entropy regularizer, uniform smoothness and non-uniform Łojasiewciz
condition with ξ = 1/2 for bandit and general tabular MDP settings
with entropy regularization. Here, H(πθ) := E

[∑∞
t=0−γt log πθ(at|st)

]
. 12

ix

List of Figures

Figure 3.1 Sub-optimality gap across various environments and initializations.
Top Row: the initial policy’s parameters is uniform, i.e. θ0(a) = 0 ∀a.
Bottom Row: the initial policy’s parameters is “bad”, i.e. θ0(a′) = 12
where a′ = arg mina r(a). PG-E-MS can converge to the optimal policy
unlike PG-E since the temperature τ is decreasing. Furthermore, under
“bad” initialization, where the worst arm has a high probability of
being chosen, PG-E-MS outperforms PG since the addition of entropy
allows the method to escape the initial flat region. On the other hand,
PG-E can escape the initial region quickly but cannot converge to the
optimal policy since τ is fixed. PG-DE has a good performance in all
settings, but requires oracle knowledge. 16

Figure 3.2 Expected sub-optimality gap across various environments with uni-
form initialization . 19

Figure 3.3 Expected sub-optimality gap across various environments with “bad”
initialization . 20

Figure 4.1 Visualizing the landscapes in the example problem instances. 26
Figure 4.2 The effect of feature conditions on convergence 30

x

Chapter 1

Introduction

1.1 Background

Reinforcement Learning (RL) is a fundamental paradigm in machine learning where agents
learn to make sequential decisions by interacting with an environment to maximize cumulative
reward (Sutton and Barto, 2018). As agents learn from trial and error, they adapt their
behavior to achieve better outcomes over time. For example, RL has enabled computer
programs to master complex board games like Go through self-play (Silver et al., 2016), and
has been successfully applied in robotics for tasks such as object grasping and navigation
(Kober et al., 2013). These successes highlight RL’s potential to solve complex decision-
making problems that are difficult to address with traditional methods.

A central challenge in RL is the policy optimization problem, where the goal is to find
an optimal policy that dictates the best action to take in each state to maximize expected
returns. A widely used approach to this problem is the softmax policy gradient (Softmax
PG) method, which directly parameterizes the policy using a softmax function, ensuring
that the resulting policy remains a probability distribution over actions. This differentiable
parameterization enables the use of gradient ascent to iteratively train policy parameters in
the direction of increasing expected reward (Agarwal et al., 2021; Mei et al., 2020b). The
smoothness of the softmax function facilitates stable updates, making Softmax PG naturally
applicable to continuous action spaces and scenarios where maintaining stochasticity in the
policy is beneficial.

Despite its success, analyzing the Softmax PG method is challenging due to the non-
concave nature of the policy optimization objective (Agarwal et al., 2021). Recent theoretical
work has made progress in understanding the convergence properties of Softmax PG in
simplified settings, such as tabular representations with access to exact gradients (Mei et al.,
2020b; Agarwal et al., 2021).

In practice, encouraging exploration is crucial due to non-convex optimization landscapes
where policies may prematurely converge to suboptimal deterministic strategies. Entropy
regularization augments the objective function to promote stochasticity, smoothing the

1

optimization surface, and helping the agent escape flat regions (Ahmed et al., 2019). However,
incorporating entropy regularization introduces its own theoretical complexities, such as
managing bias and determining appropriate decay strategies for the entropy coefficient.

In practical scenarios with large or continuous state and action spaces, representing
policies exactly becomes infeasible. To address this, function approximation is employed to
compactly represent policies and manage computational complexity. For instance, linear
function approximation or neural networks are used to generalize across similar states
and actions. Incorporating function approximation alters the structure of the optimization
landscape and introduces additional complexities, making the analysis of convergence
properties and performance guarantees more challenging and less understood.

By focusing on entropy regularization and linear function approximation, this thesis aims
to advance the understanding of Softmax PG, developing practical theoretically-principled
algorithms that navigate these challenges without relying on unrealistic assumptions, thereby
paving the way for robust convergence in more realistic settings.

1.2 Related Works

The softmax policy gradient method parameterizes the policy using the softmax function,
ensuring that the policy remains a valid probability distribution over actions. This method
has been extensively studied in the tabular setting, where states and actions are finite.

Specifically, in the exact setting where the rewards and transition probabilities are
known, Agarwal et al. (2021) proved that Softmax PG can attain asymptotic convergence to
an optimal policy despite the non-concave nature of the PG objective. Mei et al. (2020b)
improve this result and quantify the rate of convergence, proving that Softmax PG requires
O(1/ϵ) iterations to converge to an ϵ-optimal policy.

In the stochastic setting where the rewards and transition probabilities are unknown and
algorithms require sampling from the environment, Zhang et al. (2020b) first proved that
REINFORCE (Williams, 1992; Sutton et al., 1999) converges to a first-order stationary point
at a rate of Õ(1/ϵ2). Mei et al. (2021a, 2022b) analyzed the convergence of stochastic Softmax
PG, proving that it requires O(1/ϵ2) iterations to converge to an ϵ-optimal policy. However,
the resulting algorithm requires the full gradient (which in turn requires knowledge of the
environment) to set the algorithm parameters, making it impractical in the stochastic setting.
Similarly, Yuan et al. (2022b) proved that stochastic Softmax PG converges to an optimal
policy at a slower Õ(1/ϵ3) rate. However, this result requires knowledge of the optimal action,
making it impractical. More recently, Mei et al. (2023) analyzed stochastic Softmax PG in
the multi-armed bandit setting and proved that it converges to the optimal arm at an O(1/ϵ)
rate. Unfortunately, the algorithm requires knowledge of the reward gap which is typically
unknown even in the simplified settings such as multi-armed bandit problems.

2

A related line of work (Lu et al., 2024) further addresses the dependence on unknown
problem-dependent quantities by leveraging ideas from optimization—particularly, exponen-
tially decreasing step-sizes—to design practical Softmax PG algorithms in both exact and
stochastic settings. These methods avoid relying on oracle-like knowledge (e.g., the reward
gap, the reward distributions, or the noise level) yet preserve strong theoretical guarantees.
Specifically, they show that employing exponentially decreasing step-sizes, rather than fixed
or gap-dependent learning rates, yields convergence results comparable to the state-of-the-art
while making fewer assumptions on the environment. Empirical results confirm that these
step-size strategies allow Softmax PG to perform competitively against methods that do
require the knowledge of problem-specific constants.

Overall, although Softmax PG has appealing theoretical properties in simplified scenarios,
adapting it realistic environments with partially known or entirely unknown transition
dynamics and rewards has several challenges.

1.2.1 Limitations and Challenges

• Non-Concavity: The policy optimization objective is non-concave, making it difficult
to design and analyze algorithms that ensure global convergence.

• Dependence on Problem Constants: Many theoretical guarantees assume access to
environment-dependent constants, such as a reward gap, which are typically unknown
in practice.

• Sample Efficiency: In the stochastic setting, estimating gradients from samples can
require a large number of interactions, affecting practical performance.

• Function Approximation: Scaling to large or continuous state and action spaces
necessitates function approximation, introducing additional complexities not addressed
by standard analyses.

1.3 Thesis Contributions

Building on the challenges outlined above, this thesis extends the analysis of the standard
Softmax Policy Gradient (PG) method in two novel contexts: entropy regularization and
linear function approximation. These investigations are motivated by the need to handle
exploration without relying on oracle-like knowledge and to understand global convergence
beyond traditional approximation error assumptions.

The key contributions of this thesis are as follows:

• Entropy-Regularized Softmax PG: We introduce a multi-stage algorithm that
iteratively decays the entropy regularization term. This approach enables the resulting

3

algorithm to escape flat regions thus enabling robust convergence to the optimal policy
without requiring problem-dependent constants.

• Global Convergence under Linear Approximation: For the linear bandits setting,
we analyze the convergence of Softmax PG when combined with linear function
approximation. Our results show that global convergence does not solely rely achieving
a small approximation error. Instead, we identify the necessary structural conditions –
such as rank preservation and specific feature geometry—that ensure convergence to
the globally optimal policy despite significant approximation errors.

• Theoretical and Empirical Insights: We provide rigorous theoretical analysis sup-
porting these methods, including convergence rates and proofs of global optimality. We
validate our theoretical findings in the bandit setting, and demonstrate the effectiveness
of the proposed algorithms.

These contributions deepen our understanding of Softmax PG, offering practical al-
gorithms and theoretical insights that advance its applicability to complex reinforcement
learning tasks.

4

Chapter 2

Background and Preliminaries

2.1 Fundamentals of Reinforcement Learning

Reinforcement Learning (RL) is a framework for learning sequential decision-making policies
by interacting with an environment. An RL problem is typically modeled as an infinite-
horizon discounted Markov Decision Process (MDP) (Puterman, 2014), defined by the tuple
(S,A,P, r, ρ, γ), where:

• S: A finite set of states, with S = |S|.

• A: A finite set of actions, with A = |A|.

• P : S×A → ∆S : State transition probability function, where ∆S denotes the probability
simplex over S.

• r : S ×A → [0, 1]: Reward function, assigning a reward to each state-action pair.

• ρ ∈ ∆S : Initial state distribution.

• γ ∈ [0, 1): Discount factor.

We focus on tabular MDPs, assuming that the state and action spaces are finite. At each
time step t, the agent observes a state st ∈ S, selects an action at ∈ A according to its policy
π, receives a reward rt = r(st, at), and transitions to the next state st+1 according to the
transition probabilities P(st+1 | st, at). We assume a uniform initial state distribution, that
is, ρ(s) = 1

S for all s ∈ S. This assumption is common in the policy gradient literature and
simplifies the analysis by focusing on optimization aspects without dealing with exploration
challenges (Mei et al., 2020b).

2.2 Policy Optimization

The central goal in reinforcement learning is to determine a policy that maximizes the
expected cumulative reward. A policy π is a mapping from states to probability distributions
over actions, where π(a|s) denotes the probability of taking action a in state s.

5

For a given policy π, the action-value function Qπ : S ×A → R quantifies the expected
return starting from state s, taking action a, and then following policy π:

Qπ(s, a) = E
[∞∑

t=0
γtr(st, at)

∣∣∣ s0 = s, a0 = a
]
.

The corresponding value function V π : S → R is defined as:

V π(s) = Ea∼π(·|s)
[
Qπ(s, a)

]
.

The advantage function Aπ(s, a) = Qπ(s, a)−V π(s) measures how much better taking action
a in state s is compared to the average.

For a state s ∈ S, the discounted state visitation distribution starting from s0 is:

dπ
s0(s) = (1− γ)

∞∑
t=0

γt
π

Pr[st = s | s0],

representing the normalized discounted frequency of visiting state s when starting from s0.
Given an initial state distribution ρ, the policy optimization objective is:

max
π∈Π

J(π) = Es0∼ρ

[
V π(s0)

]
= V π(ρ).

We denote the optimal policy as π∗ = arg maxπ∈Π J(π).
In the bandit setting, where |S| = 1 and γ = 0, the problem simplifies to:

J(π) = Ea∼π[r(a)] = ⟨π, r⟩,

with π ∈ ∆A as the probability distribution over actions and r ∈ [0, 1]A as the reward vector.

2.3 Policy Parameterization

We consider policies with a softmax tabular parameterization. For parameters θ ∈ RS×A, the
policy πθ : S → ∆A is defined using the softmax function:

πθ(a|s) = exp(θ(s, a))∑
a′∈A exp(θ(s, a′)) . (2.1)

This parameterization ensures that πθ(·|s) is a valid probability distribution for each
state s. The softmax tabular parameterization has been used in recent theoretical analyses
of policy gradient methods (Mei et al., 2020b; Agarwal et al., 2021). Throughout this thesis,
we denote the objective function as f(θ), which depends on the setting:

• In the MDP setting: f(θ) = V πθ (ρ).

6

• In the bandit setting: f(θ) = ⟨πθ, r⟩.

By abstracting f(θ) in this way, our results can be generalized to other settings, such as
constrained MDPs (Altman, 2021) or convex MDPs (Zahavy et al., 2021; Zhang et al., 2020a).
The optimal policy π∗ is deterministic in both the bandit and MDP settings (Puterman,
2014). Specifically, in the MDP setting, for each state s ∈ S, there exists an action a∗(s) ∈ A
such that:

π∗(a∗(s)|s) = 1, π∗(a|s) = 0 for all a ̸= a∗(s). (2.2)

In the softmax parameterization, this corresponds to θ∗(s, a∗(s))→∞ or θ∗(s, a)→ −∞
for all a ̸= a∗(s). This behavior is similar to logistic regression in classification tasks with
linearly separable data (Ji and Telgarsky, 2018).

2.4 Properties of the Objective Function

Setting f(θ) [∇f(θ)]s,a L C(θ)
Bandits ⟨πθ, r⟩ πθ(a) [r(a)− ⟨πθ, r⟩] 5/2 πθ(a∗)
MDPs V πθ (ρ) dπθ (s) πθ(a|s) Aπθ (s,a)

1−γ
8

(1−γ)3
mins πθ(a∗(s)|s)

√
S

∥∥∥∥ dπ∗
ρ

d
πθ
ρ

∥∥∥∥
∞

Table 2.1: Function and gradient expressions, uniform smoothness, and non-uniform Ło-
jasiewciz properties for bandits and MDPs with ξ = 0 (Mei et al., 2020b). Here, a∗ is index
of the optimal arm in the bandit problem, and a∗(s) is the optimal action at state s in the
MDP problem.

2.4.1 Smoothness and Non-Concavity

The function f(θ) is non-concave with respect to θ in both bandit and MDP settings
(Mei et al., 2020b, Proposition 1). However, it is twice differentiable and satisfies uniform
smoothness, meaning there exists a constant L > 0 such that for all θ:

∇2f(θ) ⪯ LISA, (2.3)

where ISA is the identity matrix of size S ×A.

2.4.2 Łojasiewicz Conditions

The function f(θ) satisfies a non-uniform Łojasiewicz (Ł) condition (Mei et al., 2020b):

∥∇f(θ)∥2 ≥ C(θ) (f∗ − f(θ))1−ξ , (2.4)

7

where f∗ = maxθ f(θ), C(θ) > 0, and ξ ∈ [0, 1]. When C(θ) is a constant and ξ = 1
2 , this

reduces to the well-known Polyak-Łojasiewicz (PŁ) condition (Polyak, 1963; Karimi et al.,
2016). The Łojasiewciz condition states that every stationary point θ̃ (s.t. ∇f(θ̃) = 0) is
also a global maximum s.t. f(θ̃) = f∗. This condition enables the convergence of local
ascent methods such as PG to an optimal solution θ∗ := arg maxθ f(θ) despite the problem’s
non-concavity (Karimi et al., 2016; Mei et al., 2020b; Agarwal et al., 2021).

Table 2.1 summarizes both the uniform and non-uniform smoothness and Łojasiewciz
properties for bandits and MDPs.

2.5 Softmax Policy Gradient

Softmax PG aims to optimize policies by directly maximizing the objective function f(θ)
with respect to the policy parameters θ. This method performs gradient ascent on the
objective function f(θ) using its gradient ∇f(θ).

2.5.1 Exact Setting

In the exact setting, we assume that the reward function r and the transition probability
function P are known. This allows for the exact computation of the gradient ∇f(θ). With
the exact gradient calculated, the policy parameters are updated using the following update.
Update 1. (Softmax PG, True Gradient) θt+1 = θt + ηt∇f(θt).

Refer to Table 2.1 for the gradient expressions of the policy gradient ∇f(θ) in both the
bandit and MDP cases.

2.5.2 Stochastic Setting

In many reinforcement learning problems, the environment dynamics—such as the reward
function r and the transition probabilities P—are unknown to the agent. Instead, the agent
must learn to optimize its policy solely through interactions with the environment, relying
on sampled experiences to estimate the necessary quantities. This scenario is referred to as
the stochastic setting. In this setting, the policy gradient cannot be computed exactly due
to the lack of full knowledge about the environment. Instead, the agent must estimate the
gradient using sampled data, which introduces randomness and potential variance in the
estimates.

For simplicity, in this section, we focus on the bandit setting, which captures the essential
aspects of the stochastic setting while being more tractable for analysis. In the stochastic
multi-armed bandit problem, each arm a ∈ A has an unknown reward distribution Pa. At
each iteration t ∈ [1, T], the algorithm selects an arm at ∈ A according to its current policy
πt then receives a stochastic reward Rt sampled from the reward distribution of the selected
arm: Rt ∼ Pat . The algorithm then constructs an on-policy importance sampling (IS) reward

8

estimate for each action a ∈ A:

r̂t(a) = I{at = a}
πt(a) Rt, (2.5)

where I{·} is the indicator function. The IS reward estimate is then used to form the stochastic
gradient ∇̃f(θt) such that ∇̃f(θt)(a) = πθt(a)[r̂t(a)− ⟨πθt , r̂t⟩]. Mei et al. (2021a, Lemma
5) showed that the resulting stochastic gradients are (i) unbiased i.e. E[∇̃f(θ)] = ∇f(θ)
and have (ii) bounded variance i.e. E

∥∥∥∇̃f(θ)−∇f(θ)
∥∥∥2

2
≤ σ2. Similarly, we can construct

gradient estimators that are unbiased and have bounded variance for MDPs. Given these
estimators, the resulting stochastic Softmax PG algorithm has the following update:

Update 2. (Stochastic Softmax PG, Importance Sampling) θt+1 = θt + ηt∇̃f(θt).
This update rule allows the agent to improve its policy based on the sampled rewards,

even without full knowledge of the reward distributions.
This foundation sets the stage for analyzing extensions of Softmax PG, such as incorpo-

ration of entropy regularization, which is the focus of the next chapter.

9

Chapter 3

Softmax Policy Gradient with
Entropy Regularization

3.1 Introduction

As reinforcement learning agents tackle increasingly complex tasks, effective exploration
becomes critical to avoid suboptimal behaviors and ensure robust performance. Entropy
regularization is a promising technique for encouraging such exploration by maintaining
policy diversity and smoothing the optimization landscape.

We will next consider adding entropy regularization to the objective in the exact and
stochastic settings. Entropy regularization RL, also known as maximum entropy RL, uses
entropy regularization to promote action diversity and prevent premature convergence
to a deterministic policy (Williams, 1992; Haarnoja et al., 2018). Although it is widely
believed to help with exploration, the addition of entropy regularization results in a smoother
optimization landscape, allowing PG methods to escape flat regions within the optimization
landscape (Ahmed et al., 2019). For example, in the bandit setting, flat regions occur
when a policy commits to an arm. Mei et al. (2020b) showed entropy regularization helps
escaping these regions when starting from a “bad” initialization, i.e. the initial policy selects
a sub-optimal arm with high probability.

In the exact setting, where the full gradient can be computed, Mei et al. (2020b)
showed Softmax PG with entropy regularization obtains a fast O(log(1/ϵ)) rate to a biased
ϵ-optimal policy. The resulting optimal policy is biased since the presence of entropy prevents
convergence to a deterministic policy. Furthermore, in the same setting, Cen et al. (2022)
showed NPG with entropy regularization achieves the same O(log(1/ϵ)) convergence rate
to a biased ϵ-optimal policy. To ensure that the resulting optimal policy is unbiased, the
strength of the entropy regularization term must be decayed or removed. Mei et al. (2020b)
introduced a two-stage approach to obtain the optimal policy when using Softmax PG with
entropy regularization. In the first stage, entropy regularization obtains fast convergence
close to the optimal policy. In the second stage, the regularizer is removed to guarantee

10

convergence to the optimal policy. Unfortunately, the final convergence rate is O(1/ϵ), which
is the same as the Softmax PG. Additionally, to transition from the first to the second stage,
the reward gap is needed, making the resulting algorithm impractical.

In the stochastic setting, where the value function must be approximated, Ding et al.
(2021) introduced a two-stage approach for stochastic Softmax PG with entropy regularization.
Instead of modifying the strength of the entropy regularizer across stages, the batch size is
modified. The resulting algorithm requires O(1/ϵ) iterations in the second stage and Õ(1/ϵ2)
samples to converge to a biased ϵ-optimal policy. The method allows for global convergence
with arbitrary initiation. However, the strength of the entropy regularizer is not decayed,
preventing convergence to the optimal policy. Additionally, the biased optimal policy to set
the algorithm hyper-parameters making the resulting algorithm redundant. Moreover, in the
stochastic setting with access to a generative model, using NPG with entropy regularization,
Cen et al. (2022) achieved a linear convergence rate to a biased optimal policy with a Õ(1/ϵ2)
sample complexity.

A recent line of work by Lu et al. (2024) addresses the reliance on unknown parameters
in the non-regularized setting by leveraging exponentially decreasing step-sizes to design
practical Softmax PG algorithms in both exact and stochastic settings. By using such
step-size schedules, their methods avoid reliance on oracle-like knowledge (e.g., reward gaps
or noise levels), yet preserve strong theoretical guarantees. Empirical results confirm that
exponentially decreasing step-sizes allow Softmax PG to perform competitively against
methods dependent on problem-specific constants, inspiring the application of similar
techniques in the entropy-regularized setting.

In the following sections, we will present a multi-stage algorithm that iteratively reduces
the strength of the entropy regularization term. This method obtains convergence to the
optimal policy while eliminating the reliance on unknown quantities compared to the prior
work. In Section 3.2 we first state how the objective’s functional property changes when
entropy regularization is added. In Section 3.3 we present the multi-stage algorithm in the
exact setting and the algorithm achieves an O(1/ϵp) rate, where p depends on the properties
of the entropy-regularized objective. Next in Section 3.4, we extend the same multi-stage
algorithm in the stochastic setting with exponentially decreasing step-sizes to obtain an also
O(1/ϵ2p+1) rate to the optimal policy. Finally, in Section 3.4.1 we compare the proposed our
multi-stage algorithm to prior PG methods without entropy regularization and show that
the multi-stage algorithm helps escape flat regions within the optimization landscape.

3.2 Problem Formulation

Following Chapter 2, for a policy π, the entropy-regularized action-value function is defined as
Q̃π

τ (s, a) := E[
∑∞

t=0 γt(r(s, a)− τ log π)] and the entropy-regularized value function is defined

11

as Ṽ π
τ (s) := Ea∼π[Q̃π

τ (s, a)](s) . The entropy-regularized advantage function is defined as
Ãπ

τ (s, a) := Q̃π
τ (s, a)− τ log π(a|s)− Ṽ π

τ (s).
Furthermore, let f τ (θ) := f(θ) + τ Λ(πθ) denote the entropy-regularized objective, where

Λ(πθ) is the “discounted entropy” for a policy πθ and τ ≥ 0 is the “temperature” or strength
of the entropy regularization. Refer to Table 2.1, for definitions of discounted entropy
in the bandit and MDP settings. For a fixed τ , f τ is Lτ -uniform smooth and note that
the smoothness now depends on τ . Furthermore, f τ satisfies a non-uniform Łojasiewciz
condition with Cτ (θ) and ξ = 1/2. Compared to f , whose non-uniform Łojasiewciz degree is
ξ = 0 (refer to Table 2.1), the increase to ξ = 1/2 allows for faster convergence. Table 3.1
summarizes the entropy regularizer, uniform smoothness and non-uniform Łojsaiewciz
properties for the bandit and general MDP settings with entropy regularization. Finally, we
will denote the maximum value of the regularized objective function as f∗τ := f τ (θ∗

τ), where
θ∗

τ := arg maxθ f τ (θ).

Setting Λ(πθ) [∇f τ (θ)]s,a Lτ Cτ (θ)
Bandits −⟨πθ, log πθ⟩ πθ(a) [r(a)− ⟨πθ, r − τ log πθ⟩] 5/2 + 5 τ (1 + log A)

√
2τ mina πθ(a)

MDPs H(πθ) d
πθ
ρ (s) πθ(a|s) Ãπθ (s,a)

1−γ
8+τ (4+8 log A)

(1−γ)3

√
τ mins

√
ρ(s) mins,a πθ(a|s)

S

∥∥∥∥ dπ∗τ
ρ

d
πθ
ρ

∥∥∥∥1/2

∞

Table 3.1: Entropy regularizer, uniform smoothness and non-uniform Łojasiewciz condition
with ξ = 1/2 for bandit and general tabular MDP settings with entropy regularization. Here,
H(πθ) := E

[∑∞
t=0−γt log πθ(at|st)

]
.

With the above properties of f τ , we next present how to principally decay τ for Softmax
PG with entropy regularization to obtain convergence to the optimal policy.

3.3 Exact Setting

We first consider the exact setting as a test bed to analyze how to decay τ to obtain
convergence to the optimal policy. Recall that for a constant τ > 0, Softmax PG with entropy
regularization is unable to converge to the optimal policy, since the regularizer prevents the
final policy from becoming deterministic. Softmax PG with entropy regularization has the
following update:

Update 3. (Softmax PG with Entropy Regularization, True Gradient) θt+1 = θt +ηt∇f τ (θt).
Refer to Table 3.1 for the entropy-regularized policy gradient ∇f τ (θ) in both the bandit

and the general MDP cases. In this setting, Mei et al. (2020b) show that Softmax PG with
entropy regularization converges to a biased optimal policy at a rate of O(log 1/ϵ) when
using a fixed step-size of ηt = η = 1

Lτ . The optimal policy is biased since τ > 0 is fixed.
Consequently, it is necessary to to decay the regularization strength τ in order to converge

12

to the globally optimal policy. In the bandit setting, Mei et al. (2020b) proposed a two-stage
approach to decay τ to obtain global convergence. A fixed τ > 0 is used in the first stage but
is then set to 0 in the second stage. However, the resulting algorithm requires knowledge of
the reward gap ∆ := maxa∗ ̸=a r(a∗)− r(a) in order to transition from the first stage to the
second stage, making the method impractical. Furthermore, Mei et al. (2020b) proposed an
additional approach by allowing τ to be a function of t and slowly decreasing τt over time.
This approach also obtains convergence to the global optimal policy. However, it required
τt ∝ ∆, meaning that the algorithm again requires the knowledge of the reward gap.

Algorithm 1: Multi-Stage Softmax PG with Entropy Regularization
Output: Policy πθt = softmax(θt)
Initialize parameters θ0, τ0, Nstages
t← 0
last0 ← t
i← 1
while i ≤ Nstages do

τi ← τi−1/2
ηi ← 1/Lτi

Ti ← 2
ηi µi

log
(

τi−1
τi

(1 + B4)
)

while t− lasti−1 < Ti do
θt+1 ← θt + ηi∇f τi(θt)
t← t + 1

end
lasti ← t
i← i + 1

end

In order to design a theoretically principled algorithm that decays the entropy without
a dependence on the reward gap, we assume that f τ satisfies an alternative non-uniform
Łojasiewciz condition with ξ = 1/2. The following assumption is similar to the non-uniform
Łojasiewciz condition discussed in Section 3.2, only with a different non-uniform constant
compared to the one presented in Table 3.1.
Assumption 1. f τ satisfies the non-uniform Łojasiewciz condition for some Cτ (θ) and
ξ = 1

2 such that µ := inft≥1[Cτ (θt)]2 = τp B1 for constants p ≥ 1 and B1 > 0.
Subsequently, we provide empirical evidence justifying this assumption. Under Assump-

tion 1, we propose a multi-stage algorithm (Algorithm 1) to decay τ that can obtain ϵ

convergence to the globally optimal policy without knowledge of the reward gap or any
other problem-dependent parameters. Algorithm 1 operates in multiple stages, each using
a temperature τi for Ti iterations before halving it, i.e. τi+1 = τi

2 . To understand why this
scheduling is useful, define the suboptimality gap as f∗ − f(θ), where f∗ = maxθ f(θ). In our
entropy-regularized setting, this gap can be split into two parts:

13

• Optimization Gap: The part of the suboptimality gap that we can reduce through
gradient-based updates.

• Regularization Bias: The additional error stems from the fact that τ > 0 prevents
the policy from reaching the optimal policy.

By decreasing τ at each stage, we progressively reduce the bias originating from entropy
regularization. We run the algorithm at stage i until the optimization gap is comparable to
the bias level introduced by τi. Although we halve τ for theoretical convenience, other decay
schedules may also work in practice.

Moreover, if p = 1 in Assumption 1, then the non-uniform constant of the Łojasiewciz
condition scales linearly with τ . Halving τ halves this constant, so we must roughly double
the length Ti of each stage to keep the optimization gap sufficiently small throughout. This
balancing of bias reduction and optimization progress ultimately allows the algorithm to
converge to an unbiased optimal policy without relying on unknown constants.

To prove that the method achieves global convergence, we first make the following
assumptions to relate the entropy regularization objective f τ to the unregularized objective
f :
Assumption 2. f τ is Lτ -smooth and Lτ ≤ Lmax, where Lmax = maxτ∈[0,1] Lτ is a constant.
Furthermore, Lτ ≥ Lmin, where Lmin = minτ∈[0,1] Lτ > 0 is a constant.
Assumption 3. f∗ − f(θ∗

τ) ≤ τB2, for a constant B2 > 0.
Assumption 4. For a constant B3 > 0, f(θ∗

τ)− f(θ) ≤ f∗τ − f τ (θ) + τB3.
Assumption 5. For τ2 < τ1 and a constant B4 > 0, f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1B4.

The Assumptions 2 to 5 hold for both the bandit and tabular MDP settings and are
proved in Section A.2.2 and Section A.2.3, respectively.

The following theorem (proved in Section A.2) shows that Algorithm 1 converges to the
unbiased optimal policy at a rate of O(1/ϵp).

Theorem 1. Assuming f τ and f satisfy Assumptions 1 to 5, for a given ϵ ∈ (0, 1),
Algorithm 1 achieves ϵ-suboptimality to the global optimal policy after
Ttotal = 4 Lmax Cp

1
ϵp B1

log (2 (1 + B4)) iterations, where C1 = max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B2 + B3.

The resulting O(1/ϵp) rate depends on the constant p in Assumption 1. In the best
case, when p = 1, we recover an O(1/ϵ) convergence rate, similar to the non-regularized
Softmax PG. This is verified by our experiments, in particular, in Figure 3.1, we observe that
Algorithm 1 with p = 1 has a similar performance compared to Softmax PG. This provides
empirical evidence that Assumption 1 holds with p = 1. In contrast to the above result, in the
non-regularized bandit setting, the convergence rate of Softmax PG is inversely proportional
to inft≥1 πθt(a∗)2, which can be arbitrarily small due to poor initialization. We note that this
advantage of entropy-regularized Softmax PG extends to the MDP setting. It is important

14

to note that compared to Mei et al. (2020b), Algorithm 3 can obtain ϵ-convergence without
requiring knowledge of the reward gap.

In the bandit setting with A = 10, we compare Algorithm 1 (PG-E-MS), assuming p = 1
and setting B1 = 0.01, and Softmax PG (PG) with a fixed step-size of ηt = 1

L = 2
5 , and

Softmax PG with entropy regularization (PG-E) with fixed τ = 0.1 and ηt = η = 1
Lτ =

2
5+10 τ(1+log A) , and Softmax PG with decaying entropy regularization (PG-DE), which requires
oracle knowledge (Theorem 8 from (Mei et al., 2020b)) with α = 1. For PG-E-MS, the initial
regularization strength is τ0 = 1, and p and B1 were selected by using grid-search on
a separate set of bandit instances. We test the algorithms on bandit settings of varying
difficulty based on their minimum reward gap ∆̄ := mina∗ ̸=a r(a∗)− r(a). The easy, medium
and hard environments correspond to ∆̄ = 0.2, 0.1, 0.05 respectively. The figure plots the
average and 95% confidence interval of 50 random mean reward vectors.

In most realistic scenarios, it is difficult to calculate the exact gradient of the objective
function. In the next section, we investigate how to extend the presented multi-stage algorithm
to the stochastic setting.

3.4 Stochastic Setting

Following Chapter 2, we can construct a stochastic policy gradient using on-policy importance
sampling (IS) reward estimates for the entropy-regularized objective. Let ∇̃f τ (θt) denote
the stochastic gradient with entropy regularization. By Lemma 29, the gradient estimators
∇̃f τ (θ) are (i) unbiased, i.e. E[∇̃f τ (θ)] = ∇f τ (θ) and have (ii) bounded variance, i.e.
E
∥∥∥∇̃f τ (θ)−∇f τ (θ)

∥∥∥2

2
≤ σ2. The bound of the variance differs compared to ∇̃f(θ) as σ2

depends on the regularization strength τ . In this setting, we will consider the following
update,

Update 4. (Stochastic Softmax PG with Entropy, Importance Sampling) θt+1 = θt +
ηt∇̃f τ (θt).

Under the same setting when using on-policy IS reward estimates, prior work (Ding et al.,
2021) proposes a two-stage approach that converges to a biased optimal policy by modifying
the batch size to counteract the variance. However, the method requires a Õ(1/ϵ2) sample
complexity and knowledge of the biased optimal policy to set the algorithm hyper-parameters.
Furthermore, even with knowledge of the biased optimal policy, Ding et al. (2021) is unable
to converge to the optimal policy.

To extend Algorithm 1 to the stochastic setting, we first require an additional assumption
since inft≥1[Cτ (θt)]2 is now a random variable in the stochastic setting.
Assumption 6. f τ satisfies the non-uniform Łojasiewciz condition for some Cτ (θ) and
ξ = 1

2 such that µ := E
[
inft≥1[Cτ (θt)]2

]
= τp B1 for constants p ≥ 1 and B1 > 0.

Under Assumption 6, we will utilize exponentially decaying step-sizes (Li et al., 2021b;
Vaswani et al., 2022; Lu et al., 2024) for each stage to handle the noise inherent in the

15

Figure 3.1: Sub-optimality gap across various environments and initializations. Top Row: the
initial policy’s parameters is uniform, i.e. θ0(a) = 0 ∀a. Bottom Row: the initial policy’s
parameters is “bad”, i.e. θ0(a′) = 12 where a′ = arg mina r(a). PG-E-MS can converge to
the optimal policy unlike PG-E since the temperature τ is decreasing. Furthermore, under
“bad” initialization, where the worst arm has a high probability of being chosen, PG-E-MS
outperforms PG since the addition of entropy allows the method to escape the initial flat
region. On the other hand, PG-E can escape the initial region quickly but cannot converge
to the optimal policy since τ is fixed. PG-DE has a good performance in all settings, but
requires oracle knowledge.

stochastic gradient estimates. In particular, even if the noise variance is bounded, using fixed
step-sizes can prevent convergence to the optimum. By shrinking the step-size over time, the
effect of the noise diminishes over the course of optimization and enables convergence to the
solution. At stage i, the resulting step-size at iteration t is set as: ηi,t−1 = 1

Lτi α
t−lasti−1
i where

αi =
(

β
Ti

) 1
Ti , β ≥ 1, and Ti is the length of stage i. Together, this results in Algorithm 2.

16

Algorithm 2: Stochastic Multi-Stage Softmax PG with Entropy Regularization
Output: Policy πθt = softmax(θt)
Choose constants c0, c1 according to the theory (see Section A.3.1)
Initialize parameters θ0, τ0, Nstages, β = 1
t← 0
last0 ← t
i← 1
while i ≤ Nstages do

τi ← τi−1
2

X1 ← exp
(

µi β
Lτ log(T/β)

)
X2 ← c0

Lτ

X3 ← 5 Lτ X1
e2

T
′
i ← 2

X2 µi
log

(
2 X1 τi−1

τi
(1 + B4)

)
T

′′
i ← 2 X3 σ2

τi µ2
i

Ti ← max(c1, 2 T
′
i log T

′
i , 4 T

′′
i log2 T

′′
i)

αi ←
(

β
Ti

) 1
Ti

ηi,t ← αi
Lτi

while t− lasti−1 < Ti do
θt+1 ← θt + ηi,t ∇̃f τ (θt)
ηi,t+1 ← ηi,t αi

t← t + 1
end
lasti ← t
i← i + 1

end

The following theorem (proved in Section A.3.1) shows that Algorithm 2 converges to
the globally optimal policy at an Õ (1/ϵp + σ2/ϵ2p+1) rate.

Theorem 2. Assuming f τ and f satisfy Assumptions 2 to 6, for a given ϵ ∈ (0, 1), using
Algorithm 2 with (a) unbiased stochastic gradients whose variance is bounded by σ2 and
(b) exponentially decreasing step-sizes ηi,t = ηi,lasti−1 α

t−lasti−1+1
i , where ηi,lasti−1 = 1

Lτi ,

αi =
(

β
Ti

) 1
Ti , β = 1, and setting constants c0 = 0.69, c1 = 5583, achieves ϵ-sub-optimality

to the globally optimal policy after Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

If p = 1, then the convergence rate matches the Õ(σ2/ϵ3) rate for stochastic Softmax PG
with exponentially decreasing step-sizes (Lu et al., 2024). We remark that this is the first
stochastic Softmax PG algorithm to obtain ϵ-convergence to the optimal policy while using
entropy regularization. Unlike in previous work (Ding et al., 2021), oracle-like knowledge of
the environment is not necessary to obtain convergence while using entropy regularization
in the stochastic setting.

17

In the next section, we will compare the multi-stage method with baseline methods in
the bandit setting. To investigate whether entropy regularization is indeed useful, we will
consider both uniform and “bad” initialization.

3.4.1 Experimental Evaluation

We evaluate the methods in multi-armed bandit environments with A = 10 in stochastic
settings. For each environment, we compare the various algorithms based on their expected
sub-optimality gap E[(π∗ − πθt)⊤r]. We plot the average and 95% confidence interval of
the expected sub-optimality gap across 25 independent bandit instances over T = 106

iterations. To counteract the randomness of each algorithm, for each bandit instance, we
additionally run each algorithm 5 times. In total, for each algorithm, the corresponding plot
is comprised of 125 runs. To investigate whether regularization of the entropy is helpful in
escaping flat regions, we consider uniform and “bad” initialization. For experiments with
uniform initialization, the initial policy is uniform, i.e. πθ0(a) = 1/A for all a ∈ A. For
experiments with bad initialization, the initial policy favors the worst arm, i.e. θ0(a′) = 9
(πθ0(a′) ≈ 0.999), where a′ := arg mina r(a).

Environment Details

Each environment’s underlying reward distribution is either a Bernoulli, Gaussian, or Beta
distribution with a fixed mean reward vector r ∈ RA and support [0, 1]. The difficulty of
the environment is determined by the maximum reward gap ∆̄ := maxa r(a∗) − r(a). In
easy environments ∆̄ = 0.5 and in hard environments ∆̄ = 0.1. For each environment, r is
randomly generated for each run.

Methods

We compare the presented stochastic Softmax PG multi-stage algorithm (Algorithm 2)
(SPG-E-MS) to stochastic Softmax PG (SPG-ESS) and stochastic Softmax PG with entropy
regularization (SPG-E-ESS) with exponentially decreasing step-sizes and when using the
“doubling” trick (SPG-ESS [D]). We also compare with prior work that uses the full gradient
(SPG-O-G) (Mei et al., 2021a) and the reward gap (SPG-O-R) (Mei et al., 2023) when setting
the step-size. For SPG-ESS and SPG-ESS [D], we select β = 1 and η0 = 1

18 . For SPG-E-ESS

we fix τ = 0.1 and similarly select β = 1 and η0 = 1
Lτ = 2

5+10 τ (1+log A) . Finally, for SPG-E-MS,
we observed that the number of iterations Ti at each stage derived by Lemma 13 for the
stochastic multistage algorithm is loose due to the exponentially-decreasing step-size analysis.
Furthermore, in the exact setting, we observe that when p = 1, the number of iterations
doubles after each stage. Therefore, instead of using the theoretical number of iterations
at each stage, we use the “doubling trick” (Lu et al., 2024). For SPG-E-ESS set the hyper-
parameters T1 = 5000, τ0 = 0.5, B1 = 1 by employing a grid-search on a separate validation

18

Figure 3.2: Expected sub-optimality gap across various environments with uniform initializa-
tion

set of bandit instances. To fairly compare against SPG-ESS and SPG-ESS [D] we also select
β = 1.

Results

From Figure 3.2, with uniform initialization, the performance of SPG-E-MS is comparable
to SPG-ESS, SPG-ESS [D] and SPG-O-G. However, in the “bad” initialization settings (Fig-
ure 3.3), due to the presence of entropy, SPG-E-MS out preforms all other methods. Here
we also find that entropy regularization helps escaping from flat regions in the stochastic
setting. Since SPG-E-ESS uses a fixed entropy regularization term, it is unable to converge
to the optimal policy.

3.5 Discussion

We proposed a systematic method for the (stochastic) softmax policy gradient (PG) to
utilize the benefits of entropy regularization while guaranteeing convergence to the optimal
policy. Under Assumption 1, our proposed multi-stage algorithm achieves convergence to the

19

Figure 3.3: Expected sub-optimality gap across various environments with “bad” initialization

optimal policy without any oracle-like knowledge compared to prior methods. We empirically
demonstrate that our multi-stage algorithm can escape flat regions in the exact and stochastic
settings, due to entropy regularization.

A key direction for future research is to bridge the gap between the non-uniform
Łojasiewicz conditions as the entropy regularization strength τ approaches zero. Investigating
how the Łojasiewicz degree transitions from ξ = 1/2 to ξ = 0 could refine theoretical
convergence guarantees and enhance our understanding of the interplay between entropy
regularization and policy optimization. Additionally, extending these approaches to more
general MDPs and exploring their applicability to other policy gradient methods remain
promising avenues for further inquiry.

20

Chapter 4

Linear Softmax Policy Gradient

4.1 Introduction

When dealing with large-scale or continuous action spaces, policy optimization in reinforce-
ment learning often relies on function approximation to generalize across similar actions.
In this chapter, we focus specifically on the convergence behavior of the Softmax Policy
Gradient (PG) method under linear approximation in the multi-armed bandits. We establish
a surprising result: Softmax PG converges globally whenever there exists an adequate linear
function that both preserves the ordering of the ground-truth reward vector and satisfies
certain geometric feature conditions. This requirement is strictly weaker than zero approxi-
mation error, as even large approximation error can admit global convergence if the reward
ordering is maintained and the features meet these geometric constraints.

Understanding the behavior of PG methods under function approximation is crucial
for describing the behavior of RL in practice since one rarely faces domains small enough
to explicitly enumerate over states and actions in parameterizing the policy. It is well
known that standard Softmax PG converges to stationary points if a “compatible” function
approximation is used (Sutton et al., 2000); i.e., one that is able to exactly represent policy
value functions. However, when exact policy values are non-realizable, the “approximation
error” is typically considered to be the key quantity for characterizing how well a function
approximation captures relevant problem quantities, including transition dynamics, rewards,
and policy values. This chapter shows that such an approximation error perspective is overly
demanding when attempting to characterize the conditions that lead to global convergence
of PG methods.

Using the concept of approximation error, global convergence results for PG methods
have been recently established in an additive form,

sub-optimality gap ≤ optimization error + approximation error, (4.1)

implying that if the approximation error is small, a diminishing optimization error implies a
small sub-optimality gap. A representative result is the global convergence of the natural

21

policy gradient (NPG) (Agarwal et al., 2021, Table 2), where the optimization error will
diminish as the algorithm updates. There have also been global convergence results for
other PG variants under linear function approximation that follow a similar approximation
error analysis (Agarwal et al., 2020; Cayci et al., 2021; Chen et al., 2022; Yuan et al.,
2022a; Alfano and Rebeschini, 2022; Abbasi-Yadkori et al., 2019a,b). However, an additive
bound like Equation (4.1) has the inherent weakness that the approximation error will
never be zero if the function approximation is not able to perfectly represent the desired
quantities. This prevents such a strategy from establishing global convergence in cases where
the approximation error is non-zero but a PG method still reaches the best representable
solution.

Therefore, in spite of this recent progress, the use of approximation error in PG global
convergence with function approximations has left two major gaps in the literature. First,
it has not been investigated whether a small approximation error is necessary to achieve
convergence to an optimal representable policy (Agarwal et al., 2021), diverting attention
from feature designs that achieve useful properties beyond the small approximation error.
Second, it is not clear whether the standard Softmax PG converges globally under small
approximation errors. In particular, NPG contains a least squares regression step (Agarwal
et al., 2021, Eq. (17)) that can be naturally characterized with an approximation error
quantity. However, the standard Softmax PG does not have such a projection step (Sutton
et al., 2000), and the results in (Agarwal et al., 2021) do not apply to this update. Whether
standard Softmax PG can achieve global convergence with even linearly realizable rewards
(zero approximation error) is still an open problem.

In this chapter, we address the above questions and contribute the following results. First,
we provide negative answers to questions on the role of approximation error in determining
global convergence of the standard Softmax PG update:
(i) Global convergence can be achieved under linear function approximation with non-zero

approximation error.
(ii) The approximation error is not a key quantity for characterizing global convergence.

Second, these results lead us to the question whether approximation error is an appropriate
quantity to consider the global convergence of the standard Softmax PG update under linear
function approximation. We establish new general results that characterize the conditions
for global convergence:
(i) We show that the global convergence of Softmax PG follows if the representation (i.e.,

the feature matrix) preserves the ranking of the rewards and satisfies a suitable geomet-
ric feature condition. These assumptions go well beyond exact (or even approximate)
realizability of the reward vector, thereby highlighting that approximation error alone
does not determine global convergence.

22

(ii) As a byproduct, we resolve an open question by showing that Softmax PG can fail to
converge globally if any of the conditions mentioned above are violated even when the
reward is perfectly realizable.

(iii) We extend these convergence guarantees to the stochastic setting, showing that the
Softmax PG converges almost surely to a globally optimal policy under mild conditions
analogous to those in the deterministic case.

4.2 Setting and Background

We study the policy optimization problem for stochastic K-armed bandits (Lattimore and
Szepesvári, 2020) specified by a true mean reward vector r ∈ RK , where for each action
a ∈ [K],

r(a) =
∫ Rmax

−Rmax
x Pa(x)µ(dx),

where Rmax > 0 is the reward range, µ is a finite measure over [−Rmax, Rmax], and Pa(x) ≥ 0
is the probability density function with respect to µ. Let Ra denote the reward distribution
for the action a defined by the density Pa and the base measure µ. The objective is to find a
parametric policy πθ ∈ [0, 1]K to maximize the expected reward.

sup
θ∈Rd

⟨πθ, r⟩, (4.2)

where θ ∈ Rd with d < K is the parameter, and πθ = softmax(Xθ) is called a “log-linear
policy” (Agarwal et al., 2021; Yuan et al., 2022a) such that for all action a ∈ [K] :=
{1, 2, . . . , K},

πθ(a) = softmax([Xθ](a)) = exp([Xθ](a))∑
a′∈[K] exp([Xθ](a′)) , (4.3)

where X ∈ RK×d is the feature matrix with full column rank d < K.
There are two major difficulties with the policy optimization problem. First, Equation (4.2)

is a non-concave maximization w.r.t. θ, due to the softmax transform (Mei et al., 2020b,
Proposition 1). Second, the policy and reward can be unrealizable, in the sense that the
parametric log-linear policy πθ = softmax(Xθ) cannot well approximate every policy π in
the K-dimensional probability simplex, and the score Xθ ∈ RK cannot well approximate
the true mean reward r ∈ RK . Such limitations arise in the linear function approximation
case because πθ and Xθ are restricted to low-dimensional manifolds via θ ∈ Rd for d < K.

As a test bed to analyze the necessary and sufficient conditions for global convergence,
we will first consider the exact setting, where the true reward vector is known. To solve Equa-
tion (4.2), we consider the standard Softmax PG (Sutton et al., 2000) method. Softmax PG

23

is an instance of gradient ascent, obtained by the chain rule,

d ⟨πθt , r⟩
dθt

= d Xθt

dθt

(
d πθt

d Xθt

)⊤ d ⟨πθt , r⟩
dπθt

= X⊤(diag(πθt)− πθtπ
⊤
θt

) r. (4.4)

As a representative policy-based method, in its general form, Softmax PG lays the
foundation for widely used RL methods, including REINFORCE (Williams, 1992), actor-
critic (Konda and Tsitsiklis, 1999; Bhatnagar et al., 2009; Haarnoja et al., 2018), TRPO
and PPO (Schulman et al., 2015, 2017).

In the exact setting, we are given the true reward vector r at each iteration. Using Equa-
tion (4.4), we can have Softmax PG for the Exact Linear Bandits as shown in Algorithm 3.

Algorithm 3 Softmax PG for Linear Bandits
Input: Initial parameters θ1 ∈ Rd, learning rate η > 0
Output: Policies πθt = softmax(Xθt)
while t ≥ 1 do

θt+1 ← θt + η X⊤(diag(πθt)− πθtπ
⊤
θt

)r
end while

To understand the difficulty of the optimization problem in Equation (4.2), it is helpful
to consider previous work that has analyzed the convergence of PG methods.

In the tabular setting, where d = K, X = Id, and πθ = softmax(θ) with θ ∈ RK , both
the rewards and optimal policy can be arbitrarily well approximated. In this case, it is
known that Softmax PG achieves global convergence asymptotically, i.e., ⟨πθt , r⟩ → r(a∗) as
t→∞ (Agarwal et al., 2021), with an O(1/T) rate of convergence that exhibits undesirable
problem and initialization dependent constants (Mei et al., 2020a; Li et al., 2021a). Directly
extending this global convergence result to the case of function approximation, i.e., log-linear
policies, is impossible without any additional assumptions on the features, since there can
be exponentially many sub-optimal local maxima in the worst case (Chen et al., 2019). In
fact, even with linearly realizable rewards (zero approximation error), whether the standard
Softmax PG achieves global convergence still remains unsolved (Agarwal et al., 2021). One
intuitive reason why this is a difficult result to establish is that the standard Softmax PG
uses the gradient Equation (4.4) rather than projection (regression) to perform updates,
which is less directly connected to the concept of approximation error.

4.3 The Limitations of Approximation Error in Characteriz-
ing Convergence

It is known that there exist representations X ∈ RK×d with d < K and r ∈ RK that create
exponentially many sub-optimal local maxima in Eq. (4.2) (Chen et al., 2019, Theorem 1),

24

which makes it impossible to ensure global convergence of PG methods without imposing
any structure on the function approximation. Before identifying specific conditions that
ensure global convergence, we first explain how approximation error cannot be a useful
structural measure for this purpose, by demonstrating that zero approximation error is
not a necessary condition for global convergence, and illustrating problem instances with
comparable approximation error that render starkly different convergence behaviors across
different PG methods. Specifically, we illustrate these points with a set of concrete scenarios,
each with 4 actions and 2-dimensional feature vectors describing each action. Since d < K,
not every policy can be expressed in these representations, hence the problem instances are
unrealizable.

4.3.1 Global Convergence is Achievable with Non-zero Approximation
Error

The results of (Chen et al., 2019, Theorem 1) do not imply that sub-optimal local maxima
always appear, as shown in the following.

Example 1. K = 4, d = 2, X⊤ =

 0 −1 0 2
−2 0 1 0

 and r = (9, 8, 7, 6)⊤. The approxima-

tion error is ϵapprox = min
w∈Rd

∥Xw − r∥2 =
∥∥X (

X⊤X
)−1

X⊤r − r
∥∥

2 =
√

202.6 ≈ 14.2338.
The approximation error is larger than any sub-optimality gap, i.e., for any policy π,

⟨π∗ − π, r⟩ ≤ 3 < ϵapprox,

Despite the non-zero approximation error, Algorithm 3 can be shown to reach a global
maximum.
Proposition 3. Denote a∗ := arg maxa∈[K] r(a). With constant η > 0 and any initialization
θ1 ∈ Rd, Algorithm 3 guarantees ⟨πθt , r⟩ → r(a∗) as t→∞ on Example 1.

The fact that Softmax PG achieves global convergence in Example 1 is harder to establish
since Equation (4.4) involves a complex non-linearity given the presence of the softmax.
To illustrate the intuition behind Proposition 3 we use a visualization of the optimization
landscape.

Visualization. A visualization of the optimization landscape of Example 1 is shown in Fig-
ure 4.1(a). The colors visualize the expected reward ⟨πθ, r⟩ over the parameter space Rd where
d = 2. For each θ ∈ Rd, we calculate πθ using Equation (4.3) and ⟨πθ, r⟩ using Equation (4.2).

To verify Proposition 3, we run Softmax PG on Example 1 with θ1 = (3, 3)⊤ ∈ R2.
In Figure 4.1(a), the optimization trajectories show 104 iterations of Softmax PG, with
a learning rate η = 0.2. It can be clearly seen that Softmax PG eventually achieves the
expected reward ⟨πθt , r⟩ → 9 = r(a∗), demonstrating global convergence.

25

(a) Algorithm 3 running on Example 1 (b) Algorithm 3 running on Example 2

Figure 4.1: Visualizing the landscapes in the example problem instances.

In summary, Example 1 shows that Softmax PG can achieve global convergence on
unrealizable problem instances with non-zero approximation error. This raises the question:

Is non-zero approximation error useful for characterizing global convergence?

4.3.2 Global Convergence is Irrelevant to Non-zero Approximation Error

We answer the above question negatively. By comparing alternative problem instances
with similar approximation errors but different convergence behaviors, we illustrate how
approximation error is not able to distinguish between scenarios where global versus local
convergence is obtained.

Example 2. K = 4, d = 2, X⊤ =

 0 0 −1 2
−2 1 0 0

 ∈ Rd×K , and r = (9, 8, 7, 6)⊤ ∈ RK .

The approximation error is
∥∥X (

X⊤X
)−1

X⊤r − r
∥∥

2 =
√

205 ≈ 14.3178.
The only difference between Examples 1 and 2 is that the second and third columns of

X⊤ have been exchanged. The approximation error remains similar to that of Example 1.
However, as shown in Example 4.1(b), using the same initialization and learning rate, Softmax
PG obtains ⟨πθt , r⟩ → 8 = r(2) < r(a∗) as it converges to a sub-optimal deterministic policy.

In summary, Examples 1 and 2 have similar approximation errors, yet Softmax PG
achieves global convergence on Example 1 but reaches a bad local maxima on Example 2.
Note that these examples can be re-scaled to have exactly the same approximation errors
while demonstrating the same convergence behavior of the algorithms. From these findings,
we conclude that, if there is any quantity that can predict whether global versus local
convergence is obtained by Softmax PG, that quantity cannot be the approximation error
alone. This motivates us to investigate the question: what is the right quantity to characterize
global convergence for unrealizable problems?

26

4.4 Global Convergence For Linear Bandits In The Exact
Setting

In this section, we analyze the conditions under which the Softmax Policy Gradient (PG)
method for linear bandits achieves global convergence in the exact setting where the full
gradient can be computed. Our objective is to identify sufficient characteristics of the feature
representation and the reward structure to ensure convergence to the optimal policy. To
support our analysis, we introduce the following assumptions:
Assumption 7 (Unique True Mean Reward). For all i, j ∈ [K], if i ̸= j, r(i) ̸= r(j).
Remark. Assumption 7 ensures that the mean rewards for all arms are distinct, thus
guaranteeing a unique optimal arm. This assumption has been widely used by existing
works (Mei et al., 2024a,b) to ensure convergence to strict one-hot policies. Moreover,
assuming a unique optimal action simplifies the formulation of subsequent feature-related
assumptions. We believe that Softmax PG can work without Assumption 7, and removing it
remains an open question for future work.
Assumption 8 (Reward Ordering Preservation). There exists a w ∈ Rd such that r′ = X w

preserves the ordering of the reward r, that is, r′(i) > r′(j) if and only if r(i) > r(j).
Remark. Assumption 8 implies that the feature representation X is expressive enough to
retain the relative ordering of the true rewards through a linear transformation. Note that
this condition is weaker than requiring the exact realization of the true rewards.

Intuition. Consider Example 1, where Softmax PG achieves global convergence. From
the landscape shown in Figure 4.1(a), there appears to be a monotonic path from any
initialization point that allows the gradient ascent to reach the optimal plateau with reward
r(a∗) = 9. Intuitively, this arises because the rewards of the actions seem to be nicely
“ordered”. For example, starting from θ1 = (6, 8)⊤ ∈ Rd such that ⟨πθ1 , r⟩ ≈ 6, Softmax
PG is able to improve its expected reward eventually to ⟨πθt , r⟩ ≈ 7, since there exists a
suboptimal plateau with higher reward 7 right beside the lowest plateau with reward 6.
Next, Softmax PG continues to improve its expected reward eventually to ⟨πθt , r⟩ ≈ 8 by
“climbing” toward another neighboring plateau with a higher reward. Finally, this process
ends with the Softmax PG successfully reaching the optimal plateau with reward r(a∗) = 9.

In contrast, in Example 2, as shown in Figure 4.1(b), Softmax PG is stuck on a bad
plateau with a local maximum reward of 8. Visually, Softmax PG stops improving its expected
reward on this suboptimal plateau, because it is “surrounded” by two lower plateaus with
rewards 6 and 7, which breaks the nice “ordering” of the expected reward landscape and traps
the gradient ascent trajectory on a suboptimal plateau from which there is no monotonic
ascent to global optimality.

27

Verifying reward order preservation. Based on the above intuition and observations, we
conjecture that the ordering structure between the different rewards is a key property behind
the global convergence of Softmax PG. We can verify this conjecture in each of Examples 1
and 2 by determining whether the feature matrix X ∈ RK×d allows the same action ordering
as the reward vector r ∈ RK . For Example 1, note that with w = (−1,−1)⊤ ∈ Rd, we have

r′ := Xw = (2, 1,−1,−2)⊤ ∈ RK ,

which preserves the ordering of r ∈ RK , such that for all i, j ∈ [K], r(i) > r(j) if and only if
r′(i) > r′(j). In this example, Softmax PG converges to a globally optimal reward.

In contrast, for Example 2, it is impossible to find any w ∈ Rd such that Xw preserves
the order of rewards r. To see why, consider any w = (w(1), w(2))⊤ and note that

r′ := Xw = (−2 · w(2), w(2),−w(1), 2 · w(1))⊤ .

To preserve the reward order, we require both −2 · w(2) > w(2) (which would imply
w(2) < 0) and −w(1) > 2 · w(1) (which would imply w(1) < 0), but these two conditions
imply w(2) < 0 < −w(1), which must reverse the order of the second and third actions. This
is an example where PG can fail to reach a global optimum.

Under the above assumptions, we establish the monotonic improvement property of the
Softmax PG method.
Lemma 1. Assuming Assumptions 7 and 8 are satisfied, using Algorithm 3 with the following
constant learning rate,

0 < η <
4

9 ∥r∥∞ λmax(X⊤X) , (4.5)

ensures (i)
〈
πθt+1 , r

〉
> ⟨πθt , r⟩ for all t ≥ 1 and (ii) πθt(a) → 1 for an arm a ∈ [K] as

t→∞.
Lemma 1 establishes that, under our assumptions and with an appropriate learning

rate, the Softmax PG method not only consistently improves the expected reward, but also
converges to a deterministic policy focused on a single arm. However, this lemma does not
specify which arm the policy converges to, leading us to further investigate the conditions
that ensure convergence to the optimal arm from any initialization. To guarantee that the
Softmax PG method converges to the optimal policy regardless of initialization, we introduce
an additional condition on the feature matrix X.

4.4.1 Warm up: Global Convergence when K = 3

Assumption 8 only demands the reward ordering preservation along one arbitrary direction
w. This assumption ensures that there are no finite stationary points in the optimization
landscape, and therefore, Softmax PG will commit to one of the arms. However, as we will
show later, Assumption 8 is not sufficient for ensuring convergence to the optimal arm. A

28

natural way to strengthen the assumption is to require the features to preserve the reward
ordering in more than one direction. Consider a simple case when θ ∈ R2. Assume that there
exist two orthogonal directions u and v such that ru := ⟨r, u⟩ and rv := ⟨r, v⟩ both preserve
the ordering of the reward. Then, we can rewrite the feature as: for i ∈ [3], xi = ru

i u + rv
i v.

This implies that

⟨x2 − x3, x1 − x3⟩ = ⟨(ru
2 − ru

3)u + (rv
2 − rv

3)v, (ru
1 − ru

3)u + (rv
1 − rv

3)v⟩

= (ru
2 − ru

3)(ru
1 − ru

3)u2 + (rv
2 − rv

3)(rv
1 − rv

3)v2 (⟨u, v⟩ = 0)

> 0 (ru and rv preserve the reward ordering)

Given the above observations, we state another key feature condition that is required for
the guarantee of global convergence.
Assumption 9 (Feature Condition (K = 3)). The given feature matrix, X, satisfies that
⟨x2 − x3, x1 − x3⟩ > 0.

The next result shows that in the three-armed bandit setting, the above assumptions are
sufficient to ensure convergence to the optimal action.

Theorem 4. Given a reward vector r ∈ R3 and a feature matrix X ∈ R3×d such that
Assumptions 7, 8, and 9 are satisfied, Algorithm 3 with a constant learning rate as in Eq.
4.5 is guaranteed to converge to the optimal policy.

Refer to Figure B.1a for empirical evaluation of Softmax PG for 3-armed linear bandits.
Given Assumptions 7 to 9, we next investigate which assumptions are required for global
convergence.

Example 3. Let K = 3 d = 2, X⊤ =
[

0 −0.3 1
−1 0.6 0

]
and r = (1, 0.5, 0)⊤. Assumption 8

is satisfied since we have r′ = (1, 0,−2)⊤ = Xw for w = (−2,−1)⊤, and Assumption 9 is
satisfied since ⟨x2 − x3, x1 − x3⟩ = 0.7 > 0.

In the above example, Algorithm 3 is guaranteed to converge to the optimal policy for
any initialization. Furthermore, we can prove that Assumption 9 is a necessary condition
for global convergence in 3-armed bandits. By “necessary,” we do not claim that a violation
of this condition guarantees failure of the algorithm in all cases. Rather, we assert that if
this condition is omitted while the others are satisfied, it is always possible to construct
a specific counterexample on which the algorithm fails to converge. In other words, each
condition is essential in the sense that leaving any one of them out allows for the existence
of a problem instance that breaks global convergence.
Proposition 5. Given a reward vector r ∈ R3 and a feature matrix X ∈ R3×d such
that Assumptions 7 and 8 are satisfied but Assumption 9 is not. Using Algorithm 3 with
a constant learning rate as in Equation (4.5) and initialization θ1 = c (x3 − x1), such that
c > − log(m)

∥x3−x1∥2
2
, where m = ⟨x3−x2,x1−x3⟩

⟨x1−x2,x1−x3⟩
⟨πθ1 ,r⟩−r(3)
r(1)−⟨πθ1 ,r⟩ fails to converge to the optimal policy.

29

The next example is only slightly different from Example 3. In Example 4, setting c = 2,
results in θ1 = c (x3−x1) = [2, 2]⊤, and c = 2 > − log(m)

∥x3−x1∥2
2
≈ 1.61. This satisfies the condition

in Proposition 5, thereby demonstrating that Softmax PG must fail in this specific scenario
(Figure 4.2b).

Example 4. Let K = 3, d = 2, X⊤ =
[

0 0.6 1
−1 0.6 0

]
, and r = (1, 0.5, 0)⊤. Assumption 8 is

satisfied since r′ = (1,−1.8,−2)⊤ = Xw for w = (−2,−1)⊤, but Assumption 9 is not since
⟨x2 − x3, x1 − x3⟩ = −0.2 < 0.

(a) Algorithm 3 running on Example 3 (b) Algorithm 3 running on Example 4

Figure 4.2: The effect of feature conditions on convergence

We also show that Assumption 8 is still required, even if Assumption 9 is satisfied, thus
reinforcing that each of these assumptions is independently necessary in the same sense
described above.

Proposition 6. Let K = 3, d = 2, X⊤ =

3 5 1
4 6 2

 ∈ Rd×K , and r = (3, 2, 1)⊤. In this

case, Assumptions 7 and 9 are satisfied, but Assumption 8 is not, and the features do not
allow the optimal reward to be achieved for any set of finite or infinite parameters. Therefore,
Algorithm 3 does not achieve global convergence for any initialization θ1.

4.4.2 Global Convergence for all K ≥ 3

To extend the analysis to any number of arms, we generalize the previous feature condition.
Assumption 10 (Feature Conditions (Backward Compatible)). The feature matrix X

satisfies

⟨xi − xj , xa∗ − xk⟩

> 0 If i = a∗ or j = k

≥ 0 Otherwise
.

30

for any three arms i, j, and k such that r(i) > r(j) and r(i) > r(k).
Under Assumption 10, we prove in the following theorem that Softmax PG can achieve

global convergence for K ≥ 3.

Theorem 7. Given a reward vector r ∈ RK and a feature matrix X ∈ RK×d such
that Assumptions 7, 8 and 10 are satisfied,using Algorithm 3 with a constant learning rate
as in Equation (4.5) converges to the optimal policy.

Theorem 7 obtains the same convergence guarantee as in Mei et al. (2024a). Unlike Mei
et al. (2024a)], we consider a slightly different set of assumptions with a similar level of
constraints on the feature matrix. Refer to Figure B.1b for empirical evaluation of Softmax
PG for multi-armed linear bandits. In Section 4.5, we show that such assumptions can be
generalized to stochastic linear bandits.

Discussion. The assumptions we have introduced play a critical role in guaranteeing the
global convergence of the Softmax PG method. Assumption 7 ensures a unique optimal arm,
simplifying the convergence analysis. Assumption 8 emphasizes the importance of the feature
representation in capturing the correct action ordering. Assumption 10 imposes geometric
constraints on features to facilitate consistent progress towards the optimal policy. These
assumptions collectively highlight that the structure of the feature representation and its
alignment with the reward ordering are essential for the success of the Softmax PG method.

Furthermore, Lemma 1 establishes the foundation for our convergence analysis by ensuring
monotonic improvement and convergence to a deterministic policy. However, without the
feature conditions, the algorithm may converge to a suboptimal arm, as demonstrated
in the examples. Although the monotonicity of the expected reward is guaranteed in the
deterministic setting under our assumptions, extending these results to the stochastic setting
introduces additional complexities.

In stochastic environments, the observed rewards are noisy estimates of the true mean
rewards, and the monotonicity property may not hold at every iteration. This requires
careful analysis to ensure convergence, which we explore in the next section.

4.5 Global Convergence For Linear Bandits In The Stochastic
Setting

In this section, we extend our analysis to the stochastic setting. Here, the full gradient
cannot be computed since the rewards are drawn from unknown distributions and only a
single arm is selected in each iteration. We will show that the insights and conditions from
the exact setting can be used to ensure global convergence in the presence of stochasticity.
We consider the Softmax PG method in the stochastic setting, as outlined in Algorithm 4.

31

Algorithm 4 Softmax PG for Linear Bandits
Input: Initial parameters θ1 ∈ RK , learning rate η > 0
Output: Policies πθt = softmax(Xθt)
while t ≥ 1 do

Sample an action at ∼ πθt(·) and observe reward Rt(at) ∼ Pat

for all a ∈ [K] do
if a = at then

θt+1(a)← θt(a) + η (1− πθt(a)) Rt(at)
else

θt+1(a)← θt(a)− η πθt(a) Rt(at)
end if

end for
end while

Proposition 8. [Proposition 2.3 of (Mei et al., 2023)] Algorithm 4 is equivalent to the
following update:

θt+1 = θt + η X⊤(diag(πθt)− πθtπ
⊤
θt

) r̂t,

where Et

[
d⟨πθt

,r̂t⟩
dθt

]
= d⟨πθt

,r⟩
dθt

, and Et[·] is defined with respect to randomness from on-
policy sampling at ∼ πθt(·) and reward sampling Rt(at) ∼ Pat. The Jacobian of θ →

πθ := softmax(Xθ) is defined as
(

d⟨πθt
,r⟩

dθt

)⊤
:= X⊤(diag(πθt)−πθtπ

⊤
θt

) ∈ Rd×d and r̂t(a) :=
1{a=at}

πθt
(a) Rt(a) for all a ∈ [K] is the importance sampling (IS) estimator, and we set Rt(a) = 0

for all a ̸= at.
Remark. The update rule in Algorithm 4 is an unbiased estimate of the gradient of the
expected reward with respect to the parameters θt. This stochastic approximation introduces
randomness into the optimization process, which must be carefully managed to ensure
convergence.

4.5.1 Decomposition of Stochastic Process

To show that πθt(a∗) → 1 as t → ∞, we must have, almost surely, θt(a∗) → ∞ and
θt(a) → −∞ for all arms a ̸= a∗ as t → ∞. To establish this fact, we will consider the
stochastic process of a logit zt(a) := [Xθ](a) ∈ RK for any arm a ∈ [K]. Let us express
zt(a) in terms of the “cumulative noise” and “progress” terms. Define Ft as the σ-algebra
generated by {a1, R1(a1), · · · , at−1, Rt−1(at−1)}, i.e.

Ft = σ({a1, R1(a1), · · · , at−1, Rt−1(at−1)}) .

32

Note that θt, zt, are Ft-measurable and r̂t is Ft+1-measurable for all t ≥ 1. Let Et denote
the conditional expectation with respect to Ft, which implies that Et[X] = E[X|Ft]. We
define the following notation,

Wt(a) := zt(a)− Et−1[zt(a)], (“noise”)

Pt(a) := Et[zt+1(a)]− zt(a). (“progress”)

For a ∈ [K], t ≥ 2, we have the following decomposition of the stochastic process of zt(a):

zt(a) = Wt(a) + Pt−1(a) + zt−1(a), (4.6)

and,
z1(a) = z1(a)− E[z1(a)]︸ ︷︷ ︸

W1(a)

+E[z1(a)],

where E[z1(a)] accounts for possible randomness in initializing θ1 ∈ Rd. By recursing Equa-
tion (4.6), we obtain

zt(a) = z1(a) +
t−1∑
s=1

Ps(a)︸ ︷︷ ︸
“cumulative progress”

+
t∑

s=1
Ws(a)︸ ︷︷ ︸

“cumulative noise”

. (4.7)

We will compare the logits between any two distinct arms a1 and a2 (a1 ̸= a2) to measure
which arm will be dominant. Using Equation (4.7), we have

zt(a1)− zt(a2) = z1(a1)− z1(a2) +
t−1∑
s=1

[Ps(a1)− Ps(a2)]︸ ︷︷ ︸
(i)

+
t−1∑
s=1

[Ws+1(a1)−Ws+1(a2)]︸ ︷︷ ︸
(ii)

.

(4.8)

In the following sections, we will use the above decomposition to show that Algorithm 4
achieves global convergence to the optimal policy, almost surely.

4.5.2 Asymptotic Global Convergence

In the stochastic setting, we need to adjust our analysis to account for the randomness
introduced by sampling. Similarly to Lemma 1, by setting the learning rate to be sufficiently
small, we can have the monotonicity of the expected reward.
Lemma 2. We set the constant learning rate as:

η = min
{

1
6 (λmax[X⊤X])3/2√2 Rmax

,
λmin[X⊤X]

6 ρ [λmax[X⊤X]]2

}
, (4.9)

33

where ρ := 8 R3
max K3/2

∆2 , ∆ := mini ̸=j |r(i) − r(j)|, κ := λmax[X⊤X]
λmin[X⊤X] is the condition number

of X⊤X, and µ := [E[inft≥1[πθ(a∗)]−2]]−1 > 0. Algorithm 4 with the above learning rate
assures that, for all t ≥ 1,

Et[
〈
πθt+1 , r

〉
]− ⟨πθt , r⟩ ≥ 1

6 ρ κ2 ∥J(zt)∥22.

Lemma 2 indicates that, in expectation, the algorithm makes progress towards increasing
the expected reward. However, the presence of stochasticity means that the reward may not
increase at every iteration, and additional techniques are required to handle the variance in
the updates. Moreover, with the same learning rate, Algorithm 4 can converge to a one-hot
policy almost surely.
Lemma 3. Using Algorithm 4 with a constant step-size as in Equation (4.9) will converge
to a one-hot policy (i.e. there exists an (possibly random) arm k ∈ [K] such that πθt(k)→ 1
as t→∞) almost surely.

Using the same feature conditions, we show that

Theorem 9. Given a reward vector r ∈ RK and a feature matrix X ∈ RK×d such that
Assumptions 7 and 10 are satisfied, Algorithm 4 with the constant learning rate as in
Equation (4.9), we have, almost surely, πθt(a∗)→ 1 as t→∞.

By setting d = K and X = Id (that is, reducing to the tabular setting), we can recover
the same convergence guarantee as in Mei et al. (2023).

4.5.3 Rates of Convergence Convergence

Using the learning rate as in Equation (4.9), Algorithm 4 can achieve a sub-linear convergence
rate of O(1/T).

Theorem 10. Given a reward vector r ∈ RK and a feature matrix X ∈ RK×d such that As-
sumptions 7 and 10 are satisfied, Algorithm 4 with the constant learning as in Equation (4.9)
results in the following sub-linear convergence rate:

E[⟨π∗, r⟩ − ⟨πθ1 , r⟩] ≤ 6 ρ κ2

µ T
,

where ρ := 8 R3
max K3/2

∆2 , κ := λmax[X⊤X]
λmin[X⊤X] , and µ := [E[inft≥1[πθt(a∗)]−2]]−1 > 0.

4.6 Discussion

We believe that this work opens up new directions for understanding PG-based methods
under function approximation, going well beyond the conventional approximation error-based

34

analysis. It identifies ordering-based conditions that guarantee global convergence in both
the deterministic and stochastic settings.

Extending the results and techniques to general MDPs is an important and challenging
next step. Investigating how these global convergence conditions can be used to achieve
better representation learning is of great interest for algorithm design. Generalizing the proof
techniques to other scenarios where non-linear transforms (activation functions) interact with
low-dimensional features through gradient descent, such as in neural networks, is another
direction of future work.

35

Chapter 5

Conclusion

The first part of this thesis analyzed the softmax policy gradient method with entropy
regularization, addressing both exact and stochastic settings. We proposed a multi-stage
algorithm, which iteratively decays the entropy term and avoids reliance on problem-
dependent constants. Our findings demonstrated that:

• Entropy regularization improves the optimization landscape, enabling the policy to
escape flat regions and improving convergence behavior.

• Systematically decaying the entropy term prevents bias and guarantees convergence to
the true optimal policy without requiring oracle-like knowledge.

• Exponentially decreasing step-sizes can be effectively employed to further enhance the
practicality of the approach in stochastic environments.

The second part of this thesis examined the softmax policy gradient method under linear
function approximation in the bandit setting. We showed that:

• Global convergence of Softmax PG can occur even with non-zero approximation error,
provided that the feature representation preserves the ordering of rewards and satisfies
certain geometric conditions.

• Specific feature conditions guarantee convergence to the globally optimal policy, while
slight violations can lead to suboptimal outcomes.

• Our theoretical analysis extends to the stochastic setting, showing that under similar
feature conditions and with appropriately chosen learning rates, Softmax PG converges
almost surely to the globally optimal policy even in the presence of noise.

Combining the Two Parts. Although each line of work was treated separately in this
thesis, we believe that combining entropy regularization with linear softmax policy gradient is
a promising next step. Such a unified approach could potentially leverage the benefits of both

36

lines of research, promoting more effective exploration through entropy while still accommo-
dating large-scale or continuous action spaces via linear approximation. However, merging
these methods entails considerable technical work and we leave a detailed investigation of
this direction as an avenue for future work.

We hope that our results will inform the design of more robust, scalable reinforcement
learning algorithms capable of handling practical, high-dimensional problems and will
motivate further research into the interplay between entropy regularization and linear
function approximation.

37

Bibliography

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and
Gellért Weisz. Politex: Regret bounds for policy iteration using expert prediction. In
International Conference on Machine Learning, pages 3692–3702. PMLR, 2019a.

Yasin Abbasi-Yadkori, Nevena Lazic, Csaba Szepesvari, and Gellert Weisz. Exploration-
enhanced politex. arXiv preprint arXiv:1908.10479, 2019b.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed
exploration for provable policy gradient learning. Advances in neural information processing
systems, 33:13399–13412, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. J. Mach.
Learn. Res., 22(98):1–76, 2021.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In International conference on machine
learning, pages 151–160. PMLR, 2019.

Carlo Alfano and Patrick Rebeschini. Linear convergence for natural policy gradient with
log-linear policy parametrization. arXiv preprint arXiv:2209.15382, 2022.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural
actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

Semih Cayci, Niao He, and Rayadurgam Srikant. Linear convergence of entropy-
regularized natural policy gradient with linear function approximation. arXiv preprint
arXiv:2106.04096, 2021.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70
(4):2563–2578, 2022.

Minmin Chen, Ramki Gummadi, Chris Harris, and Dale Schuurmans. Surrogate objectives
for batch policy optimization in one-step decision making. Advances in Neural Information
Processing Systems, 32, 2019.

Zaiwei Chen, Sajad Khodadadian, and Siva Theja Maguluri. Finite-sample analysis of
off-policy natural actor–critic with linear function approximation. IEEE Control Systems
Letters, 6:2611–2616, 2022.

38

Yuhao Ding, Junzi Zhang, Hyunin Lee, and Javad Lavaei. Beyond exact gradients: Conver-
gence of stochastic soft-max policy gradient methods with entropy regularization. arXiv
preprint arXiv:2110.10117, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv
preprint arXiv:1803.07300, 2018.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and
proximal-gradient methods under the polyak-łojasiewicz condition. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva
del Garda, Italy, September 19-23, 2016, Proceedings, Part I 16, pages 795–811. Springer,
2016.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Softmax policy gradient
methods can take exponential time to converge. In Conference on Learning Theory, pages
3107–3110. PMLR, 2021a.

Xiaoyu Li, Zhenxun Zhuang, and Francesco Orabona. A second look at exponential and
cosine step sizes: Simplicity, adaptivity, and performance. In International Conference on
Machine Learning, pages 6553–6564. PMLR, 2021b.

Michael Lu, Matin Aghaei, Anant Raj, and Sharan Vaswani. Towards principled, practical
policy gradient for bandits and tabular mdps. arXiv preprint arXiv:2405.13136, 2024.

Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvári, and Dale Schuurmans.
Escaping the gravitational pull of softmax. Advances in Neural Information Processing
Systems, 33:21130–21140, 2020a.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global
convergence rates of softmax policy gradient methods. In International Conference on
Machine Learning, pages 6820–6829. PMLR, 2020b.

Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. Understanding
the effect of stochasticity in policy optimization. Advances in Neural Information Processing
Systems, 34:19339–19351, 2021a.

Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvari, and Dale Schuurmans. Leveraging
non-uniformity in first-order non-convex optimization. In International Conference on
Machine Learning, pages 7555–7564. PMLR, 2021b.

39

Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvari, and Dale Schu-
urmans. The role of baselines in policy gradient optimization. Advances in Neural
Information Processing Systems, 35:17818–17830, 2022a.

Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvari, and Dale Schu-
urmans. The role of baselines in policy gradient optimization. Advances in Neural
Information Processing Systems, 35:17818–17830, 2022b.

Jincheng Mei, Zixin Zhong, Bo Dai, Alekh Agarwal, Csaba Szepesvari, and Dale Schuurmans.
Stochastic gradient succeeds for bandits. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 24325–24360. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/mei23a.html.

Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh, Csaba Szepesvári, and
Dale Schuurmans. Ordering-based conditions for global convergence of policy gradient
methods. Advances in Neural Information Processing Systems, 36, 2024a.

Jincheng Mei, Bo Dai, Alekh Agarwal, Sharan Vaswani, Anant Raj, Csaba Szepesvári, and
Dale Schuurmans. Small steps no more: Global convergence of stochastic gradient bandits
for arbitrary learning rates. Advances in Neural Information Processing Systems, 2024b.

B.T. Polyak. Gradient methods for the minimisation of functionals. USSR Computa-
tional Mathematics and Mathematical Physics, 3(4):864–878, 1963. ISSN 0041-5553. doi:
https://doi.org/10.1016/0041-5553(63)90382-3. URL https://www.sciencedirect.com/
science/article/pii/0041555363903823.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in neural
information processing systems, 12, 1999.

40

https://proceedings.mlr.press/v202/mei23a.html
https://proceedings.mlr.press/v202/mei23a.html
https://www.sciencedirect.com/science/article/pii/0041555363903823
https://www.sciencedirect.com/science/article/pii/0041555363903823

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems, pages 1057–1063, 2000.

Sharan Vaswani, Benjamin Dubois-Taine, and Reza Babanezhad. Towards noise-adaptive,
problem-adaptive (accelerated) stochastic gradient descent. In International Conference
on Machine Learning, pages 22015–22059. PMLR, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8:229–256, 1992.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear
convergence of natural policy gradient methods with log-linear policies. arXiv preprint
arXiv:2210.01400, 2022a.

Rui Yuan, Robert M. Gower, and Alessandro Lazaric. A general sample complexity analysis
of vanilla policy gradient, 2022b.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward
is enough for convex mdps. Advances in Neural Information Processing Systems, 34:
25746–25759, 2021.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Varia-
tional policy gradient method for reinforcement learning with general utilities. Advances
in Neural Information Processing Systems, 33:4572–4583, 2020a.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy
gradient methods to (almost) locally optimal policies. SIAM Journal on Control and
Optimization, 58(6):3586–3612, 2020b.

41

Supplementary Material

Organization of the Appendix

A Proofs of Chapter 3

A.1 Definitions
A.2 Proofs of Section 3.3
A.3 Proofs of Section 3.4
A.4 Additional Lemmas

B Proofs of Chapter 4

B.1 Definitions
B.2 Proofs of Section 4.3
B.3 Proofs of Section 4.4
B.4 Proofs of Section 4.5
B.5 Additional Lemmas
B.6 Experiments

42

Appendix A

Proofs of Chapter 3

A.1 Definitions

A function f is L-smooth if for all θ and θ′

|f(θ)− f(θ′)−
〈
∇f(θ′), θ − θ′〉| ≤ L

2
∥∥θ − θ′∥∥2

2. (A.1)

A function f is L1-non-uniform smooth if for all θ and θ′

|f(θ)− f(θ′)−
〈
∇f(θ′), θ − θ′〉| ≤ L1∥∇f(θ′)∥

2
∥∥θ − θ′∥∥2

2. (A.2)

A function f satisfies the non-uniform Łojasiewciz condition of degree ξ for ξ ∈ [0, 1] is
defined as

∥∇f(θ)∥ ≥ C(θ)|f∗ − f(θ)|1−ξ (f∗ := supθ f(θ))

where C : θ → R > 0.

A function f satisfies the reversed Łojasiewciz condition if for all θ

∥∇f(θ)∥ ≤ ν [f∗ − f(θ)] (A.3)

where ν > 0.

43

A.2 Proofs of Section 3.3

A.2.1 Proof of Theorem 1
Theorem 1. Assuming f τ and f satisfy Assumptions 1 to 5, for a given ϵ ∈ (0, 1),
Algorithm 1 achieves ϵ-suboptimality to the global optimal policy after
Ttotal = 4 Lmax Cp

1
ϵp B1

log (2 (1 + B4)) iterations, where C1 = max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B2 + B3.

Proof. Observe that in Algorithm 1, we use τi and ηi at stage i ≥ 1, which starts at iteration
lasti−1 + 1, runs for Ti = 2

ηi µi
log

(
τi−1

τi
(1 + B4)

)
iterations, and ends at iteration lasti. Now,

we prove by induction that f∗τi − f τi(θlasti) ≤ τi max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
for all i ≥ 0:

Base Case: For i = 0, we have

f∗τ0 − f τ0(θ0) ≤ max(τ0, f∗τ0 − f τ0(θ0)) = τ0 max
(

1,
f∗τ0 − f τ0(θ0)

τ0

)
. (A.4)

Induction Step: Suppose f∗τi−1 − f τi−1(θlasti−1) ≤ τi−1 max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
holds.

Since f τi(θ) is Lτi-smooth and satisfies the non-uniform Łojasiewciz condition with µi :=
inft≥1 C2

τ (θt), we use Lemma 4 for stage i:

f∗τi − f τi(θlasti) ≤ exp(−ηi µi

2 Ti)[f∗τi − f τi(θlasti−1)] (A.5)

If Ti ≥ 2
ηi µi

log
(

τi−1
τi

(1 + B4)
)
, we have

=
f∗τi − f τi(θlasti−1)

exp
(
log

(
τi−1

τi
(1 + B4)

)) (A.6)

Under Assumption 5

≤
f∗τi−1 − f τi−1(θlasti−1) + τi−1B4

τi−1
τi

(1 + B4) (A.7)

Using the inductive hypothesis

≤
τi τi−1

(
max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B4

)
τi−1 (1 + B4) (A.8)

≤
τi max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
(1 + B4)

1 + B4
(A.9)

= τi max
(

1,
f∗τ0 − f τ0(θ0)

τ0

)
. (A.10)

Therefore, for all i ≥ 0

f∗τi − f τi(θlasti) ≤ τi max
(

1,
f∗τ0 − f τ0(θ0)

τ0

)
. (A.11)

44

Define ϵi := f∗ − f(θlasti) as the sub-optimality at the end of stage i. We have

ϵi = f∗ − f(θlasti) (A.12)

=
[
f∗ − f(θ∗

τi
)
]

+
[
f(θ∗

τi
)− f(θlasti)

]
(A.13)

Under Assumption 4

≤
[
f∗ − f(θ∗

τi
)
]

+ f∗τi − f τi(θlasti) + τiB3 (A.14)

By Equation (A.11),

≤
[
f∗ − f(θ∗

τi
)
]

+ τi

(
max

(
1,

f∗τ0 − f τ0(θ0)
τ0

)
+ B3

)
(A.15)

Using Assumption 3,

≤ τi B2 + τi

(
max

(
1,

f∗τ0 − f τ0(θ0)
τ0

)
+ B3

)
(A.16)

= τi

(
max

(
1,

f∗τ0 − f τ0(θ0)
τ0

)
+ B2 + B3

)
︸ ︷︷ ︸

:=C1

(A.17)

= 2−i τ0 C1. (τi = 2−i τ0)

Therefore, the number of stages Nstages required to obtain an ϵ sub-optimality is given as:

2Nstages ≥ τ0 C1
ϵ

=⇒ Nstages ≥ log2

(
τ0 C1

ϵ

)
. (A.18)

On the other hand, the sufficient number of iterations at stage i is:

Ti ≥
2

ηi µi
log

(
τi−1
τi

(1 + B4)
)

(A.19)

Since ηi = 1
Lτi

= 2 Lτi

µi
log

(
τi−1
τi

(1 + B4)
)

, (A.20)

Since Lτi ≤ Lmax, it is sufficient to set Ti as:

Ti = 2 Lmax

µi
log

(
τi−1
τi

(1 + B4)
)

(A.21)

Under Assumption 1, µi = τp
i B1

= 2 Lmax

τp
i B1

log
(

τi−1
τi

(1 + B4)
)

(A.22)

45

Since τi = 2−i τ0, we have

= 2 Lmax 2ip

τp
0 B1

log (2 (1 + B4)) (A.23)

Consequently, we can calculate the sufficient total number of iterations TTotal in terms of ϵ:

TTotal ≥
Nstages∑

i=1
Ti =

Nstages∑
i=1

[
2 Lmax 2ip

τp
0 B1

log (2 (1 + B4))
]

(A.24)

= 2 Lmax ∑Nstages
i=1 (2p)i

τp
0 B1

log (2 (1 + B4)) (A.25)

Since for all x > 1, n ≥ 0,
∑n

i=0 xi = xn+1−1
x−1

=
2 Lmax

[
(2p)Nstages+1−1

2p−1 − 1
]

τp
0 B1

log (2 (1 + B4)) (A.26)

Therefore, it is sufficient that

TTotal ≥
2 Lmax (2p)Nstages+1

2p−1
τp

0 B1
log (2 (1 + B4)) (A.27)

=
2 Lmax 2p (2p)Nstages

2p−1
τp

0 B1
log (2 (1 + B4)) (A.28)

Since p ≥ 1, we have 2p

2p−1 ≤ 2. Hence, it is sufficient to use

TTotal =4 Lmax (2p)Nstages

τp
0 B1

log (2 (1 + B4)) (A.29)

= 4 Lmax (2Nstages)p

τp
0 B1

log (2 (1 + B4)) (A.30)

Using Equation (A.18),

≥ 4 Lmax Cp
1

ϵp B1
log (2 (1 + B4)) (A.31)

in order to guarantee f∗ − f(θTtotal) ≤ ϵ.

Corollary 1. In the bandit setting, assuming for each stage i, µi = τp
i B1 for constants

p ≥ 1 and B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 1 with ηi = 2
5+10 τi (1+log A)

achieves ϵ-sub-optimality after Ttotal = 4 Lmax Cp
1

ϵp B1
log

(
2
(
1 + W

(
A−1

e

)
+ log A

))
iterations,

where Lmax = 5
2 + 5 (1 + log A) and C1 = max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ W

(
A−1

e

)
+ log A.

Proof. Set f(θ) = πθ
⊤r and f τ (θ) = πθ

⊤(r − τ log πθ). We can extend Theorem 1 to the
bandit setting since:

46

• by Lemma 18, f τ is Lτ -smooth and since τ ∈ [0, 1]

5
2 = Lmin ≤ Lτ = 5

2 + τ 5 (1 + log A) ≤ 5
2 + 5 (1 + log A) = Lmax (A.32)

• by Lemma 6, we have f∗ − f(θ∗
τ) ≤ τW

(
A−1

e

)
• by Lemma 7, we have for all θ, f(θ∗

τ)− f(θ) ≤ f∗τ − f τ (θ) + τ log A

• by Lemma 8, we have for all θ, f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1W
(

A−1
e

)
+ log A

Corollary 2. In the tabular MDP setting, assuming for each stage i, µi = τp
i B1 for con-

stants p ≥ 1 and B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 1 with ηi = (1−γ)3

8+τi (4+8 log A)

achieves ϵ-sub-optimality after Ttotal = 4 Lmax Cp
1

ϵp B1
log

(
2
(
1 + 2 log A

1−γ

))
iterations, where

Lmax = 12+8 log A
(1−γ)3 and C1 = max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ 2 log A

1−γ .

Proof. Set f(θ) = V πθ(ρ) and f τ (θ) = Ṽ πθ
τ (ρ). We can extend Theorem 1 to the tabular

MDP setting since:

• by Lemma 20, f τ (θ) is Lτ -smooth and since τ ∈ [0, 1]

Lmin = 8
(1− γ)3 ≤ Lτ = 8 + τ(4 + 8 log A)

(1− γ)3 ≤ 12 + 8 log A

(1− γ)3 = Lmax (A.33)

• by Lemma 9, we have f∗ − f(θ∗
τ) ≤ τ log A

1−γ

• by Lemma 11, we have for all θ, f(θ∗
τ)− f(θ) ≤ f∗τ − f τ (θ) + τ log A

1−γ

• by Lemma 12, we have for all θ, f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1
2 log A
1−γ

Additional Lemmas
Lemma 4. Assuming f τ satisfies Assumptions 1 and 2, using Update 3 with ηt = 1

Lτ , we
have

f∗τ − f τ (θt2) ≤ exp
(
−ηt µ

2 (t2 − t1)
)

[f∗τ − f τ (θt1)] (A.34)

where t1 < t2.

Proof.

Since f τ is Lτ -smooth

f τ (θt+1) ≥ f τ (θt) + ⟨∇f τ (θt), θt+1 − θt⟩ −
Lτ

2 ∥θt+1 − θt∥22 (A.35)

47

Using Update 3, θt+1 = θt + ηt∇f τ (θt)

= f τ (θt) + η∥∇f τ (θt)∥22 −
Lτ ηt

2

2 ||∇f τ (θt)||22 (A.36)

Using ηt = 1
Lτ

= f τ (θt) + ηt

2 ∥∇f τ (θt)∥22 (A.37)

Assuming Assumption 1 is satisfied, ∥∇f τ (θ)∥22 ≥ µ |f∗τ − f τ (θ)|

≥ f τ (θt) + η µ

2 [f∗τ − f τ (θt)] (A.38)

Multiplying both sides by −1 and adding f∗

=⇒ f∗τ − f τ (θt+1) ≤
(

1− ηt µ

2

)
[f∗τ − f τ (θt)] (A.39)

Using 1− x ≤ exp(−x)

≤ exp
(
−ηt µ

2

)
[f∗τ − f τ (θt)]. (A.40)

Therefore,

f∗τ − f τ (θt2) ≤ exp
(
−ηt µ

2 (t2 − t1)
)

[f∗τ − f τ (θt1)]. (A.41)

A.2.2 Lemmas for the Bandit Setting

Verifying Assumption 3

Lemma 5. If ∇r

[
(π∗ − π∗

τ)⊤r
]

= 0, then all suboptimal rewards must be equal.

Proof. Setting gradient of the bias of softmax optimal policy (π∗ − π∗
τ)⊤r with respect to

the reward vector r equal to a zero vector, the derivative of the bias with respect to an

48

arbitrary suboptimal reward r(â), where â is a suboptimal action, should be 0:

d

dr(â)(π∗ − π∗
τ)⊤r = 0 =⇒ d

dr(â)

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

= 0 (A.42)

=⇒

(
e

r(â)
τ

τ [r(a∗)− r(â)]− e
r(â)

τ

)(∑
a e

r(a)
τ

)
− e

r(â)
τ

τ

(∑
a e

r(a)
τ [r(a∗)− r(a)]

)
(∑

a′ e
r(a′)

τ

)2 = 0 (A.43)

=⇒
e

r(â)
τ

τ

(∑
a e

r(a)
τ [r(a)− r(â)− τ]

)
(∑

a′ e
r(a′)

τ

)2 = 0 =⇒
∑

a

e
r(a)

τ [r(a)− r(â)− τ] = 0 (A.44)

Now, for any two suboptimal actions âi and âj , we have

=⇒
∑

a

e
r(a)

τ [r(a)− r(âi)− τ]−
∑

a

e
r(a)

τ [r(a)− r(âj)− τ] = 0− 0 (A.45)

=⇒
∑

a

e
r(a)

τ [r(âj))− r(âi)] = 0 =⇒ r(âj) = r(âi). (A.46)

Therefore, all suboptimal rewards must be equal.

Lemma 6. We have (π∗ − π∗
τ)⊤r ≤ τW

(
A−1

e

)
, where W : R+ 7→ R+ is the principal

branch of the Lambert W function, which is defined by W (x)eW (x) = x ∀x ≥ 0.

Proof. We want to find an upper bound on the difference between the expected reward
achieved by the optimal policy π∗ and the softmax optimal policy π∗

τ = softmax(r/τ).
Denoting ∆(a) = r(a∗)− r(a), ∆ = mina̸=a∗ ∆(a), and a∗ is the optimal action, we have

(π∗−π∗
τ)⊤r =

∑
a

π∗
τ (a) r(a∗)−

∑
a

π∗
τ (a) r(a) =

∑
a̸=a∗

π∗
τ (a) ∆(a) =

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

. (A.47)

To find the upper bound, it is enough to find a reward vector r ∈ RA that maximizes the
bias. To do so, we find a unique stationary point and then prove that it is the reward vector
with the maximum bias. First, we show that decreasing all rewards by a constant value c
does not change the bias:

(π∗ − π∗
τ)⊤(r − c1) =

∑
a̸=a∗ e

r(a)−c
τ ∆(a)∑

a′ e
r(a′)−c

τ

=
e− c

τ
∑

a̸=a∗ e
r(a)

τ ∆(a)

e− c
τ
∑

a′ e
r(a′)

τ

(A.48)

=
∑

a̸=a∗ e
r(a)

τ ∆(a)∑
a′ e

r(a′)
τ

= (π∗ − π∗
τ)⊤r (A.49)

Therefore, without loss of generality, we assume that the smallest reward value equals 0.
Furthermore, according to Lemma 5, stationary reward vectors must have equal values for

49

all non-optimal actions. Therefore, we assume that the reward vector has a value of ra∗ = ∆
for the optimal action and 0 values for all other actions. In this case,

(π∗ − π∗
τ)⊤r =

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

= (A− 1)∆
e

∆
τ + A− 1

. (A.50)

Now, we find the reward gap ∆ that makes the first derivative of the bias with respect to ∆
equal to 0:

d

d∆
(A− 1)∆

e
∆
τ + A− 1

= 0 =⇒
(A− 1)

(
e

∆
τ + A− 1

)
− (A−1)∆e

∆
τ

τ(
e

∆
τ + A− 1

)2 = 0 (A.51)

=⇒ (A− 1)
(
e

∆
τ + A− 1

)
− (A− 1)∆e

∆
τ

τ
= 0 =⇒ τ

(
e

∆
τ + A− 1

)
= ∆e

∆
τ (A.52)

=⇒ τ(A− 1) = (∆− τ)e
∆
τ =⇒ ∆− τ

τ
e

∆
τ = A− 1 =⇒ ∆− τ

τ
e

∆−τ
τ = A− 1

e
(A.53)

=⇒W

(
A− 1

e

)
= ∆− τ

τ
=⇒ ∆ = τ

(
W

(
A− 1

e

)
+ 1

)
, (A.54)

where W : R 7→ R is the principal branch of the Lambert W function. Since this value is the
only stationary point of the bias with respect to the rewards vector, ∆ = τ

(
W
(

A−1
e

)
+ 1

)
is either the global maximum or the global minimum point. Since π∗ is the optimal policy,
the bias (π∗ − π∗

τ)⊤r is always non-negative. For ∆ = 0, the bias is equal to 0, so the unique
stationary point must yield the global maximum. Substituting it in Equation (A.50), we get

(π∗ − π∗
τ)⊤r ≤

(A− 1)τ
(
W
(

A−1
e

)
+ 1

)
eW(A−1

e)+1 + A− 1
. (A.55)

Now, since eW (x) = x
W (x) ,

=
(A− 1)τ

(
W
(

A−1
e

)
+ 1

)
A−1

W(A−1
e) + A− 1

(A.56)

=τW

(
A− 1

e

)
. (A.57)

50

Verifying Assumption 4
Lemma 7. For a fixed θ and τ , we have

(π∗
τ − πθ)⊤r ≤ π∗

τ
⊤(r − τ log π∗

τ)− πθ
⊤(r − τ log πθ) + τ log A. (A.58)

Proof.

(π∗
τ − πθ)⊤r = π∗

τ
⊤(r − τ log π∗

τ)− πθ
⊤(r − τ log πθ) + τ(π∗

τ log π∗
τ − πθ log πθ) (A.59)

For all θ, log 1
A ≤ πθ

⊤ log πθ ≤ 0

≤ π∗
τ

⊤(r − τ log π∗
τ)− πθ

⊤(r − τ log πθ) + τ

(
0− log 1

A

)
(A.60)

= π∗
τ

⊤(r − τ log π∗
τ)− πθ

⊤(r − τ log πθ) + τ log A. (A.61)

Verifying Assumption 5

Lemma 8. Set f τ (θ) = πθ
⊤(r − τ log πθ). For a fixed θ, if τ2 < τ1, then

f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1W

(
A− 1

e

)
+ τ1 log A. (A.62)

Proof. Assuming τ2 < τ1, we have

[f∗τ2 − f τ2(θ)]− [f∗τ1 − f τ1(θ)] = [f∗τ2 − f∗τ1]− [f τ2(θ)− f τ1(θ)] (A.63)

=
[
π∗

τ2
⊤(r − τ2 log π∗

τ2)− π∗
τ1

⊤(r − τ1 log π∗
τ1)
]
− [πθ

⊤(r − τ2 log πθ)− πθ
⊤(r − τ1 log πθ)]

(A.64)

=(π∗
τ2 − π∗

τ1)⊤r −
[
τ2 π∗

τ2
⊤ log π∗

τ2 − τ1 π∗
τ1

⊤ log π∗
τ1

]
+ (τ2 − τ1) πθ

⊤ log πθ (A.65)

For all θ, log 1
A ≤ πθ

⊤ log πθ ≤ 0

≤(π∗
τ2 − π∗

τ1)⊤r −
[
τ2 log 1

A
− τ1 0

]
+ (τ2 − τ1) log 1

A
≤ (π∗ − π∗

τ1)⊤r + τ1 log A. (A.66)

By Lemma 6

=⇒ f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1W

(
A− 1

e

)
+ τ1 log A. (A.67)

51

A.2.3 Lemmas for Tabular MDP Setting

Verifying Assumption 3

Lemma 9 (Equation (12) in (Cen et al., 2022)). V ∗(ρ)− V π∗
τ (ρ) ≤ τ log A

1−γ .

Verifying Assumption 4
Lemma 10. For any π and ρ, we have

H(π) ≤ log A

1− γ
, (A.68)

where
H(π) := E

s0∼ρ,at∼π(·|st),
st+1∼P(·|st,at)

[∞∑
t=0
−γt log π(at|st)

]
. (A.69)

Proof.

H(π) = E
s0∼ρ,at∼π(·|st),
st+1∼P(·|st,at)

[∞∑
t=0
−γt log π(at|st)

]
(A.70)

= 1
1− γ

∑
s,a

dπ
ρ (s) π(a|s) [− log π(a|s)] (A.71)

= 1
1− γ

∑
s

dπ
ρ (s)

[
−
∑

a

π(a|s) log π(a|s)
]

(A.72)

Since for all π, log 1
A ≤

∑
a π(a|s) log π(a|s) ≤ 0

≤ 1
1− γ

∑
s

dπ
ρ (s)

[
− log 1

A

]
(A.73)

= 1
1− γ

∑
s

dπ
ρ (s) log A (A.74)

= log A

1− γ
(A.75)

Lemma 11. For a fixed θ and τ , we have

V π∗
τ (ρ)− V πθ (ρ) ≤ Ṽ ∗

τ (ρ)− Ṽ πθ
τ (ρ) + τ log A

1− γ
. (A.76)

52

Proof.

V π∗
τ (ρ)− V πθ (ρ) =(V π∗

τ (ρ) + τH(ρ, π∗
τ))− (V πθ (ρ) + τH(πθ)) + τ(H(πθ)−H(π∗

τ)) (A.77)
=Ṽ ∗

τ (ρ)− Ṽ πθ
τ (ρ) + τ(H(πθ)−H(π∗

τ)) (A.78)

Since for all π, H(π) ≥ 0

≤Ṽ ∗
τ (ρ)− Ṽ πθ

τ (ρ) + τH(πθ) (A.79)

By Lemma 10

≤Ṽ ∗
τ (ρ)− Ṽ πθ

τ (ρ) + τ log A

1− γ
(A.80)

Verifying Assumption 5
Lemma 12. For a fixed θ, if τ2 < τ1, then

Ṽ ∗
τ2(ρ)− Ṽ πθ

τ2 (ρ) ≤ Ṽ ∗
τ1(ρ)− Ṽ πθ

τ1 (ρ) + 2 τ1 log A

1− γ
. (A.81)

Proof. Assuming τ2 < τ1, we have

Ṽ ∗
τ2(ρ)− Ṽ πθ

τ2 (ρ)− Ṽ ∗
τ1(ρ)− Ṽ πθ

τ1 (ρ) = [Ṽ ∗
τ2(ρ)− Ṽ ∗

τ1(ρ)]− [Ṽ πθ
τ2 (ρ)− Ṽ πθ

τ1 (ρ)] (A.82)

=
[(

V π∗
τ2 (ρ) + τ2 H(π∗

τ2)
)
−
(
V π∗

τ1 (ρ) + τ1 H(π∗
τ1)
)]

− [(V πθ (ρ) + τ2 H(πθ))− (V πθ (ρ) + τ1 H(πθ))] (A.83)

=
[
V π∗

τ2 (ρ)− V π∗
τ1 (ρ)

]
+
[
τ2 H(π∗

τ2)− τ1 H(π∗
τ1)
]

+ (τ1 − τ2)H(ρ, πθ). (A.84)

By Lemma 10, 0 ≤ H(π) ≤ log A
1−γ

≤
[
V π∗

τ2 (ρ)− V π∗
τ1 (ρ)

]
+
[
τ2

log A

1− γ
− τ1 0

]
+ (τ1 − τ2) log A

1− γ
(A.85)

≤ V ∗(ρ)− V π∗
τ1 (ρ) + τ1

log A

1− γ
. (A.86)

By Lemma 9,
=⇒ Ṽ ∗

τ2(ρ)− Ṽ πθ
τ2 (ρ) ≤ Ṽ ∗

τ1(ρ)− Ṽ πθ
τ1 (ρ) + 2τ1 log A

1− γ
. (A.87)

53

A.3 Proofs of Section 3.4

A.3.1 Proof of Theorem 2
Theorem 2. Assuming f τ and f satisfy Assumptions 2 to 6, for a given ϵ ∈ (0, 1), using
Algorithm 2 with (a) unbiased stochastic gradients whose variance is bounded by σ2 and
(b) exponentially decreasing step-sizes ηi,t = ηi,lasti−1 α

t−lasti−1+1
i , where ηi,lasti−1 = 1

Lτi ,

αi =
(

β
Ti

) 1
Ti , β = 1, and setting constants c0 = 0.69, c1 = 5583, achieves ϵ-sub-optimality

to the globally optimal policy after Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

Proof. Observe that in Algorithm 2, we use τi at stage i ≥ 1, which starts at iteration
lasti−1 + 1, ends at iteration lasti, and runs for Ti = max(5583, 2 T

′
i log T

′
i , 4 T

′′
i log2 T

′′
i)

iterations, where

T
′
i =

2 log
(

2 X1 τi−1(1+B4)
τi

)
X2 µi

, T
′′
i = 2 X3 σ2

τi µ2
i

, (A.88)

where X1 = exp
(

µi β
Lτi log(T/β)

)
, X2 = 0.69

Lτi , and X3 = 5 Lτi X1
e2 . Now, we will prove by induction

that E[f∗τi − f τi(θlasti)] ≤ τi max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
for all i ≥ 0:

Base Case: For i = 0, we have

f∗τ0 − f τ0(θ0) ≤ max(τ0, f∗τ0 − f τ0(θ0)) = τ0 max
(

1,
f∗τ0 − f τ0(θ0)

τ0

)
. (A.89)

Induction Step: Suppose E[f∗τi−1 − f τi−1(θlasti−1)] ≤ τi−1 max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
holds. At

stage i, by Lemma 13, using exponentially decreasing step-size ηi,t = ηi,lasti−1 α
t−lasti−1+1
i ,

where ηi,lasti−1 = 1
Lτi , αi =

(
β
Ti

) 1
Ti with β = 1, for E[f∗τi−f τi(θlasti)] ≤ τi max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
to hold, it suffices that Ti ≥ max(5583, 2 Yi log Yi, 4 Y

′
i log2 Y

′
i), where

Yi =

2 log

2 X1 E[f∗τi −fτi (θlasti−1)]

τi max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

) 
X2 µi

, Y
′

i = 2 X3 σ2

τi µ2
i max

(
1, f∗τ0 −fτ0 (θ0)

τ0

) . (A.90)

Under Assumption 5,

Yi ≤

2 log

2 X1
(
E[f∗τi−1 −fτi−1 (θlasti−1)]+τi−1B4

)
τi max

(
1,

f
∗τ0 −fτ0 (θ0)

τ0

) 
X2 µi

(A.91)

54

Using the inductive hypothesis

≤

2 log

2 X1

(
τi−1 max

(
1,

f
∗τ0 −fτ0 (θ0)

τ0

)
+τi−1B4

)
τi max

(
1,

f
∗τ0 −fτ0 (θ0)

τ0

) 
X2 µi

(A.92)

≤

2 log

2 X1 τi−1 max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

)
(1+B4)

τi max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

) 
X2 µi

(A.93)

=
2 log

(
2 X1 τi−1(1+B4)

τi

)
X2 µi

= T
′
i . (A.94)

On the other hand, we have

Y
′

i ≤
2 X3 σ2

τi µ2
i

= T
′′
i . (A.95)

Therefore, Ti = max(5583, 2 T
′
i log T

′
i , 4 T

′′
i log2 T

′′
i) ≥ max(5583, 2 Yi log Yi, 4 Y

′
i log2 Y

′
i).

This implies E[f∗τi − f τi(θlasti)] ≤ τi max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
holds for all i ≥ 0. As a result,

under Assumption 4, we have

E[f(θ∗
τi

)− f(θlasti)] ≤E[f∗τi − f τi(θlasti)] + τi B3 (A.96)

≤ τi

(
max

(
1,

f∗τ0 − f τ0(θ0)
τ0

)
+ B3

)
(A.97)

Denote ϵi := E[f∗ − f(θlasti)] as the suboptimality at the end of stage i. We have

ϵi =E[f∗ − f(θlasti)] (A.98)
= f∗ − f(θ∗

τi
) + E[f(θ∗

τi
)− f(θlasti)] (A.99)

Under Assumption 3

≤ τi C1 (A.100)

where C1 = max
(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B2 + B3. Therefore, ϵi has an upper bound that is

proportional to τi. Now, since τi = 2−i τ0, the sub-optimality ϵi has an exponential rate in
terms of the number of executed stages:

= 2−i τ0 C1 (A.101)

Therefore, the required number of stages Nstages in terms of the final sub-optimality ϵ :=
ϵNstages is

2Nstages ≥ τ0 C1
ϵ

=⇒ Nstages ≥ log2

(
τ0 C1

ϵ

)
. (A.102)

55

On the other hand, we have the sufficient number of iterations at stage i:

Ti ≥ max

5583,
4 log

(
2 X1 τi−1(1+B4)

τi

)
X2 µi

log

 log
(

2 X1 τi−1(1+B4)
τi

)
X2 µi

 ,
8 X3 σ2

τi µ2
i

log2
(

2 X3 σ2

τi µ2
i

)
(A.103)

Since τi ≤ 1, under Assumption 6, we have µi = τp
i B1 ≤ B1. Furthermore, log

(
Ti
β

)
≥ 1,

and under Assumption 2, we have 0 < Lmin ≤ Lτi ≤ Lmax. Therefore,

X1 ≤ A1 = exp
(

B1 β

Lmin

)
, (A.104)

X2 ≥ A2 = 0.69
Lmax , (A.105)

X3 ≤ A3 = 5 Lmax A1
e2 . (A.106)

Hence, we can safely substitute variables X1, X2, X3 with their corresponding constants
A1, A2, A3. Therefore, it is sufficient to set Ti as

Ti ≥ max

5583,
4 log

(
2 A1 τi−1(1+B4)

τi

)
A2 µi

log

 log
(

2 A1 τi−1(1+B4)
τi

)
A2 µi

 ,
8 A3 σ2

τi µ2
i

log2
(

2 A3 σ2

τi µ2
i

)
(A.107)

Under Assumption 6, µi = τp
i B1

= max

5583,
4 log

(
2 A1 τi−1(1+B4)

τi

)
A2 τp

i B1
log

 log
(

2 A1 τi−1(1+B4)
τi

)
A2 τp

i B1

 ,
8 A3 σ2

τ2p+1
i B2

1
log2

(
2 A3 σ2

τ2p+1
i B2

1

)
(A.108)

Since τi = 2−i τ0

= max
(

5583,
4 log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

log
(

log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

)
,

8 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1
log2

(
2 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1

))
(A.109)

Since i ≤ Nstages, it is sufficient that

Ti = max
(

5583,
4 log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

Y1,
8 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1
Y2

)
(A.110)

56

where Y1 = log
(

log(4 A1 (1+B4)) (2Nstages)p

A2 τp
0 B1

)
and Y2 = log2

(
2 A3 σ2 (2Nstages)2p+1

τ2p+1
0 B2

1

)
. Consequently,

we can calculate the sufficient total number of iterations TTotal in terms of ϵ:

TTotal ≥
Nstages∑

i=1
Ti (A.111)

=
Nstages∑

i=1
max

(
5583,

4 log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

Y1,
8 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1
Y2

)
(A.112)

= max
(

5583 Nstages,
4 log(4 A1 (1 + B4))

∑Nstages
i=1 (2p)i

A2 τp
0 B1

Y1,
8 A3 σ2 ∑Nstages

i=1 (22p+1)i

τ2p+1
0 B2

1
Y2

)
(A.113)

Since ∀x > 1, n ≥ 0,
∑n

i=0 xi = xn+1−1
x−1

= max

5583 Nstages,
4 log(4 A1 (1 + B4))

[
(2p)Nstages+1−1

2p−1 − 1
]

A2 τp
0 B1

Y1,

8 A3 σ2
[

(22p+1)Nstages+1−1
22p+1−1 − 1

]
τ2p+1

0 B2
1

Y2

 (A.114)

Therefore, it is sufficient that

TTotal ≥max

5583 Nstages,
4 log(4 A1 (1 + B4)) (2p)Nstages+1

2p−1
A2 τp

0 B1
Y1,

8 A3 σ2 (22p+1)Nstages+1

22p+1−1

τ2p+1
0 B2

1
Y2


(A.115)

= max

5583 Nstages,
4 log(4 A1 (1 + B4)) 2p (2p)Nstages

2p−1
A2 τp

0 B1
Y1,

8 A3 σ2 22p+1 (22p+1)Nstages

22p+1−1

τ2p+1
0 B2

1
Y2


(A.116)

Since p ≥ 1, we have 2p

2p−1 ≤ 2 and 22p+1

22p+1−1 ≤
8
7 . Hence, it is sufficient to use

TTotal = max
(

5583 Nstages,
8 log(4 A1 (1 + B4)) (2p)Nstages

A2 τp
0 B1

Y1,
64 A3 σ2 (22p+1)Nstages

7 τ2p+1
0 B2

1
Y2

)
(A.117)

= max
(

5583 Nstages,
8 log(4 A1 (1 + B4)) (2Nstages)p

A2 τp
0 B1

Y1,
64 A3 σ2 (2Nstages)2p+1

7 τ2p+1
0 B2

1
Y2

)
(A.118)

57

Using Equation (A.102)

≥ max

5583 log2

(
τ0 C1

ϵ

)
,
8 log(4 A1 (1 + B4)) Cp

1 log
(log(4 A1 (1+B4)) Cp

1
A2 B1 ϵp

)
A2 B1 ϵp

,

64 A3 C2p+1
1 log2

(
2 A3 C2p+1

1 σ2

B2
1 ϵ2p+1

)
σ2

7 B2
1 ϵ2p+1

 (A.119)

=⇒ TTotal ∈ Õ
(

1
ϵp

+ σ2

ϵ2p+1

)
. (A.120)

Corollary 3. In the bandit setting, assuming for each stage i, µi = τp
i B1 for constants

p ≥ 1, B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 2 with exponentially decreasing

step-sizes ηi,t = ηi,lasti−1 α
t−lasti−1+1
i where ηi,lasti−1 = 2

5+10 τi (1+log A) and αi =
(

β
Ti

) 1
Ti ,

β = 1, achieves ϵ-suboptimality after TTotal ∈ Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

Proof. Set f(θ) = πθ
⊤r and f τ (θ) = πθ

⊤(r − τ log πθ). We can extend Theorem 2 to the
bandit setting since:

• by Lemma 18, f τ is Lτ -smooth and τ ∈ [0, 1]

5
2 = Lmin ≤ Lτ = 5

2 + τ 5 (1 + log A) ≤ 5
2 + 5 (1 + log A) = Lmax (A.121)

• by Lemma 6, we have f∗ − f(θ∗
τ) ≤ τW

(
A−1

e

)
• by Lemma 7, we have for all θ, f(θ∗

τ)− f(θ) ≤ f∗τ − f τ (θ) + τ log A

• by Lemma 8, we have for all θ, f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1W
(

A−1
e

)
+ log A

• by Lemma 30, the gradient estimator is unbiased and have bounded variance where
σ2 = 8 (1 + (τ log A)2).

Corollary 4. In the tabular MDP setting, assuming for each stage i , µi = τp
i B1 for

constants p ≥ 1, B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 2 with exponentially
decreasing step-sizes ηi,t = ηi,lasti−1 α

t−lasti−1+1
i , where ηi,lasti−1 = (1−γ)3

8+τi(4+8 log A) and αi =(
β
Ti

) 1
Ti , β = 1, achieves ϵ-sub-optimality after TTotal ∈ Õ

(
1
ϵp + σ2

ϵ2p+1

)
iterations.

Proof. Set f(θ) = V πθ(ρ) and f τ (θ) = Ṽ πθ
τ (ρ). We can extend Theorem 2 to the MDP

setting since:

58

• by Lemma 20, f τ is Lτ -smooth and since τ ∈ [0, 1]

Lmin = 8
(1− γ)3 ≤ Lτ = 8 + τ(4 + 8 log A)

(1− γ)3 ≤ 12 + 8 log A

(1− γ)3 = Lmax (A.122)

• by Lemma 9, we have f∗ − f(θ∗
τ) ≤ τ log A

1−γ

• by Lemma 11, we have for all θ, f(θ∗
τ)− f(θ) ≤ f∗τ − f τ (θ) + τ log A

1−γ

• by Lemma 12, we have for all θ, f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1
2 log A
1−γ

• by Lemma 29, the gradient estimators are unbiased and have bounded variance where
σ2 = 8

(1−γ)2

(
1+(τ log A)2

(1−γ1/2)2

)
.

59

Additional Lemmas
Lemma 13. Assuming f τ satisfies Assumptions 2 and 6 and the gradient estimators
∇̃f τ (θt) are unbiased and have bounded variance σ2, for a given ϵ ∈ (0, 1), using Up-
date 4 from iteration t1 + 1 to t2 with exponentially decreasing step-sizes ηt = η0 αt−t1+1,
where ηt = 1

Lτ and α = (β
T)

1
T , β ≥ 1, and T = t2 − t1 > 0, is achieved in ϵ-

sub-optimality is achieved in max(β + 1, 5583, 2 Y1 log Y1, 4 Y2 log2 Y2) iterations, where

Y1 =
2 log

(
2 X1 E[f∗τ −fτ (θt1)]

ϵ

)
X2 µ , Y2 = 2 X3 σ2

µ2 ϵ
,X1 = exp

(
µ β

Lτ log(T/β)

)
, X2 = 0.69

Lτ , and
X3 = 5 Lτ X1

e2 .

Proof. From (Li et al., 2021b, Theorem 1), using Update 4 with exponentially decreasing
step-sizes results from iterations t1 + 1 to t2 results in the following convergence

E[f∗τ − f τ (θt2)] ≤ X1 exp
(
−X2 µ

2
T

log T
β

)
E[f∗τ − f τ (θt1)] + X3 σ2

µ2 T
log2 T

β

, (A.123)

where
X1 = exp

(
µ β

Lτ log T
β

)
, X2 = 0.69

Lτ
, X3 = 5 Lτ X1

e2 (A.124)

and µ := inft≥1 Cτ (θ) with T = t2 − t1. We show that if the inequalities T
log T

β

≥ Y1 and
T

log2 T
β

≥ Y2 are satisfied, where

Y1 =
2 log

(2 X1 E[f∗τ −fτ (θt1)]
ϵ

)
X2 µ

, Y2 = 2 X3 σ2

µ2 ϵ
, (A.125)

then E[f∗τ − f τ (θt2)] ≤ ϵ holds since

E[f∗τ − f τ (θt2)] (A.126)

≤ X1 exp
(
−X2 µ

2
2

X2 µ
log

(2 X1 [f∗τ − f τ (θt1)]
ϵ

))
E[f∗τ − f τ (θt1)] + X3 σ2

µ2 2 X3 σ2

µ2 ϵ

(A.127)

= ϵ

2 + ϵ

2 (A.128)

= ϵ. (A.129)

By Lemma 14 and since 1 ≤ β < T , for T
log(T/β) ≥

T
log T ≥ Y1 to hold, it suffices that T ≥

max(2, 2 Y1 log Y1). Furthermore, according to Lemma 15 and since 1 ≤ β < T , for T
log2(T/β) ≥

T
log2 T

≥ Y2 to hold, it suffices that T ≥ max(5583, 4 Y2 log2 Y2). Therefore, the required
number of iterations to achieve ϵ-sub-optimality is max(5583, 2 Y1 log Y1, 4 Y2 log2 Y2).

Lemma 14. For all C > 0, if T ≥ max(2, 2 C log C), then T
log T ≥ C.

60

Proof. If C < 2, knowing that T ≥ 2, we have

T

log T
> 2 > C (A.130)

Otherwise, if C ≥ 2,

2 C log C = C(log C + log C) (A.131)

Since ∀C > 0, C ≥ 2 log C,

≥ C(log C + log(2 log C)) (A.132)
= C log(2 C log C) (A.133)

=⇒ 2 C log C

log(2 C log C) ≥ C. (A.134)

Therefore, knowing that T ≥ 2 C log C, since 2 C log C ≥ 4 log 2 > 2.72, we have

T

log T
≥ 2 C log C

log(2 C log C) ≥ C. (A.135)

Lemma 15. For all C > 0, if T ≥ max(5583, 4 C log2 C), then T
log2 T

≥ C.

Proof. If C < 75, knowing that T ≥ 5583, we have

T

log2 T
> 75 > C. (A.136)

Otherwise, if C ≥ 75,

4 C log2 C =C(log C + log C)2 (A.137)

Since C ≥ 4 log2 C ∀C ≥ 75,

≥C(log C + log(4 log2 C))2 = C log2(4 C log2 C) (A.138)

=⇒ 4 C log2 C

log2(4 C log2 C)
≥ C. (A.139)

Therefore, knowing that T ≥ 4 C log2 C, since 4 C log2 C ≥ 300 log2 75 > 8, we have

T

log2 T
≥ 4 C log2 C

log2(4 C log2 C)
≥ C. (A.140)

61

A.4 Additional Lemmas

For completeness, we append external lemmas here.

A.4.1 Smoothness
Lemma 16 (Lemma 2 in Mei et al. (2020b)). ∀r ∈ [0, 1]A θ 7→ ⟨πθ, r⟩ is 5

2 -smooth.

Lemma 17 (Lemma 14 in (Mei et al., 2020b)). θ → −⟨πθ, log πθ⟩ is 5 (1 + log K)-smooth.

Lemma 18. θ → ⟨πθ, r − τ log πθ⟩ is 5
2 + τ 5 (1 + log K)-smooth.

Proof. By Lemma 16 and Lemma 17.

Lemma 19 (Lemma 7 in Mei et al. (2020b)). θ → V πθ (ρ) is 8
(1−γ)3 -smooth.

Lemma 20 (Lemmas 7 and 14 in (Mei et al., 2020b)). θ → V πθ(ρ) + τ H(πθ) is
8+τ (4+8 log A)

(1−γ)3 -smooth.

Lemma 21 (Lemma 2 in (Mei et al., 2021b)). In the bandits setting, for any r ∈ [0, 1]A,
θ → ⟨πθ, r⟩ is 3-non-uniform smooth.

Lemma 22 (Lemma 6 in (Mei et al., 2021b)). In the tabular MDP setting, assuming
mins∈S ρ(s) > 0, θ → V πθ (ρ) is C-non-uniform smooth with where
C :=

[
3 + 2 C∞−(1−γ)

(1−γ) γ

]√
S and C∞ := maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞
≤ 1

mins ρ(s) <∞.

Non-uniform Łojasiewicz condition
Lemma 23 (Lemma 3 in Mei et al. (2020b)). Let π∗ := maxπ∈Π ⟨π, r⟩. Then∥∥∥∥d⟨πθ, r⟩

dθ

∥∥∥∥
2
≥ C(θ) ⟨π∗ − πθ, r⟩ (A.141)

where C(θ) := πθ(a∗).

Lemma 24 (Lemma 8 in Mei et al. (2020b)). Let V ∗(ρ) := maxπ∈Π V π(ρ). Then∥∥∥∥∂V πθ (ρ)
∂θ

∥∥∥∥
2
≥ C(θ) (V ∗(ρ)− V πθ (ρ)) (A.142)

where C(θ) := mins πθ(a∗(s) | s)
√

S

∥∥∥∥ dπ∗
ρ

d
πθ
ρ

∥∥∥∥
∞

.

62

Lemma 25 (Proposition 5 in (Mei et al., 2020b)). In the bandits setting, the non-uniform
Łojasiewicz condition is∥∥∥∥d⟨πθ, (r − τ log πθ)⟩

dθ

∥∥∥∥
2
≥ Cτ (θ)

(
Ea∼π∗

τ
[r(a)− τ log π∗

τ]− Ea∼πθ
[r(a)− τ log πθ]

) 1
2

(A.143)
with

Cτ (θ) :=
√

2τ min
a

πθ(a). (A.144)

Lemma 26 (Lemma 15 in (Mei et al., 2020b)). In the tabular MDP setting, supposing
ρ(s) > 0 for all states s ∈ S, the non-uniform Łojasiewicz condition is∥∥∥∥∥∂Ṽ πθ

τ (ρ)
∂θ

∥∥∥∥∥
2
≥ Cτ (θ)

[
Ṽ ∗

τ (ρ)− Ṽ πθ
τ (ρ)

] 1
2 (A.145)

with

Cτ (θ) :=
√

2τ√
S

min
s

√
ρ(s) min

s,a
πθ(a|s)

∥∥∥∥∥d
π∗

τ
ρ

dπθ
ρ

∥∥∥∥∥
− 1

2

∞
. (A.146)

A.4.2 Stochastic Policy Gradients
Lemma 27 (Lemma 5 from (Mei et al., 2021a)). Let r̂ be the IS estimator using on-policy
sampling a ∼ πθ(·). Then stochastic softmax PG estimator is:
Unbiased: Ea∼πθ

[
∇̃f(θ)

]
= ∇f(θ)

Bounded Variance: Ea∼πθ

∥∥∥∇̃f(θ)
∥∥∥2

2
≤ 2

⇒ σ2 := Ea∼πθ

[
∇̃f(θ)−∇f(θ)

]
= Ea∼πθ

∥∥∥∇̃f(θ)
∥∥∥2

2
− Ea∼πθ

∥∇f(θ)∥22 ≤ 2.

Lemma 28 (Lemma 11 from (Mei et al., 2021a)). Let Q̂πθ be the IS estimator using
on-policy sampling a(s) ∼ πθ(·|s). Then stochastic softmax PG estimator is:
Unbiased: E

[
∇̃f τ (θ)

]
= ∇f τ (θ).

Bounded Variance: E
∥∥∥∇̃f(θ)

∥∥∥2

2
≤ 2 S

(1−γ)4 ⇒ σ2 := E
[
∇̃f(θ)−∇f(θ)

]
≤ 2 S

(1−γ)4 .

Lemma 29 (Lemma 3 and Lemma 4 from (Ding et al., 2021)). Let Q̂πθ
τ be the entropy

regularized IS estimator using on-policy sampling a(s) ∼ πθ(·|s). Then stochastic softmax
PG estimator using entropy regularization is:
Unbiased: E

[
∇̃f τ (θ)

]
= ∇f τ (θ).

Bounded Variance: E
∥∥∥∇̃f τ (θ)− E[∇̃f τ (θ)]

∥∥∥2

2
≤ σ2, where σ2 = 8

(1−γ)2

(
1+(τ log A)2

(1−γ1/2)2

)
.

63

Lemma 30 (Instantiation of Lemma 29 in the bandits setting). Let r̂ be the entropy
regularized IS estimator using on-policy sampling a ∼ πθ(·). Then stochastic softmax PG
estimator using entropy regularization is:
Unbiased: E

[
∇̃f τ (θ)

]
= ∇f τ (θ).

Bounded Variance: E
∥∥∥∇̃f τ (θ)− E[∇̃f τ (θ)]

∥∥∥2

2
≤ σ2, where σ2 = 8 (1 + (τ log A)2).

64

Appendix B

Proofs of Chapter 4

B.1 Definitions

• [Smoothness]. A function f is L-smooth if for all θ and θ′

|f(θ)− f(θ′)−
〈
∇f(θ′), θ − θ′〉| ≤ L

2
∥∥θ − θ′∥∥2

2.

• [Non-uniform smoothness] A function f is L-non-uniform smooth if for all θ and θ′

|f(θ)− f(θ′)−
〈
∇f(θ′), θ − θ′〉| ≤ L∥∇f(θ′)∥

2
∥∥θ − θ′∥∥2

2.

• [Polyak-Łojasiewciz condition]. A function f satisfies the non-uniform Polyak-
Łojasiewciz condition of degree ξ ∈ [0, 1] if for all θ

∥∇f(θ)∥ ≥ C(θ)|f∗ − f(θ)|1−ξ,

where f∗ := supθ f(θ) and C : θ → R > 0.

B.2 Proofs of Section 4.3

B.2.1 Proof of Proposition 3

Proposition 3. Denote a∗ := arg maxa∈[K] r(a). With constant η > 0 and any initialization
θ1 ∈ Rd, Algorithm 3 guarantees ⟨πθt , r⟩ → r(a∗) as t→∞ on Example 1.

Proof. Let w = (−1,−1)⊤ ∈ Rd. We have

r′ := Xw = (2, 1,−1,−2)⊤ ,

65

which preserves the ordering of r ∈ RK , such that for all i, j ∈ [K], r(i) > r(j) if and only
if r′(i) > r′(j), which means Example 1 satisfies the conditions in Theorem 7. The results
then follow by using Theorem 7.

B.3 Proofs of Section 4.4

B.3.1 Warm up: Global Convergence when K = 3

Theorem 4. Given a reward vector r ∈ R3 and a feature matrix X ∈ R3×d such that
Assumptions 7, 8, and 9 are satisfied, Algorithm 3 with a constant learning rate as in Eq.
4.5 is guaranteed to converge to the optimal policy.

Proof. Under Assumptions 7 and 8, according to Lemma 1, for all finite t ≥ 1.〈
πθt+1 , r

〉
> ⟨πθt , r⟩, (B.1)

and πθt(a)→ 1 as t→∞ for some action a ∈ {1, 2, 3}. We will prove πθt(1)→ 1 as t→∞
by showing that πθt(2) ̸→ 1 and πθt(3) ̸→ 1 as t→∞.

For any bounded initialization θ1, we have ⟨πθ1 , r⟩ > r(3). From Equation (B.1), we know
that for all finite t ≥ 1,

⟨πθt , r⟩ > ⟨πθ1 , r⟩ > r(3).

Therefore, πθt(3) ̸→ 1 as t→∞.

Suppose that πθt(2)→ 1 as t→∞. Given this assumption and Equation (B.1), we know
that for all finite t ≥ 1, ⟨πθt , r⟩ < r(2). In this case, we will show that,

lim
t→∞

πθt(1)
πθt(3) =∞,

and prove that this implies that for all large enough t, ⟨πθt , r⟩ > r(2). Hence, this results in
a contradiction proving that πθt(2) ̸→ 1. To start, we consider the following ratio,

πθt+1(1)
πθt+1(3) = exp([X θt+1](1)− [Xθt+1](3))

= exp
(

[X θt](1)− [Xθt](3) + η

(3∑
i=1
⟨xi, x1 − x3⟩πθt(i) (r(i)− ⟨πθt , r⟩)

))
(By the update in Algorithm 3)

= πθt(1)
πθt(3) exp

η

(3∑
i=1
⟨xi, x1 − x3⟩πθt(i) (r(i)− ⟨πθt , r⟩)

)
︸ ︷︷ ︸

:=Pt

, (B.2)

66

and the sign of Pt will dictate whether πθt+1 (1)
πθt+1 (3) will increase or decrease. For all finite t ≥ 1,

we have

Pt =
3∑

i=1
⟨xi, x1 − x3⟩πθt(i) (r(i)− ⟨πθt , r⟩)

= ⟨x1 − x3, x1 − x3⟩πθt(1) (r(1)− ⟨πθt , r⟩) + ⟨x2 − x3, x1 − x3⟩πθt(2) (r(2)− ⟨πθt , r⟩)
(Since

∑3
i=1 ⟨x3, x1 − x3⟩πθt(i) (r(i)− ⟨πθt , r⟩) = 0)

> ⟨x1 − x3, x1 − x3⟩πθt(1) (r(1)− r(2))
(Under Assumption 9, ⟨x2 − x3, x1 − x3⟩ > 0 and for all finite t ≥ 1, r(2) > ⟨πθt , r⟩)

= ∥x1 − x3∥22 πθt(1) (r(1)− r(2)) (B.3)
> 0.

By recursing Equation (B.2), we get that,

πθt(1)
πθt(3) = πθ1(1)

πθ1(3) exp(η
t−1∑
s=1

Ps)

>
πθ1(1)
πθ1(3) exp(η ∥x1 − x3∥22 (r(1)− r(2))

t−1∑
s=1

πθs(1)) (By Equation (B.3))

Next, we will prove
∑∞

s=1 πθs(1) =∞. Since Pt > 0, πθt
(1)

πθt
(3) is monotonically increasing. Hence,

we have that πθt+1 (3)
πθt+1 (1) <

πθt
(3)

πθt
(1) for all finite t ≥ 1. As a result,

t∑
s=1

(1− πθs(2)) =
t∑

s=1

(
πθs(1) + πθs(3)

)
=

t∑
s=1

(
πθs(1) + πθs(1) πθs(3)

πθs(1)

)

<
t∑

s=1

(
πθs(1) + πθs(1) πθ1(3)

πθ1(1)

)

=
(

1 + πθ1(3)
πθ1(1)

) t∑
s=1

πθs(1),

For the LHS, Lemma 32 shows that
∑∞

s=1(1 − πθs(2)) = ∞. Therefore, we have that∑∞
s=1 πθs(1) = ∞. Using the equation above, we conclude that πθt

(1)
πθt

(3) → ∞ as t → ∞.
Moreover,

r(2)− ⟨πθt , r⟩ = πθt(1) (r(2)− r(1)) + πθt(3) (r(2)− r(3))

= πθt(3) (r(2)− r(3))
[
− r(1)− r(2)

r(2)− r(3)︸ ︷︷ ︸
>0

πθt(1)
πθt(3)︸ ︷︷ ︸

→∞

+1
]

< 0. (for large enough t)

67

Therefore, we know that ⟨πθt , r⟩ > r(2) for all large enough t. This, combined with Equa-
tion (B.1), contradicts our assumption that πθt(2)→ 1 as t→∞.

Putting everything together, we can draw the conclusion that πθt(1)→ 1 as t→∞.

Proposition 5. Given a reward vector r ∈ R3 and a feature matrix X ∈ R3×d such
that Assumptions 7 and 8 are satisfied but Assumption 9 is not. Using Algorithm 3 with
a constant learning rate as in Equation (4.5) and initialization θ1 = c (x3 − x1), such that
c > − log(m)

∥x3−x1∥2
2
, where m = ⟨x3−x2,x1−x3⟩

⟨x1−x2,x1−x3⟩
⟨πθ1 ,r⟩−r(3)
r(1)−⟨πθ1 ,r⟩ fails to converge to the optimal policy.

Proof. Consider

X =


x⊤

1

x⊤
2

x⊤
3

 , and r =


r(1)
r(2)
r(3)

 ,

where xi ∈ Rd for all i ∈ [K] and r(1) > r(2) > r(3). Based on Algorithm 3, we have,

Xθt+1 = Xθt + η XX⊤
(
diag(πθt)− πθtπ

⊤
θt

)
,

where

XX⊤ =

x⊤
1 x1 x⊤

1 x2 x⊤
1 x3

x⊤
2 x1 x⊤

2 x2 x⊤
2 x3

x⊤
3 x1 x⊤

3 x2 x⊤
3 x3

 .

We show that if ⟨x2 − x3, x1 − x3⟩ < 0, then there exists an initialization such that global
convergence cannot happen. To show this, we choose an appropriate initialization θ1 such
that πθ1 (1)

πθ1 (3) < m, where

m = ⟨x3 − x2, x1 − x3⟩
⟨x1 − x2, x1 − x3⟩

⟨πθ1 , r⟩ − r(3)
r(1)− ⟨πθ1 , r⟩

,

and that if πθt
(1)

πθt
(3) < m then πθt+1 (1)

πθt+1 (3) <
πθt

(1)
πθt

(3) < m. This would mean that πθt
(1)

πθt
(3) < m for all t

and πθt(1) ̸→ 1 as t→∞.

We have,

πθ1(1)
πθ1(3) = exp([Xθ1](1)− [Xθ1](3))

= exp(⟨x1 − x3, θ1⟩)
= exp(−c ∥x3 − x1∥22) (Since θ1 = c (x3 − x1))

< exp(log(m)) (Since c > − log(m)
∥x3−x1∥2

2
)

=m.

68

Now, suppose that πθt
(1)

πθt
(3) < m. We have

πθt(1)
πθt(3) <

⟨x3 − x2, x1 − x3⟩
⟨x1 − x2, x1 − x3⟩

⟨πθ1 , r⟩ − r(3)
r(1)− ⟨πθ1 , r⟩

≤⟨x3 − x2, x1 − x3⟩
⟨x1 − x2, x1 − x3⟩

⟨πθt , r⟩ − r(3)
r(1)− ⟨πθt , r⟩

. (Due to monotonicity)

Furthermore,

πθt+1(1)
πθt+1(3) = exp([Xθt+1](1)− [Xθt+1](3)),

and (from the expression of XX⊤ and the update),

[Xθt+1](1)− [Xθt+1](3) = [Xθt](1)− [Xθt](3)

+ η
3∑

i=1
⟨xi, x1 − x3⟩πθt(i) · (r(i)− π⊤

θt
r).

If ⟨x2 − x3, x1 − x3⟩ < 0, then we have, ⟨x3 − x2, x1 − x3⟩ > 0, and,

⟨x1 − x2, x1 − x3⟩ = ⟨x1 − x3, x1 − x3⟩+ ⟨x3 − x2, x1 − x3⟩
≥ ⟨x3 − x2, x1 − x3⟩ > 0.

Therefore, we have,

3∑
i=1
⟨xi, x1 − x3⟩πθt(i) (r(i)− ⟨πθt , r⟩

= ⟨x1 − x2, x1 − x3⟩πθt(1) (r(1)− ⟨πθt , r⟩) + ⟨x3 − x2, x1 − x3⟩πθt(3) (r(3)− ⟨πθt , r⟩)

= −⟨x3 − x2, x1 − x3⟩︸ ︷︷ ︸
>0

πθt(3) (⟨πθt , r⟩ − r(3))
[
− ⟨x1 − x2, x1 − x3⟩
⟨x3 − x2, x1 − x3⟩

πθt(1)
πθt(3)

r(1)− ⟨πθt , r⟩
⟨πθt , r⟩ − r(3) + 1

]
< −⟨x3 − x2, x1 − x3⟩︸ ︷︷ ︸

>0

πθt(3) (⟨πθt , r⟩ − r(3)) [−1 + 1]

(Since πθt
(1)

πθt
(3) < ⟨x3−x2,x1−x3⟩

⟨x1−x2,x1−x3⟩
⟨πθt

,r⟩−r(3)
r(1)−⟨πθt

,r⟩)

= 0

which implies that,

πθt+1(1)
πθt+1(3) = exp([Xθt+1](1)− [Xθt+1](3))

= exp([Xθt](1)− [Xθt](3)) + η
3∑

i=1
⟨xi, x1 − x3⟩πθt(i) (r(i)− ⟨πθt , r⟩)

< exp([Xθt](1)− [Xθt](3)) = πθt(1)
πθt(3) .

69

Proposition 6. Let K = 3, d = 2, X⊤ =
[
3 5 1
4 6 2

]
∈ Rd×K , and r = (3, 2, 1)⊤. In this

case, Assumptions 7 and 9 are satisfied, but Assumption 8 is not, and the features do not
allow the optimal reward to be achieved for any set of finite or infinite parameters. Therefore,
Algorithm 3 does not achieve global convergence for any initialization θ1.

Proof. We first show that Assumption 9 is satisfied, but Assumption 8 is not. We have
⟨x2 − x3, x1 − x3⟩ = 16 > 0, so Assumption 9 is satisfied. Now, suppose that r′ = Xw
preserves the reward ordering for w = (w(1), w(2))⊤. In that case, the order of the optimal
arm must also be preserved, i.e. r′(1) > r′(2) and r′(1) > r′(3). Therefore,

⟨x1, w⟩ > ⟨x2, w⟩ and ⟨x1, w⟩ > ⟨x3, w⟩
=⇒ 3 w(1) + 4 w(2) > 5 w(1) + 6 w(2) and 3 w(1) + 4 w(2) > w(1) + 2 w(2)

=⇒ w(1) + w(2) < 0 and w(1) + w(2) > 0

Therefore, there is no w that preserves the order of the optimal arm, so Assumption 8 is not
satisfied. Furthermore, to achieve the optimal reward, we need parameters θ, such that

πθ(1) >> πθ(2) and πθ(1) >> πθ(3)
=⇒ [Xθ](1) >> [Xθ](2) and [Xθ](1) >> [Xθ](3)

=⇒ ⟨x1, θ⟩ >> ⟨x2, θ⟩ and ⟨x1, θ⟩ >> ⟨x3, θ⟩
=⇒ 3 θ(1) + 4 θ(2) >> 5 θ(1) + 6 θ(2) and 3 θ(1) + 4 θ(2) >> θ(1) + 2 θ(2)

=⇒ θ(1) + θ(2) << 0 and θ(1) + θ(2) >> 0

Therefore, such a θ also does not exist, and the optimal reward cannot be achieved for
any set of parameters. Hence, Algorithm 3 does not achieve global convergence for any
initialization.

B.3.2 Global Convergence for all K ≥ 3

Theorem 7. Given a reward vector r ∈ RK and a feature matrix X ∈ RK×d such
that Assumptions 7, 8 and 10 are satisfied,using Algorithm 3 with a constant learning rate
as in Equation (4.5) converges to the optimal policy.

Proof. Without the loss of generality, we assume r(1) > r(2) > · · · > r(K) as ties between
distinct actions do not occur under Assumption 7. Additionally under Assumption 8,
according to Lemma 1, we know that for all finite t ≥ 1,〈

πθt+1 , r
〉

> ⟨πθt , r⟩, (B.4)

and πθt(a) → 1 as t → ∞ for some action a ∈ [K]. For any bounded initialization θ1, we
have

⟨πθ1 , r⟩ > r(K),

70

The above two inequalities imply that ⟨πθt , r⟩ ̸→ r(K) and hence πθt(K) ̸→ 1 as t → ∞.
Next, we show that ⟨πθt , r⟩ ̸→ r(a) for any a ∈ {2, 3, . . . , K − 1} as t→∞.

We will prove this by contradiction. For this, in the subsequent proof, we assume that
⟨πθt , r⟩ → r(a) as t → ∞ for some a ∈ {2, 3, . . . , K − 1}. Therefore, there exists a large
enough finite τ such that for all finite t ≥ τ , r(a) > ⟨πθt , r⟩ > r(a + 1).

We will first prove that πθt
(1)

πθt
(k) →∞ as t→∞ for all k ∈ [a + 1, K]. Considering a fixed arm

k ∈ [a + 1, K], we have, for all finite t ≥ τ ,

πθt+1(1)
πθt+1(k) = exp([X θt+1](1)− [Xθt+1](k))

= exp
(

[X θt](1)− [Xθt](k) + η

(
K∑

i=1
⟨xi, x1 − xk⟩πθt(i) (r(i)− ⟨πθt , r⟩)

))
(By the update in Algorithm 3)

= πθt(1)
πθt(k) exp

η

(
K∑

i=1
⟨xi, x1 − xk⟩πθt(i) (r(i)− ⟨πθt , r⟩)

)
︸ ︷︷ ︸

:=Pt

, (B.5)

and the sign of Pt will dictate whether πθt
(1)

πθt
(k) will increase or decrease.

Next, we have, for all finite t ≥ τ ,

Pt =
K∑

i=1
⟨xi, x1 − xk⟩πθt(i) (r(i)− ⟨πθt , r⟩)

=
K∑

i=1
i ̸=a

⟨xi − xa, x1 − xk⟩πθt(i) (r(i)− ⟨πθt , r⟩)

(Since
∑K

i=1 ⟨xa, x1 − xk⟩πθt(i) (r(i)− ⟨πθt , r⟩) = 0)

=
a−1∑
i=1

⟨xi − xa, x1 − xk⟩︸ ︷︷ ︸
>0 due to Assumption 10
(since i<a and k≥a+1>a)

πθt(i) (r(i)− ⟨πθt , r⟩)︸ ︷︷ ︸
>0 (since i<a)

+
K∑

i=a+1
⟨xa − xi, x1 − xk⟩︸ ︷︷ ︸

>0 due to Assumption 10
(since i>a and k≥a+1>a)

πθt(i) (⟨πθt , r⟩ − r(i))︸ ︷︷ ︸
>0 (since i>a)

>
a−1∑
i=1
⟨xi − xa, x1 − xk⟩πθt(i) (r(i)− r(a))

+
K∑

i=a+1
⟨xa − xi, x1 − xk⟩πθt(i) (⟨πθτ , r⟩ − r(i))

(Since r(a) > ⟨πθt , r⟩ and ⟨πθt , r⟩ ≥ ⟨πθτ , r⟩ for all finite t ≥ τ .)

71

Define
C1 := min

1≤i≤a−1
⟨xi − xa, x1 − xk⟩ (r(i)− r(a)) > 0,

Cτ
2 := min

a+1≤i≤K
⟨xa − xi, x1 − xk⟩ (⟨πθτ , r⟩ − r(i)) > 0.

Hence, we have

Pt > C1

a−1∑
i=1

πθt(i) + Cτ
2

K∑
i=a+1

πθt(i)

> Cτ
∑
i ̸=a

πθt(i) (Let Cτ := min{C1, Cτ
2 } > 0)

= Cτ (1− πθt(a)). (B.6)

By recursing Equation (B.5), we get that, for all finite t ≥ τ ,

πθt(1)
πθt(k) = πθτ (1)

πθτ (k) exp(η
t−1∑
s=τ

Ps)

>
πθτ (1)
πθτ (k) exp(η Cτ

t−1∑
s=τ

(1− πθs(a))). (By Equation (B.6))

Lemma 32 shows that for any i ∈ [K],
∑∞

s=1(1−πθs(i)) =∞. Combining the above equations,
we conclude that πθt

(1)
πθt

(k) → ∞ and hence πθt
(k)

πθt
(1) → 0 as t → ∞ for all k ∈ [a + 1, K]. As a

result, there exists a τ ′ ≥ τ such that

r(a)−
〈
πθτ ′ , r

〉
=

K∑
i=1

πθτ ′ (i) (r(a)− r(i)) =
a−1∑
i=1

πθτ ′ (i) (r(a)− r(i))︸ ︷︷ ︸
<0

+
K∑

i=a+1
πθτ ′ (i) (r(a)− r(i))︸ ︷︷ ︸

>0

< πθτ ′ (1) (r(a)− r(1)) +
K∑

i=a+1
πθτ ′ (i) (r(a)− r(i))

= πθτ ′ (1) (r(1)− r(a))


K∑

i=a+1

πθτ ′ (i)
πθτ ′ (1)︸ ︷︷ ︸

→0

r(a)− r(i)
r(1)− r(a)︸ ︷︷ ︸

>0

−1


< 0. (τ ′ is large enough)

Therefore, we know that
〈
πθτ ′ , r

〉
> r(a). Combined with Equation (B.4), we know that for

all t ≥ τ ′, ⟨πθt , r⟩ > r(a). This contradicts the assumption that ⟨πθt , r⟩ → r(a) as t→∞.
This implies that ⟨πθt , r⟩ ̸→ r(a) and hence πθt(a) ̸→ 1 as t→∞ for all a ∈ {2, 3, . . . , K}.
Hence, the only possible scenario is πθt(1)→ 1 as t→∞, completing the proof.

72

B.3.3 Additional Lemmas

Lemma 1. Assuming Assumptions 7 and 8 are satisfied, using Algorithm 3 with the following
constant learning rate,

0 < η <
4

9 ∥r∥∞ λmax(X⊤X) , (4.5)

ensures (i)
〈
πθt+1 , r

〉
> ⟨πθt , r⟩ for all t ≥ 1 and (ii) πθt(a) → 1 for an arm a ∈ [K] as

t→∞.

Proof. According to Lemma 45, we have, for all t ≥ 1,∣∣∣∣〈πθt+1 − πθt , r
〉
−
〈d ⟨πθt , r⟩

dθt
, θt+1 − θt

〉∣∣∣∣ ≤ 9
4 ∥r∥∞ λmax(X⊤X) ∥θt+1 − θt∥22,

which implies that,

〈
πθt+1 , r

〉
− ⟨πθt , r⟩ ≥

〈d⟨πθt , r⟩
dθt

, θt+1 − θt

〉
− 9

4 ∥r∥∞ λmax(X⊤X) ∥θt+1 − θt∥22

=
(
η − η2 9

4 ∥r∥∞ λmax(X⊤X)
) ∥∥∥∥d ⟨πθt , r⟩

dθt

∥∥∥∥2

2
.

Using a constant learning rate,

0 < η <
4

9 ∥r∥∞ λmax(X⊤X) ,

we have,

〈
πθt+1 , r

〉
− ⟨πθt , r⟩ ≥ η

(
1− η

9 ∥r∥∞ λmax(X⊤X)
4

) ∥∥∥∥d ⟨πθt , r⟩
dθt

∥∥∥∥2

2
≥ 0. (B.7)

Note that ⟨πθt , r⟩ ≤ r(a∗) <∞. According to the monotone convergence, ⟨πθt , r⟩ → c ≤ r(a∗)
as t→∞. According to Equation (B.7), we have,

lim
t→∞

∥∥∥∥d ⟨πθt , r⟩
dθt

∥∥∥∥2

2
= 0. (B.8)

Next, we prove that there is no stationary points in finite region by contradiction. Suppose
there exists θ′ ∈ Rd (∥θ′∥2 <∞), such that,

d⟨πθ′ , r⟩
dθ′ = X⊤

(
diag(πθ′)− πθ′π⊤

θ′

)
r = 0. (B.9)

Taking inner product with w ∈ RK on both sides of Equation (B.9), we have,

w⊤X⊤
(
diag(πθ′)− πθ′π⊤

θ′

)
r = r′⊤

(
diag(πθ′)− πθ′π⊤

θ′

)
r

(
r′ := Xw

)
(B.10)

= w⊤0 = 0.

73

Since ∥θ′∥2 < ∞ and X is bounded (maxi∈[K], j∈[d] |Xi,j | ≤ C for some C < ∞), we have,
for all i ∈ [K],

πθ′(i) = exp{[Xθ′](i)}∑
j∈[K] exp{[Xθ′](j)} > 0. (B.11)

Next, according to Lemma 31, we have,

r′⊤
(
diag(πθ′)− πθ′π⊤

θ′

)
r =

K−1∑
i=1

πθ′(i)
K∑

j=i+1
πθ′(j)

(
r′(i)− r′(j)

)
(r(i)− r(j)). (B.12)

Given any non-trivial reward vector, i.e., r ̸= c 1 for any c ∈ R, since r′ ∈ RK preserves the
order of r ∈ RK , i.e., for all i, j ∈ [K], r(i) > r(j) iff r′(i) > r′(j), we have, for all i, j ∈ [K],(

r′(i)− r′(j)
)

(r(i)− r(j)) > 0. (B.13)

On the other hand, since r ̸= c 1, there exists at least one pair of i ̸= j, such that,(
r′(i)− r′(j)

)
(r(i)− r(j)) > 0. (B.14)

Combining Equations (B.9) to (B.14), we have,

0 = w⊤1 = w⊤
(d ⟨πθ′ , r⟩

dθ′

)
= w⊤X⊤

(
diag(πθ′)− πθ′π⊤

θ′

)
r

= r′⊤
(
diag(πθ′)− πθ′π⊤

θ′

)
r

> 0,

which is a contradiction. Therefore, for any θ′ ∈ Rd (∥θ′∥2 <∞), θ′ is not a stationary point.

Next, we show that ∥θt∥2 →∞ as t→∞ also by contradiction. Suppose there exists C <∞,
such that for all t ≥ 1,

θt ∈ SC := {θ ∈ Rd : ∥θ∥2 ≤ C}.

From the above arguments, we have, for all θ ∈ SC ,
∥∥∥d ⟨πθt

,r⟩
dθ

∥∥∥
2

> 0. Since SC is compact,
we have,

inf
θ∈SC

∥∥∥∥d ⟨πθt , r⟩
dθ

∥∥∥∥
2
≥ ε > 0,

for some ε > 0, which implies that, for all t ≥ 1,∥∥∥∥d ⟨πθt , r⟩
dθt

∥∥∥∥
2
≥ ε > 0,

contradicting Equation (B.8). Therefore, we have, ∥θt∥2 →∞ as t→∞.

74

Next, we show that πθt(i)→ 1 for an action i ∈ [K] as t→∞. Suppose πθt(i) ̸→ 1 for any
action i ∈ [K], then there exists at least two different actions j ̸= k such that πθt(j) ̸→ 0
and πθt(k) ̸→ 0. Using similar calculations in Equation (B.12), we have,

∥∥∥d π⊤
θt

r

dθt

∥∥∥
2
̸→ 0 as

t→∞, contradicting Equation (B.8). Therefore, πθt(i)→ 1 for an action i ∈ [K] as t→∞,
i.e. πθt approaches a one-hot policy.

Lemma 31 (Alternative expression of co-variance). Given any vectors x ∈ RK , y ∈ RK ,
we have, for all policy π ∈ ∆(K),

Covπ(x, y) =
K−1∑
i=1

π(i)
K∑

j=i+1
π(j) (x(i)− x(j)) (y(i)− y(j)).

Proof. Note that, Covπ(x, y) =
〈
x,
(
diag(π)− ππ⊤

)
y
〉
. Next, we have,

〈
x,
(
diag(π)− ππ⊤

)
y
〉

=
K∑

i=1
π(i) x(i) y(i)−

K∑
i=1

π(i) y(i)
K∑

j=1
π(j) x(j)

=
K∑

i=1
π(i) x(i) y(i)−

K∑
i=1

π(i)2 x(i) y(i)−
K∑

i=1
π(i) y(i)

∑
j ̸=i

π(j) x(j)

=
K∑

i=1
π(i) x(i) y(i) (1− π(i))−

K∑
i=1

π(i) y(i)
∑
j ̸=i

π(j) x(j)

=
K∑

i=1
π(i) x(i) y(i)

∑
j ̸=i

π(j)−
K∑

i=1
π(i) y(i)

∑
j ̸=i

π(j) x(j)

=
K−1∑
i=1

π(i)
K∑

j=i+1
π(j) (x(i) y(i) + x(j) y(j))−

K−1∑
i=1

π(i)
K∑

j=i+1
π(j) (x(j) y(i) + x(i) y(j))

=
K−1∑
i=1

π(i)
K∑

j=i+1
π(j) (x(i)− x(j)) (y(i)− y(j)),

finishing the proofs.

Lemma 32. Let Assumptions 7 and 8 hold for a given reward vector r ∈ Rd and a feature
matrix X ∈ RK×d. Then Algorithm 3 guarantees that

∑∞
t=1(1− πθt(a)) =∞ for all a ∈ [K].

Proof. We prove this by contradiction. Without the loss of generality, we assume r(1) >
r(2) > · · · > r(K). Under Assumptions 7 and 8, according to Lemma 1, πθt(a) → 1 as
t→∞ for some action a ∈ [K]. For a fixed a ∈ [K], suppose

∑
t≥1 (1− πθt(a)) <∞. Then

75

for all a′ ∈ [K], we have,

|[Xθt+1](a′)− [Xθt](a′)|

= η |
K∑

i=1
⟨xa′ , xi⟩πθt(i) (r(i)− ⟨πθt , r⟩)|

≤ C
K∑

i=1
πθt(i)

∣∣∣∣(r(i)− ⟨πθt , r⟩)
∣∣∣∣

(Let C := η maxi∈[K]|⟨xa′ , xi⟩| > 0 and using triangle inequality)

≤ C

 K∑
i=1
i ̸=a

πθt(i)
∣∣∣∣ (r(i)− ⟨πθt , r⟩)︸ ︷︷ ︸

<r(1)−r(K)

∣∣∣∣+ πθt(a)︸ ︷︷ ︸
≤1

∣∣(r(a)− ⟨πθt , r⟩
∣∣


≤ C
(
(r(1)− r(K))

K∑
i=1
i ̸=a

πθt(i) +
∣∣r(a)− ⟨πθt , r⟩

∣∣)

= C
(
(r(1)− r(K))

K∑
i=1
i ̸=a

πθt(i) + |
K∑

i=1
i ̸=a

πθt(i) (r(a)− r(i))|
)

≤ C
(
(r(1)− r(K))

K∑
i=1,i ̸=a

πθt(i) +
K∑

i=1,i ̸=a

πθt(i)
∣∣(r(a)− r(i))

∣∣) (triangle inequality)

≤ C
(
(r(1)− r(K))

K∑
i=1,i ̸=a

πθt(i) + (r(1)− r(K))
K∑

i=1,i ̸=a

πθt(i)
)

≤ 2 C (r(1)− r(K))
(
1− πθt(a)

)
,

which implies that, for all t > 1,

|Xθt(a′)−Xθ1(a′)| ≤ 2 C (r(1)− r(K))
t−1∑
s=1

(
1− πθs(a)

)
.

Therefore, if
∑

t≥1 (1− πθt(a)) <∞, then we have,

sup
t≥1
|Xθt(a′)| ≤ sup

t≥1
|Xθt(a′)−Xθ1(a′)|+ |Xθ1(a′)| <∞,

Therefore, there exists ϵ > 0, such that, for all a ∈ [K],

inf
t≥1

πθt(a) = inf
t≥1

exp{[Xθt](a)}∑
a′∈[K] exp{[Xθt](a′)} ≥ ϵ > 0,

This implies that the algorithm does not converge to a one-hot policy, which leads to a
contradiction.

76

B.4 Proofs of Section 4.5

B.4.1 Asymptotic Global Convergence

Theorem 9. Given a reward vector r ∈ RK and a feature matrix X ∈ RK×d such that
Assumptions 7 and 10 are satisfied, Algorithm 4 with the constant learning rate as in
Equation (4.9), we have, almost surely, πθt(a∗)→ 1 as t→∞.

Proof. Without the loss of generality, we assume r(1) > r(2) > · · · > r(K) as ties between
distinct actions do not occur under Assumption 7. In this setting, a∗ = arg maxa π∗(a) = 1.
According to Lemma 3, we know that there exists an action a ∈ [K], such that, almost
surely, limt→∞ ⟨πθt , r⟩ = r(a). We will prove that almost surely, limt→∞ ⟨πθt , r⟩ = r(1). We
will prove this by contradiction. For this, assume limt→∞ ⟨πθt , r⟩ = r(k) where k > 1.
We define N∞(a) as the number of times action a has been sampled as t→∞. Define A∞
as the set of actions that are sampled infinitely many times as t→∞, i.e.,

A∞ := {a ∈ [K] | N∞(a) =∞}.

According to Lemma 38, there exists a finite large enough τi1 such that for all t ≥ τi1 ,

⟨πθt , r⟩ > r(i1),

where i1 := arg mina∈A∞ r(a). By combining the above inequality with Lemma 33, we can
conclude that

lim
t→∞
⟨πθt , r⟩ > r(i1).

This implies that for all a ≥ i1, πθt(a) ̸→ 1 as t→∞. Hence, we only need to consider the
arms k < i1 in the subsequent proof. Under the assumption that limt→∞ ⟨πθt , r⟩ = r(k), we
know that there exists a τ > τi1 such that for all large enough finite t ≥ τ ,

r(k) > ⟨πθt , r⟩ > r(k + 1) ≥ r(i1). (B.15)

Next, we will prove that limt≥1
πθt

(a∗)
πθt

(a) →∞ for any arm a > k. Defining zt(a) := [Xθt](a)
as the logit corresponding to arm a, we can express the ratio as,

πθt(a∗)
πθt(a) = exp([Xθt](a∗)− [Xθt](a)) = exp(zt(a∗)− zt(a)). (B.16)

Using the decomposition of the stochastic process in Section 4.5.1, setting a1 = a∗ and
a2 = a and recursing Equation (4.7) until t = τ , we have

zt(a∗)− zt(a) = zτ (a∗)− zτ (a) +
t−1∑
s=τ

[Ps(a∗)− Ps(a)]︸ ︷︷ ︸
(i)

+
t∑

s=τ

[Ws+1(a∗)−Ws+1(a)]︸ ︷︷ ︸
(ii)

. (B.17)

77

In the following proof, we will show that Term (i) dominates Term (ii). We first investigate
Term (i), the cumulative progress and bound it similar to deterministic setting in Theorem 7.

Ps(a∗)− Ps(a) = Es[zs+1(a∗)]− zs(a∗)− (Es[zs+1(a)]− zs(a))
= Es [[Xθs+1](a∗)− [Xθs](a∗)]− Es [[Xθs+1](a)− [Xθs](a)] (zs(a) := [Xθs](a))

= η

〈
xa∗ ,Es

[
d⟨πθs , r̂s⟩

dθs

]〉
− η

〈
xa,Es

[
d⟨πθs , r̂s⟩

dθs

]〉
(By the update in Algorithm 4)

= η

〈
xa∗ − xa,

d⟨πθs , r⟩
dθs

〉
(By Lemma 44)

= η
∑

i∈[K]
⟨xi, xa∗ − xa⟩πθs(i) (r(i)− ⟨πθs , r⟩)

(Using the definition of the deterministic gradient)
= η

∑
i∈[K]
i ̸=k

⟨xi − xk, xa∗ − xa⟩πθs(i) (r(i)− ⟨πθs , r⟩)

(Since
∑

i∈[K] ⟨xk, xa∗ − xa⟩πθs(i) (r(i)− ⟨πθs , r⟩) = 0)

= η

k−1∑
i=1
⟨xi − xk, xa∗ − xa⟩πθs(i) (r(i)− ⟨πθs , r⟩) +

K∑
i=k+1

⟨xk − xi, xa∗ − xa⟩πθs(i) (⟨πθs , r⟩ − r(i))



= η


k−1∑
i=1
⟨xi − xk, xa∗ − xa⟩︸ ︷︷ ︸

≥0 due to Assumption 10
(since i<k<a)

πθs(i) (r(i)− ⟨πθs , r⟩)︸ ︷︷ ︸
>0 (since ⟨πθs ,r⟩<r(k)<r(i))

+
K∑

i=k+1
⟨xk − xi, xa∗ − xa⟩πθs(i) ⟨πθs , r⟩ − r(i))



> η


k−1∑
i=1
⟨xi − xk, xa∗ − xa⟩︸ ︷︷ ︸

≥0 due to Assumption 10
(since i<k<a)

πθs(i) (r(i)− r(k))︸ ︷︷ ︸
>0 (since i<k)

+
K∑

i=k+1
⟨xk − xi, xa∗ − xa⟩︸ ︷︷ ︸

≥0 due to Assumption 10
(since a>k, i>k)

πθs(i) ⟨πθs , r⟩ − r(i))︸ ︷︷ ︸
>0 (since ⟨πθs ,r⟩>r(k+1)≥r(i))

 (Since ⟨πθs , r⟩ < r(k))

> η

[
k−1∑
i=1
⟨xi − xk, xa∗ − xa⟩πθs(i) (r(i)− r(k))

+
K∑

i=k+1
⟨xk − xi, xa∗ − xa⟩πθt(i) (⟨πθτ , r⟩ − r(i))


According to Assumption 10, not all feature weights are strictly positive. Therefore, we
define the set to represent the arms that contribute to the progress as:

Xa(xk) := {i ∈ [K] | |⟨xi − xk, xa∗ − xa⟩| > 0}.

78

Note that Xa(xk) is non-empty since ⟨xa∗ − xk, xa∗ − xa⟩ > 0 and a∗ ∈ Xa(xk). Additionally
k ̸∈ Xa(xk) since ⟨xk − xk, xa∗ − xa⟩ = 0 We can then define that Cτ

3 := min{C1, Cτ
2 } > 0

where

C1 := min
1≤i≤k−1
i∈Xa(xk)

⟨xi − xk, xa∗ − xk⟩ (r(i)− r(k)) > 0,

Cτ
2 := min

k+1≤i≤K
i∈Xa(xk)

⟨xk − xi, xa∗ − xk⟩
(

inf
t>τ
⟨πθt , r⟩ − r(i)

)
> 0.

Then, we have

Ps(a∗)− Ps(a) > η

C1
∑

i≤k−1
i∈Xa(xk)

πθs(i) + Cτ
2

∑
i≥k+1

i∈Xa(xk)

πθs(i)


> η Cτ

3
∑

i∈Xa(xk)
πθs(i)

︸ ︷︷ ︸
:=Γs

. (B.18)

By summing Equation (B.18) from τ to t− 1, we get,

t−1∑
s=τ

[Ps(a∗)− Ps(a)] > η
t−1∑
s=τ

Cτ
3 Γs. (B.19)

Next, we bound Term (ii), the cumulative noise. We will first prove some useful properties
of Ws(a) which will be used to bound Term (ii). According to Corollary 5, we know that for
a∗ and a, Es[Ws+1(a∗)−Ws+1(a)] = 0, for all s ≥ 1 and is bounded by

|Ws+1(a∗)−Ws+1(a)| ≤ 4 η Rmax ∥ya∗,a∥1 ≤ 4 η Rmax C4, (Let C4 := maxa∥ya∗,a∥1 > 0)

where ya∗,a := (X − 1xk
⊤)(xa∗ − xa).

Therefore, {|Ws+1(a∗)−Ws+1(a)|}s≥1 is a martingale difference sequence with respect to
filtration {F}s≥1 that can be normalized to be in the range of [0, 1/2] since Ws+1(a) is
bounded. For this, define W̃s+1(a∗, a) := |Ws+1(a∗)−Ws+1(a)|

8 η Rmax C4
. Additionally, we have

Var[W̃s+1(a∗, a)] = Var[|Ws+1(a∗)−Ws+1(a)|]
(8 η Rmax C4)2

≤ 2η2 R2
max

(8 η Rmax C4)2

∑
j∈[K]
j ̸=k

(⟨xj − xk, xa∗ − xa⟩)2 πθs(j) (1− πθs(j))

(By Corollary 5)

≤ 2η2 R2
max

(8 η Rmax C4)2

∑
j∈[K]
j ̸=k

(⟨xj − xk, xa∗ − xa⟩)2 πθs(j) (1− πθs(j) ≤ 1)

79

Recall that Xa(xk) := {i ∈ [K] | |⟨xi − xk, xa∗ − xa⟩| > 0}

≤ 2η2 R2
max C5

(8 η Rmax C4)2

∑
j∈Xa(xk)

πθs(j)

(Let C5 := maxj∈Xa(xk)(⟨xj − xk, xa∗ − xa⟩)2)

≤ C5
32 C2

4

∑
j∈Xa(xk)

πθs(j)

Recall that Γs :=
∑

j∈Xa(xk) πθs(j)

= C6 Γs, (Let C6 := C5
32 C2

4
> 0)

Using the above equation in combination with Lemma 43, for all δ ∈ (0, 1] and t ≥ τ , with
probability 1− δ,

|W̃s+1(a∗, a)| ≤ 6

√√√√(C6

t∑
s=τ

Γs + 4
3

)
log

(
C6
∑t

s=τ Γs + 1
δ

)

+ 2 log
(1

δ

)
+ 4

3 log(3).

Recall that W̃s+1(a∗, a) := |Ws+1(a∗)−Ws+1(a)|
8 η Rmax C4

. Set C7 := 8 η Rmax C4. Then, we have

t∑
s=τ

|Ws+1(a∗)−Ws+1(a)| ≤ 6 C7

√√√√(C6

t∑
s=τ

Γs + 4
3

)
log

(
C6
∑t

s=τ Γs + 1
δ

)

+ 2C7 log
(1

δ

)
+ 4C7

3 log(3). (B.20)

Using the above results and combining it with Equation (B.17), we have

zt(a∗)− zt(a)

= zτ (a∗)− zτ (a) +
t−1∑
s=τ

[Ps(a∗)− Ps(a)] +
t∑

s=τ

[Ws+1(a∗)−Ws+1(a)]

≥ zτ (a∗)− zτ (a) +
t−1∑
s=τ

[Ps(a∗)− Ps(a)]−
t∑

s=τ

|Ws+1(a∗)−Ws+1(a)|

(∀u, v ∈ R, u− v ≥ −|u− v|)

Using Equation (B.19) to lower-bound the progress term,

≥ zτ (a∗)− zτ (a) + η Cτ
3

t−1∑
s=τ

Γs −
t∑

s=τ

|Ws+1(a∗)−Ws+1(a)|

80

Using Equation (B.20) to lower-bound the cumulative noise term,

≥ zτ (a∗)− zτ (a) + η Cτ
3

t−1∑
s=τ

Γs

− 12 C7

√√√√(C6

t∑
s=τ

Γs + 4
3

)
log

(
C6
∑t

s=τ Γs + 1
δ

)

− 4C7 log
(1

δ

)
− 8C7

3 log(3) (B.21)

Define,

P(n) := 12 C7

√(
C6 n + 4

3

)
log

(
C6 n + 1

δ

)
Q(n) := η Cτ

3 n

Let us characterize the order complexity of the above expressions in terms on n,

P(n) ∈ Θ(
√

log(n) n),
Q(n) ∈ Θ(n).

Additionally, we know that,

lim
n→∞

P(n)
Q(n) =

√
ln(n) n

n
= 0 =⇒ P(n) ∈ o(Q(n)).

This implies Q(n) dominates P(n) as n→∞. Additionally, note that

∞∑
s=τ

Γs =
∞∑

s=τ

∑
i∈Xa(xk)

πθs(i)

≥
∞∑

s=τ

πθs(a∗) (Since a∗ ∈ Xa(xk))

=∞. (Since a∗ ∈ A∞ and Lemma 42)

Using these results with Equation (B.21) with n =
∑∞

s=τ Γs implies that zt(a∗)− zt(a)→∞
as t→∞. Using Equation (B.16), we conclude that for all arms a > k, almost surely,

lim
t→∞

πθt(a∗)
πθt(a) →∞ =⇒ lim

t→∞

πθt(a)
πθt(1) → 0. (B.22)

81

Hence, for all k > 1,

r(k)− ⟨πθt , r⟩ =
K∑

i=1
πθt(i) (r(k)− r(i))

=
k−1∑
i=1

πθt(i) (r(k)− r(i))︸ ︷︷ ︸
<0

+
K∑

i=k+1
πθt(i) (r(k)− r(i))

< πθt(1) (r(k)− r(1)) +
K∑

i=k+1
πθt(i) (r(k)− r(i))

= πθt(1) (r(1)− r(k))︸ ︷︷ ︸
>0


K∑

i=k+1

πθt(i)
πθt(1)︸ ︷︷ ︸

→0

r(k)− r(i)
r(1)− r(k)︸ ︷︷ ︸

>0

−1


< 0 (For large enough t ≥ τ)

This contradicts with the assumption that limt→∞ ⟨πθt , r⟩ = r(k) where k > 1. Hence, almost
surely, for all k ̸= 1, πθt(k) ̸→ 1, implying that πθt(1)→ 1 as t→∞.

B.4.2 Rate of Convergence

Theorem 10. Given a reward vector r ∈ RK and a feature matrix X ∈ RK×d such that As-
sumptions 7 and 10 are satisfied, Algorithm 4 with the constant learning as in Equation (4.9)
results in the following sub-linear convergence rate:

E[⟨π∗, r⟩ − ⟨πθ1 , r⟩] ≤ 6 ρ κ2

µ T
,

where ρ := 8 R3
max K3/2

∆2 , κ := λmax[X⊤X]
λmin[X⊤X] , and µ := [E[inft≥1[πθt(a∗)]−2]]−1 > 0.

Proof. For the following proof, define:

f(θ) := ⟨πθ, r⟩
∇f(θ) := X⊤ (diag(πθ)− πθ π⊤

θ) r.

∇̃f(θ) := X⊤ (diag(πθ)− πθ π⊤
θ) r̂.

Additionally, for z ∈ {Xθ | θ ∈ Rd} ⊆ RK define,

π̄z := softmax(z)
J(z) := ⟨π̄z, r⟩
∇J(z) := (diag(π̄z)− π̄z π̄⊤

z) r

∇J̃(z) := (diag(π̄z)− π̄z π̄⊤
z) r̂.

82

Since z = Xθ, we have f(θ) = J(z).
According to Lemma 46, f is 3 λmax[X⊤X] ∥∇J(z)∥ non-uniform smooth and by Lemma 35,
the stochastic gradients are bounded by

√
2 λmax[X⊤X] Rmax. Let

L1 := 3 λmax[X⊤X] B :=
√

2 λmax[X⊤X] Rmax

Using Algorithm 4 with ηt ∈
(
0, 1

L1 B

)
, Lemma 34 implies,

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
1
2

L1 ∥∇J(zt)∥
1− L1 B ηt

∥θt+1 − θt∥22

≤ 2 L1 ∥∇J(zt)∥
2 ∥θt+1 − θt∥22

(Since ηt ≤ 1
6 (λmax[X⊤X])3/2 √

2 Rmax
= 1

2 L1 B , 1− L1 B ηt ≥ 1
2)

=⇒ f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩ ≥ −
2 L1 ∥∇J(zt)∥

2 ∥θt+1 − θt∥22

f(θt+1)− f(θt)− ηt

〈
∇f(θt), ∇̃f(θt)

〉
≥ −2 ηt

2 L1 ∥∇J(zt)∥
2

∥∥∥∇̃f(θt)
∥∥∥2

2
(By the update in Algorithm 4, θt+1 = θt + ηt ∇̃f(θt))

=⇒ f(θt+1) ≥ f(θt) + ηt

〈
∇f(θt), ∇̃f(θt)

〉
− 2 ηt

2 L1∥∇J(zt)∥
2

∥∥∥∇̃f(θt)
∥∥∥2

2

J(zt+1) ≥ J(zt) + ηt

〈
∇f(θt), ∇̃f(θt)

〉
− 2 ηt

2 L1 ∥∇J(zt)∥
2

∥∥∥∇̃f(θt)
∥∥∥2

2
.

(f(θ) = J(z) for z = Xθ)

J∗ − J(zt+1) ≤ J∗ − J(zt)− ηt

〈
∇f(θt), ∇̃f(θt)

〉
+ 2 ηt

2 L1 ∥∇J(zt)∥
2

∥∥∥∇̃f(θt)
∥∥∥2

2

(Multiplying both sides by −1 and adding J∗ := supθ∈Rd ⟨πθ, r⟩)

Et[J(z∗)− J(zt+1)] ≤ Et[J(z∗)− J(zt+1)]− ηt

〈
∇f(θt),Et[∇̃f(θt)]

〉
+ 2 ηt

2 L1 ∥∇J(zt)∥
2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]
(Taking expectation with respect to the randomness in iteration t on both sides)

Et[J(z∗)− J(zt+1)] = Et[J(z∗)− J(zt+1)]− ηt ∥∇f(θt)∥22 + 2 ηt
2 L1 ∥∇J(zt)∥

2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]
(By Lemma 44 the stochastic gradients are unbiased)

=⇒ δ(zt+1) ≤ δ(zt)− ηt ∥∇f(θt)∥22 + 2 ηt
2 L1 ∥∇J(zt)∥

2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]
(Let δ(z) := Et[J(z∗)− J(z)])

83

Simplifying the third term on the RHS,

Et

[∥∥∥∇f̃(θt)
∥∥∥2

2

]
= Et

[∥∥∥X⊤∇J̃(zt)
∥∥∥2

2

]
= Et

[
∇J̃(zt)⊤ XX⊤∇J̃(zt)

]
≤ λmax[X⊤X]Et

[∥∥∥∇J̃(zt)
∥∥∥2

2

]
=⇒ δ(zt+1) ≤ δ(zt)− ηt ∥∇f(θt)∥22 + 2 ηt

2 λmax[X⊤X] L1 ∥∇J(zt)∥
2 Et

[∥∥∥∇J̃(zt)
∥∥∥2

2

]

By Lemma 36, J satisfies the strong growth condition, Et

∥∥∥∇J̃(z)
∥∥∥2

2
≤ ρ ∥∇J(z)∥ with

ρ := 8 R3
max K3/2

∆2 where ∆ := mini ̸=j |r(i)− r(j)|,

≤ δ(zt)− ηt ∥∇f(θt)∥22 + 2 ηt
2 ρ λmax[X⊤X] L1

2 ∥∇J(zt)∥22

Simplifying the second term on the RHS in the above equation,

∥∇f(θt)∥22 =
∥∥∥X⊤∇J(zt)

∥∥∥2

2
= ∇J(zt)⊤XX⊤∇J(zt) ≥ λmin[X⊤X] ∥∇J(zt)∥22

(X⊤∇J(zt) ̸= 0, since ∇J(zt) does not lie in the null space of X⊤)

=⇒ δ(zt+1) ≤ δ(zt)− ηt λmin[X⊤X] ∥∇J(zt)∥22 + 2 ηt
2 ρ λmax[X⊤X] L1

2 ∥∇J(zt)∥22

= δ(zt)− ηt λmin[X⊤X] ∥∇J(zt)∥22 + 6 ηt
2 ρ [λmax[X⊤X]]2

2 ∥∇J(zt)∥22
(Since L1 := 3 λmax[X⊤X])

Since ηt ≤ λmin[X⊤X]
6 ρ [λmax[X⊤X]]2 and let κ := λmax[X⊤X]

λmin[X⊤X]

=⇒ δ(zt+1) ≤ δ(zt)−
1

6 ρ κ2 ∥∇J(zt)∥22 (B.23)

By Lemma 37, J satisfies the non-uniform Łojasiewciz condition with ξ = 0 and C(z) =
π̄z(a∗),

≤ δ(zt)−
1

6 ρ κ2 [π̄zt(a∗)]2 [δ(zt)]2

≤ δ(zt)−
1

6 ρ κ2 m [δ(zt)]2 (By Theorem 9, m := inft≥1[π̄zt(a∗)]2 > 0)

Taking expectation with respect to all previous iterations t ≥ 1 on both sides,

=⇒ E[δ(zt+1)] ≤ E[δ(zt)]−
1

6 ρ κ2 E[m [δ(zt)]2]

84

To lower bound E[m [δ(zt)]2],

E[δ(zt)] = E
[1√

m

√
mδ(zt)

]

≤
√
E
[1

m

]√
E[m [δ(zt)]2]

(Using Cauchy-Schwarz since m > 0 and δ(zt) > 0)

=⇒
[1

m

]−1

︸ ︷︷ ︸
:=µ

(E[δ(zt)])2 ≤ E[m [δ(zt)]2]

Hence, we have

E[δ(zt+1)] ≤ E[δ(zt)]−
µ

6 ρ κ2 (E[δ(zt)])2

= E[δ(zt)]−
1
α

(E[δ(zt)])2 (1
α

:= µ
6 ρ κ2)

Dividing each side by E[δ(zt)]E[δ(zt+1)],

1
E[δ(zt)]

≤ 1
E[δ(zt+1)] −

1
α

E[δ(zt)]
E[δ(zt+1)] .

Using the above inequality and recursing from iteration t = 1 to T ,

1
E[δ(z1)] ≤

1
E[δ(zT +1)] −

1
α

T∑
t=1

E[δ(zt)]
E[δ(zt+1)]

≤ 1
E[δ(zT +1)] −

T

α
(E[δ(zt)] ≥ E[δ(zt+1)])

=⇒ T

α
≤ 1

E[δ(zT +1)] .

Therefore,

E[J(z∗)− J(zT +1)] ≤ 6 ρ κ2

µ T
.

B.4.3 Additional Lemmas

Lemma 33. Using Algorithm 4, if there exist a τ ≥ 1 such that ⟨πθτ , r⟩ ≥ r(a), we have,
almost surely,

lim
t→∞
⟨πθt , r⟩ > r(a).

Proof. According to Equation (B.24), we have, for all finite t ≥ 1, Et[
〈
πθt+1 , r

〉
] > ⟨πθt , r⟩,

where Et takes expectation w.r.t. the randomness in iteration t. Therefore, we have, for all

85

finite t > τ ,

Et[
〈
πθt+1 , r

〉
] > ⟨πθτ , r⟩ > r(a).

According to Equation (B.24), we also have

lim
t→∞

(Et[
〈
πθt+1 , r

〉
]− ⟨πθt , r⟩) = 0

=⇒ lim
t→∞
⟨πθt , r⟩ = lim

t→∞
Et[
〈
πθt+1 , r

〉
] > ⟨πθτ , r⟩ ≥ r(a).

Lemma 2. We set the constant learning rate as:

η = min
{

1
6 (λmax[X⊤X])3/2√2 Rmax

,
λmin[X⊤X]

6 ρ [λmax[X⊤X]]2

}
, (4.9)

where ρ := 8 R3
max K3/2

∆2 , ∆ := mini ̸=j |r(i) − r(j)|, κ := λmax[X⊤X]
λmin[X⊤X] is the condition number

of X⊤X, and µ := [E[inft≥1[πθ(a∗)]−2]]−1 > 0. Algorithm 4 with the above learning rate
assures that, for all t ≥ 1,

Et[
〈
πθt+1 , r

〉
]− ⟨πθt , r⟩ ≥ 1

6 ρ κ2 ∥J(zt)∥22.

Proof. Following the initial steps in Theorem 9, we have

J(zt)− J(zt+1) ≤ −ηt

〈
∇f(θt), ∇̃f(θt)

〉
+ ηt

2 6 λmax[X⊤X] ∥∇J(θt)∥
2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]
Taking expectation with respect to at ∼ πθt(·) and Rt(at) ∼ Pat ,

= −ηt

〈
∇f(θt),Et[∇̃f(θt)]

〉
+ ηt

2 6 λmax[X⊤X] ∥∇J(θt)∥
2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]
By Lemma 44, the gradient is unbiased,

= −ηt ∥∇f(θt)∥22 + ηt
2 6 λmax[X⊤X] ∥∇J(θt)∥

2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]
Simplifying the second term on the RHS in the above equation,

∥∇f(θt)∥22 =
∥∥∥X⊤∇J(zt)

∥∥∥2

2
= ∇J(zt)⊤XX⊤∇J(zt) ≥ λmin[X⊤X] ∥∇J(zt)∥22

(X⊤∇J(zt) ̸= 0, since ∇J(zt) does not lie in the null space of X⊤)

≤ −ηt λmin[X⊤X]∥∇J(θt)∥22 + ηt
2 6 λmax[X⊤X] ∥∇J(θt)∥

2 Et

[∥∥∥∇̃f(θt)
∥∥∥2

2

]

86

Simplifying the third term on the RHS,

E
[∥∥∥∇f̃(θt)

∥∥∥2

2

]
= E

[∥∥∥X⊤∇J̃(zt)
∥∥∥2

2

]
= E

[
∇J̃(zt)⊤ XX⊤∇J̃(zt)

]
≤ λmax[X⊤X]E

[∥∥∥∇J̃(zt)
∥∥∥2

2

]
≤ −ηt λmin[X⊤X]∥∇J(θt)∥22 + ηt

2 6 [λmax[X⊤X]]2 ∥∇J(θt)∥
2 Et

[∥∥∥∇J̃(θt)
∥∥∥2

2

]

By Lemma 36, J satisfies the strong growth condition, E
[∥∥∥∇J̃(z)

∥∥∥2

2

]
≤ ρ ∥∇J(z)∥ with

ρ := 8 R3
max K3/2

∆2 where ∆ := mini ̸=j |r(i)− r(j)|,

≤ −ηt λmin[X⊤X]∥∇J(θt)∥22 + ηt
2 ρ 6 λmax[X⊤X]2 ∥∇J(θt)∥22

2
≤ 1

6 ρ κ2 ∥J(zt)∥22 (ηt ≤ λmin[X⊤X]
6 ρ [λmax[X⊤X]]2)

Lemma 3. Using Algorithm 4 with a constant step-size as in Equation (4.9) will converge
to a one-hot policy (i.e. there exists an (possibly random) arm k ∈ [K] such that πθt(k)→ 1
as t→∞) almost surely.

Proof. According to Lemma 2, we have Et[
〈
πθt+1 , r

〉
] ≥ ⟨πθt , r⟩ for all t ≥ 1. The sequence

{⟨πθt , r⟩}t≥1 satisfies the condition of sub-martingale. Therefore, according to Corollary 3 in
Mei et al. (2022a), we have almost surely,

lim
t→∞

Et[
〈
πθt+1 , r

〉
]−

〈
πθt+1 , r

〉
= 0

=⇒ lim
t→∞

Et[
〈
πθt+1 , r

〉
]− ⟨πθt , r⟩ = 0

According to Lemma 2, we have

Et[
〈
πθt+1 , r

〉
]− ⟨πθt , r⟩ ≥ ∆2 [λmin[X⊤X]]2

48 R3
max K3/2 [λmax[X⊤X]]2

∥J(zt)∥22

≥ ∆2 [λmin[X⊤X]]2

48 R3
max K3/2 [λmax[X⊤X]]2

K∑
i=1

πθt(i)2 (r(i)− ⟨πθt , r⟩)2 > 0.

(B.24)

Therefore, we have

lim
t→∞

K∑
i=1

πθt(i)2 (r(i)− ⟨πθt , r⟩)2 = 0,

which implies for all arms i ∈ [K],

lim
t→∞

πθt(i)2 (r(i)− ⟨πθt , r⟩)2 = 0.

87

We can assume that limt→∞(r(i)− ⟨πθt , r⟩)2 > 0 for all arms i ∈ [K]. Combined with above
equation, we have limt→∞ πθt(i) = 0 for all arms i ∈ [K], which contradicts with the fact
that

∑K
i=1 πθt(i) = 1. Therefore, there exist at least one arm k ∈ [K] such that

lim
t→∞

(r(k)− ⟨πθt , r⟩)2 = 0

=⇒ lim
t→∞
⟨πθt , r⟩ = r(k)

=⇒ lim
t→∞

πθt(k) = 1, (By Assumption 7)

which completes the proof.

Lemma 34 (Lemma 5 in Lu et al. (2024)). Assuming that f is L1-non-uniform smooth and
the stochastic gradient is bounded, i.e. ∥∇̃f(θt)∥ ≤ B, using Algorithm 4 with ηt ∈ (0, 1

L1 B)
we have,

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
1
2

L1 ∥∇f(θt)∥
1− L1 B ηt

∥θt+1 − θt∥22. (B.25)

Lemma 35.
∥d⟨πθ, r̂⟩

dθ
∥ ≤

√
2 λmax[X⊤X] Rmax (B.26)

Proof.∥∥∥∥d⟨πθt , r̂⟩
dθt

∥∥∥∥2

2
=
∥∥∥X⊤∇J̃(zt)

∥∥∥2

2

=
∥∥∥J̃(zt)⊤X X⊤∇J̃(zt)

∥∥∥2

2

≤ λmax[X⊤X]
∥∥∥∇J̃(z)

∥∥∥2

2

= λmax[X⊤X]
∑

a∈[K]

(
d⟨π̄z, r̂⟩
dz(a)

)
= λmax[X⊤X]

∑
a∈[K]

(
1
{
a′ = a

}
− π̄z(a)

)2 (R(a))2

≤ λmax[X⊤X] R2
max

∑
a∈[K]

(
1
{
a′ = a

}
− π̄z(a)

)2
≤ λmax[X⊤X] R2

max

(1− π̄z(a))2 +
∑
a̸=a′

π̄z(a)2


≤ λmax[X⊤X] R2

max

(1− π̄z(a))2 +

∑
a̸=a′

π̄z(a)

2
 (∥ · ∥2 ≤ ∥ · ∥1)

= 2 λmax[X⊤X] , R2
max(1− π̄z(a))2

≤ 2 λmax[X⊤X] R2
max

88

Lemma 36 (Lemma 4.3 in Mei et al. (2023)). Using Algorithm 4, we have

E
[∥∥∥∥d⟨π̄z, r̂⟩

dz

∥∥∥∥2

2

]
≤ 8 R3

max K3/2

∆2 ∥⟨π̄z, r⟩
dz
∥

where ∆ := mini ̸=j |r(i)− r(j)| and π̄z := softmax(z) for z ∈ RK .
Lemma 37 (Lemma 3 of Mei et al. (2020b)). Let Assumption 7 hold and let π∗ :=
arg maxπ∈∆K

⟨π, r⟩. Then

∥d⟨π̄z, r⟩
dz

∥ ≥ π̄z(a∗) ⟨π∗ − π̄z, r⟩

where π̄z := softmax(z) for z ∈ RK .
Lemma 38. Using Algorithm 4 with any constant η ∈ Ω(1), we have, for all large enough
t ≥ 1,almost surely,

r(i2) > ⟨πθt , r⟩ > r(i1)

, where i1 := arg mina∈A∞ r(a) and i|A∞| := arg maxa∈A∞ r(a).

Proof. Part I: ⟨πθt , r⟩ > r(i1).

According to Lemma 40, we have at least another arm i|A∞| such that r(i|A∞|) > r(i1) and
N∞(i|A∞|) =∞. Define that

A+(i1) :=
{

a+ ∈ [K] : r(a+) > r(i1)
}

, A−(i1) :=
{
a− ∈ [K] : r(a−) < r(i1)

}
.

Then, we have, for all large enough t,

⟨πθt , r⟩ − r(i1) =
∑

a∈A+(i1)
πθt(a) (r(a)− r(i1))−

∑
a∈A−(i1)

πθt(a) (r(i1)− r(a))

> πθt(i|A∞|) (r(i|A∞|)− r(i1))−
∑

a∈A−(i1)
πθt(a) (r(i1)− r(a))

= πθt(i|A∞|)

r(i|A∞|)− r(i1)︸ ︷︷ ︸
>0

−
∑

a∈A−(i1)

πθt(a)
πθt(i|A∞|)

(r(i1)− r(a))︸ ︷︷ ︸
>0


Since N∞(a) <∞ for all a ∈ A−(i1), according to Lemma 39, we have supt≥1

πθt
(i|A∞|)

πθt
(a) =∞.

Therefore, for all large enough t, ⟨πθt , r⟩ > r(i1).

89

Part II: r(i|A∞|) > ⟨πθt , r⟩. Similarly, we have

r(i|A∞|)− ⟨πθt , r⟩ =
∑

a∈A−(i|A∞|)
πθt(a) (r(i|A∞|)− r(a))−

∑
a∈A+(i|A∞|)

πθt(a) (r(a)− r(i|A∞|))

> πθt(i1) (r(i|A∞|)− r(i1))−
∑

a∈A+(i|A∞|)
πθt(a) (r(a)− r(i|A∞|))

= πθt(i1)

r(i|A∞|)− r(i1)︸ ︷︷ ︸
>0

−
∑

a∈A+(i1)

πθt(a)
πθt(i1) (r(a)− r(i|A∞|))︸ ︷︷ ︸

>0


Since N∞(a) <∞ for all a ∈ A+(i|A∞|), according to Lemma 39, we have supt≥1

πθt
(i1)

πθt
(a) =∞.

Therefore, for all large enough t, r(i|A∞|) > ⟨πθt , r⟩.

Lemma 39. Using Algorithm 4, for any two different actions i, j ∈ [K] with i ̸= j, if
N∞(i) =∞ and N∞(j) <∞, then we have, almost surely,

sup
t≥1

πθt(i)
πθt(j) =∞.

Proof. We will prove this by contradiction. Assume that supt≥1
πθt

(i)
πθt

(j) = C < ∞ for some
C > 0. According to the extended Borel-Cantelli (Lemma 42), since N∞(i) =∞, we have∑∞

t=0 πθt(i) =∞. Similarly, since N∞(j) <∞, we have
∑∞

t=0 πθt(j) <∞. Therefore,

∞∑
t=1

πθt(i) =
∞∑

t=1
πθt(j) πθt(i)

πθt(j)

< C
∞∑

t=1
πθt(j) <∞, (C = supt≥1

πθt
(i)

πθt
(j))

which contradicts the fact that
∑∞

t=1 πθt(i) =∞. Therefore, we have supt≥1
πθt

(i)
πθt

(j) =∞.

Lemma 40. Using Algorithm 4 with any fixed learning rate η > 0, there exist at least a pair
of two distinct actions i, j ∈ [K] and i ̸= j, such that, almost surely,

N∞(i) =∞, and N∞(j) =∞.

Proof. By pigeonhole principle, there exists at least one action i ∈ [K], such that, almost
surely,

N∞(i) := lim
t→∞

Nt(i) =∞.

We argue the existence of another action by contradiction. Suppose for all the other actions
j ∈ [K] and j ̸= i, we have N∞(j) < ∞. According to Lemma 42, for all j ̸= i, we have,

90

almost surely,

∞∑
t=1

πθt(j) := lim
t→∞

t∑
s=1

πθs(j) <∞.

Recall we have the following update:

θt+1 = θt + η X⊤Htr̂t =⇒ zt+1 = zt + η XX⊤Htr̂t.

Then for any arm ã ∈ [K],

zt+1(ã) = zt(ã) + η
K∑

a=1
⟨xã, xa⟩πθt(a) [r̂(a)− ⟨πθt , r̂⟩]

= zt(ã) + η

 K∑
a=1

It(a)

⟨xã, xa⟩ (1− πθt(a)) Rt −
∑
j ̸=a

⟨xã, xj⟩πθt(j) Rt


= zt(ã) + η

It(i)

⟨xã, xi⟩ (1− πθt(i)) Rt −
∑
j ̸=i

⟨xã, xj⟩πθt(j) Rt



+
K∑

a=1
a̸=i

It(a)

⟨xã, xa⟩ (1− πθt(a)) Rt −
∑
j ̸=a

⟨xã, xj⟩πθt(j) Rt


 (B.27)

Using Equation (B.27), recursing from 1 to t− 1, and using the triangle inequality, we have

|zt(ã)− z1(ã)| ≤ η
t−1∑
s=1
|It(i)

⟨xã, xi⟩ (1− πθt(i)) Rt −
∑
j ̸=i

⟨xã, xj⟩πθt(j) Rt

|
+ η

t−1∑
s=1
|

K∑
a=1
a̸=i

It(a)

⟨xã, xa⟩ (1− πθt(a)) Rt −
∑
j ̸=a

⟨xã, xj⟩πθt(j) Rt

|

91

Let C := maxa,a′ |⟨xa, xa′⟩|. Since |Rt| ≤ Rmax and using triangle inequality,

≤ η Rmax C
t−1∑
s=1

Is(i)

(1− πθs(i)) +
∑
j ̸=i

πθs(j)



+
K∑

a=1
a̸=i

Is(a)

(1− πθs(a)) +
∑
j ̸=a

πθs(j)




= 2 η Rmax C
t−1∑
s=1

Is(i)
∑
j ̸=i

πθs(j) +
K∑

a=1
a̸=i

Is(a)
∑
j ̸=a

πθs(a)



≤ 2η Rmax C
t−1∑
s=1

∑
j ̸=i

πθs(j) + (K − 1)
K∑

a=1
a̸=i

Is(a)



= 2 η Rmax C

∑
j ̸=i

t−1∑
s=1

πθs(j) + (K − 1)
K∑

a=1
a̸=i

t−1∑
s=1

Is(a)



= 2 η Rmax C

∑
j ̸=i

t−1∑
s=1

πθs(j) + (K − 1)
K∑

a=1
a̸=i

Nt−1(a)


From the assumption that N∞(j) <∞, for any arm ã ∈ [K], almost surely,

sup
t≥1
|zt(ã)| ≤ sup

t≥1
|zt(ã)− z1(ã)|+ |z1(ã)| <∞.

Since for all arms ã ∈ [K], the logit is always finite, there exists a finite constant cã ≥ 0,
such that,

inf
t≥1

πθt(ã) = inf
t≥1

exp(zt(ã))∑
a′∈[K] exp(zt(a′)) ≥ cã > 0.

=⇒
∞∑

t=1
πθt(ã) = lim

t→∞

t∑
s=1

πθs(a) ≥ lim
t→∞

t cã =∞.

According to Lemma 42, we have, almost surely, for all ã ∈ [K],

N∞(ã) =∞

which is a contradiction with the assumption that N∞(j) <∞ for all j ̸= i. Therefore, there
exists another action j ̸= i such that N∞(j) =∞.

92

B.5 Additional Lemmas

Lemma 41. For an arbitrary action a′, Et[Wt+1(a′)] = 0, |Wt+1(a′)| ≤ 4 η Rmax ∥ya′∥1
where ya′ := Xxa′, and

Var[Wt+1(a′)] ≤ 2η2 R2
max

K∑
j=1
j ̸=i

y2
a′(j) πθt(j) (1− πθt(j))

Proof.

Wt+1(a′) = zt+1(a′)− Et[zt+1(a′)] = [Xθt+1](a′)− Et[[Xθt+1](a′)]
= ⟨xa′ , ηX⊤Ht (r̂t − r)⟩ = η [Xxa′]⊤Ht (r̂t − r)
= η y⊤

a′ Ht (r̂t − r) (ya′ := Xxa′)

We consider a centered version of the rewards formed by subtracting r(i) from all the rewards.
Specifically, we consider bounding the term,

η y⊤
a′ Ht [(r̂t − r)− (r̂t(i)− r(i))1] = η y⊤

a′ Ht (r̂t − r) = Wt+1(a′) (Since Ht1 = 0)

For convenience, we will overload the notation and subsequently use r̂t − r to refer to the
centered rewards. This implies that (r̂t − r)(i) = 0. With this in mind, we will show that
E[Wt+1(a′)] = 0, Wt+1(a′) is bounded and upper-bound Var[Wt+1(a′)]. Since ya′ and Ht are
independent of the randomness and the importance-weighted reward estimate is unbiased,
we have

E[Wt+1(a′)] = ηy⊤
a′ Ht E[r̂t − r] = 0.

Then, we have

|Wt+1(a′)| ≤ η ∥ya′∥1 ∥Ht (r̂t − r)∥∞ (Holder’s inequality)
= η ∥ya′∥1 max

a
{|It(a)− πθt(a)|Rt(at)− πθt(a) [r(a)− ⟨πθt , r⟩]}

≤ η ∥ya′∥1 4Rmax

Since all entries of X are bounded, ya′ is bounded

=⇒ |Wt+1(a′)| ≤ 4 η Rmax ∥ya′∥1 is bounded.

93

Next, we will bound the variance of Wt+1(a′):

Var[Wt+1(a′)] = η2E
[
[y⊤

a′Ht (r̂t − r)]2
]

≤ η2 E
[
[y⊤

a′Ht r̂t]2
]

(Since E[r̂t] = r)

= η2 E[(y⊤
a′Ht r̂t)⊤ (y⊤

a′Ht r̂t)]
= η2 E[r̂⊤

t Ht ya′y⊤
a′Ht r̂t] (Ht is symmetric)

= η2 E
[
Tr[r̂⊤

t Ht ya′y⊤
a′Ht r̂t]

]
(Trace of a scalar is equal to the scalar)

= η2 E
[
Tr[[ya′y⊤

a′] [Htr̂t] [Htr̂t]⊤]
]

(Cyclic property of trace)

= η2 Tr

[ya′y⊤
a′]︸ ︷︷ ︸

:=Y

E

[Htr̂t] [Htr̂t]⊤︸ ︷︷ ︸
:=X




(Trace is a linear operator and ya′ does not depend on the randomness)
= η2 Tr[Y ⊤E[X]] (Y is symmetric)

= η2
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i

Yj,k E[Xj,k]

(Definition of trace and since r̂t(i) = 0 because of the centering)

=⇒ Var[Wt+1(a′)] ≤ η2
K∑

j=1
j ̸=i

Y 2
j,j E[X2

j,j] + η2
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

Yj,k E[Xj,k] (B.28)

We need to upper-bound each entry in E[X] and we do this next.

E[X2
j,j] = E[(It(j)− πθt(j))2 R2

t (at)] (Using the definition of Htr̂t)

≤ πθt(j)
[
[1− πθt(j)]2 r2(j)

]
+
∑
b̸=j

πθt(b)
[
(πθt(j))2 r2(b)

]
≤ R2

max

[
πθt(j) (1− πθt(j))2 + (1− πθt(j)) (πθt(j))2

]
=⇒ E[X2

j,j] ≤ 2 R2
max πθt(j) (1− πθt(j))

94

For j ̸= k,

E[Xj,k] = E[(It(j)− πθt(j)) (It(k)− πθt(k)) R2
t (at)] (Using the definition of Htr̂t)

= πθt(j)
[
(1− πθt(j)) (−πθt(k)) r2(j)

]
+ πθt(k)

[
(1− πθt(k)) (−πθt(j)) r2(k)

]
+
∑
b ̸=j
b ̸=k

πθt(b)
[
(−πθt(k)) (−πθt(j)) r2(b)

]

≤
∑
b ̸=j
b ̸=k

πθt(b)
[
(−πθt(k)) (−πθt(j)) r2(b)

]
(First two terms are negative)

≤ R2
max (1− πθt(j)− πθt(k)) πθt(j) πθt(k)

≤ R2
max πθt(j) πθt(k) (Bounding the negative terms by zero)

Additionally,

E[Xj,k] ≥ πθt(j)
[
(1− πθt(j)) (−πθt(k)) r2(j)

]
+ πθt(k)

[
(1− πθt(k)) (−πθt(j)) r2(k)

]
≥ −R2

max [πθt(j) (1− πθt(j)) πθt(k) + πθt(k) (1− πθt(k)) πθt(j)]
≥ −2R2

maxπθt(j) πθt(k) (1− πθt(a)) ≤ 1)
=⇒ |E[Xj,k]| ≤ 2R2

maxπθt(j) πθt(k)

Combining the above relations with Equation (B.28),

Var[Wt+1(a′)] ≤ η2
K∑

j=1
j ̸=i

Y 2
j,j E[X2

j,j] + η2
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

Yj,k E[Xj,k]

≤ η2 |
K∑

j=1
j ̸=i

Y 2
j,j E[X2

j,j] +
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

Yj,k E[Xj,k]|

≤ η2
K∑

j=1
j ̸=i

Y 2
j,j E[X2

j,j] + |
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

Yj,k E[Xj,k]| (Using triangle inequality)

≤ η2
K∑

j=1
j ̸=i

Y 2
j,j E[X2

j,j] +
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

|Yj,k| |E[Xj,k]|

≤ η2 R2
max


K∑

j=1
j ̸=i

Y 2
j,j πθt(j) (1− πθt(j)) +

K∑
j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

|Yj,k|πθt(j) πθt(k)



95

In order to simplify the second term, without loss of generality, assume that the terms
are ordered such that |ya′(1)| ≥ |ya′(2)| . . . ≥ |ya′(K)|, and recall that Yj,k = ya′(j) ya′(k).
Hence,

K∑
j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

|Yj,k|πθt(j) πθt(k) =
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

|ya′(j)| |ya′(k)|πθt(j) πθt(k)

= 2
K−1∑
j=1
j ̸=i

|ya′(j)|πθt(j)
K∑

k=j+1
k ̸=i

|ya′(k)|πθt(k)

≤ 2
K−1∑
j=1
j ̸=i

y2
a′(j) πθt(j)

K∑
k=j+1

k ̸=i

πθt(k)

(Since |ya′(k)| ≤ |ya′(j)| for k > j)

=
K∑

j=1
j ̸=i

y2
a′(j) πθt(j)

K∑
k=1
k ̸=i
k ̸=j

πθt(k) ≤
K∑

j=1
j ̸=i

y2
a′(j) πθt(j)

K∑
k=1
k ̸=j

πθt(k)

=⇒
K∑

j=1
j ̸=i

K∑
k=1
k ̸=i
k ̸=j

|Yj,k|πθt(j) πθt(k) ≤
K∑

j=1
j ̸=i

y2
a′(j) πθt(j) (1− πθt(j))

Putting everything together,

Var[Wt+1(a′)] ≤ η2 R2
max

 K∑
j=1
j ̸=i

y2
a′(j) πθt(j) (1− πθt(j)) +

K∑
j=1
j ̸=i

y2
a′(j) πθt(j) (1− πθt(j))


≤ 2η2 R2

max

K∑
j=1
j ̸=i

y2
a′(j) πθt(j) (1− πθt(j))

Corollary 5. Define ya,a′ := (X − 1v⊤)(xa − xa′) where v ∈ Rd. For an arbitrary action a
and a′, E[Wt+1(a′)] = 0, |Wt+1(a)−Wt+1(a′)| ≤ 4 η Rmax ∥ya,a′∥1, and

Var[|Wt+1(a)−Wt+1(a′)|] ≤ 2η2 R2
max

K∑
j=1
j ̸=i

(ya,a′(j))2 πθt(j) (1− πθt(j)).

96

Proof. Define that W̃t+1(a, a′) := |Wt+1(a)−Wt+1(a′)|.

W̃s+1(a, a′) = |zt+1(a) + zt+1(a′)− E[zt+1(a)]− E[zt+1(a′)]|
= [Xθt+1](a) + [Xθt+1](a′)− E[[Xθt+1](a)]− E[[Xθt+1](a′)]

(zt(a) := [Xθt](a))
= ⟨xa − xa′ , ηX⊤Ht (r̂t − r)⟩
= ⟨xa − xa′ , η(X − 1v⊤)⊤Ht (r̂t − r)⟩ (Since v1⊤Ht = 0)
= η [(X − 1v⊤)(xa − xa′)]⊤Ht (r̂t − r)
= η y⊤

a,a′ Ht (r̂t − r) (ya,a′ := (X − 1x⊤
i)(xa − xa′))

The proof follows from Lemma 41, with Wt+1(a′) = W̃t+1(a, a′).

For completeness, we append external lemmas here.
Lemma 42 (Extended Borel-Cantelli). Let (Fn)n≥1 be a filtration, An ∈ Fn. Then, almost
surely,

{ω : ω ∈ An infinitely often } =
{

ω :
∞∑

n=1
Pr(An | Fn)

}
.

Lemma 43 (Theorem C.3 of Mei et al. (2023)). Let X1, X2, . . . be a sequence of random
variables, such that for all finite t ≥ 1, |Xt| ≤ 1

2 . Define that

Sn := |
n∑

t=1
E[Xt | X1, . . . , Xt−1]−Xt| and Vn :=

n∑
t=1

Var[Xt|X1, . . . , Xt−1].

Then, for all δ > 0,

Pr
(
∃n : Sn ≥ 6

√(
Vn + 4

3

)
log

(
Vn + 1

δ

)
+ 2 log(1

δ
) + 4

3 log 3
)
≤ δ.

Lemma 44 (Unbiased Gradient). Using Algorithm 4, we have, for all finite t ≥ 1,

Et

[
d⟨πθt , r̂t⟩

dθt

]
= d⟨πθt , r⟩

dθt
.

Proof. First, we show that Et

[
d⟨πzt ,r̂t⟩

dzt

]
= d⟨πzt ,r⟩

dzt
where zt := Xθt.

For the sampled arm at, we have,

ERt(at)∼Pat

[
d⟨πzt , r̂t⟩
dzt(at)

]
= ERt(at)∼Pat

[
(1− πzt(at)) Rt(at)

]
= (1− πzt(at)) ERt(at)∼Pat

[
Rt(at)

]
= (1− πzt(at)) r(at).

97

For any other arms a ̸= at that are not sampled, we have,

ERt(at)∼Pat

[
d⟨πzt , r̂t⟩

dzt(a)

]
= ERt(at)∼Pat

[
− πzt(a) Rt(at)

]
= −πzt(a)ERt(at)∼Pat

[
Rt(at)

]
= −πzt(a) r(at).

Combing the above two equations, we have, for all a ∈ [K],

ERt(at)∼Pat

[
d⟨πzt , r̂t⟩

dzt(a)

]
= (I {at = a} − πzt(a)) r(at).

Taking expectation over at ∼ πzt(), we have,

Et

[
d⟨πzt , r̂t⟩

dzt(a)

]
= Pr (at = a)ERt(at)∼Pat

[
d⟨πzt , r̂t⟩

dzt(a)

∣∣∣ at = a

]
+ Pr (at ̸= a)ERt(at)∼Pat

[
d⟨πzt , r̂t⟩

dzt(a)

∣∣∣ at ̸= a

]
= πzt(a) (1− πzt(a)) r(a) +

∑
a′ ̸=a

πzt(a′) (−πzt(a)) r(a′)

= πzt(a)
∑
a′ ̸=a

πzt(a′)
(
r(a)− r(a′)

)
= πzt(a) (r(a)− ⟨πzt , r⟩)

= d⟨πzt , r⟩
dzt(a) .

Therefore, we have

Et

[
d⟨πθt , r̂t⟩

dθt

]
= X⊤ Et

[
d⟨πθt , r̂t⟩

dzt

]
= X⊤ d⟨πzt , r⟩

dzt(a) = d⟨πθt , r⟩
dθt

.

Lemma 45 (Smoothness). Given any reward vector r ∈ RK and feature matrix X ∈ RK×d.
The expected reward function θ 7→ ⟨πθ, r⟩ with πθ = softmax(Xθ) is L-smooth with

L = 9
2 ∥r∥∞ λmax(X⊤X), (B.29)

Proof. Let S := S(X, r, θ) ∈ Rd×d be the second-order derivative of the value map θ 7→ ⟨πθ, r⟩.
By Taylor’s theorem, it suffices to show that the spectral radius of S (regardless of θ) is
bounded by L. Now, by its definition we have

S = d

dθ

{
d⟨πθ, r⟩

dθ

}
= d

dθ

{
X⊤(diag(πθ)− πθπ⊤

θ) r
}

. (by Equation (4.4))

98

Continuing with our calculation fix i, j ∈ [d]. Then,

Si,j =
d
{∑K

a=1 Xa,i πθ(a) (r(a)− π⊤
θ r)

}
dθ(j) (B.30)

=
K∑

a=1
Xa,i

dπθ(a)
dθ(j)

(
r(a)− π⊤

θ r
)
−

K∑
a=1

Xa,i πθ(a)
K∑

a′=1

dπθ(a′)
dθ(j) r(a′).

We have, for all a ∈ [K] and j ∈ [d],

dπθ(a)
dθ(j) = d

dθ(j)

{ exp{[Xθ](a)}∑
a′∈[K] exp{[Xθ](a′)}

}
(B.31)

=
d exp{[Xθ](a)}

dθ(j)
∑

a′∈[K] exp{[Xθ](a′)} − exp{[Xθ](a)}
d
∑

a′∈[K] exp{[Xθ](a′)}
dθ(j)(∑

a′∈[K] exp{[Xθ](a′)}
)2

=
exp{[Xθ](a)}Xa,j

∑
a′∈[K] exp{[Xθ](a′)} − exp{[Xθ](a)}

∑
a′∈[K] exp{[Xθ](a′)}Xa′,j(∑

a′∈[K] exp{[Xθ](a′)}
)2

=
exp{[Xθ](a)}Xa,j − exp{[Xθ](a)}

∑
a′∈[K] πθ(a′) Xa′,j∑

a′∈[K] exp{[Xθ](a′)}

= πθ(a)
(
Xa,j −

∑
a′∈[K]

πθ(a′) Xa′,j

)
.

Combining Equations (B.30) and (B.31), we have,

Si,j =
K∑

a=1
Xa,i πθ(a) (r(a)− π⊤

θ r) Xa,j −
K∑

a=1
Xa,i πθ(a) (r(a)− π⊤

θ r)
K∑

a′=1
πθ(a′) Xa′,j

−
K∑

a=1
Xa,i πθ(a)

K∑
a′=1

πθ(a′)
(
Xa′,j −

K∑
a′′=1

πθ(a′′) Xa′′,j

)
r(a′).

To show the bound on the spectral radius of S, pick y ∈ Rd. Then,

∣∣∣y⊤Sy
∣∣∣ =

∣∣∣∣ d∑
i=1

d∑
j=1

Si,j y(i) y(j)
∣∣∣∣

=
∣∣∣∣ d∑

i=1

d∑
j=1

K∑
a=1

y(i) Xa,i πθ(a) (r(a)− π⊤
θ r) Xa,j y(j)

−
d∑

i=1

d∑
j=1

K∑
a=1

y(i) Xa,i πθ(a) (r(a)− π⊤
θ r)

K∑
a′=1

πθ(a′) Xa′,j y(j)

−
d∑

i=1

d∑
j=1

K∑
a=1

y(i) Xa,i πθ(a)
K∑

a′=1
πθ(a′)

(
Xa′,j −

K∑
a′′=1

πθ(a′′) Xa′′,j

)
r(a′) y(j)

∣∣∣∣,

99

which is equal to,

∣∣∣y⊤Sy
∣∣∣ =

∣∣∣∣ K∑
a=1

[Xy](a) πθ(a) (r(a)− π⊤
θ r) [Xy](a)

−
K∑

a=1
[Xy](a) πθ(a) (r(a)− π⊤

θ r)
K∑

a′=1
πθ(a′) [Xy](a′)

−
K∑

a=1
[Xy](a) πθ(a)

K∑
a′=1

πθ(a′) r(a′)
(
[Xy](a′)−

K∑
a′′=1

πθ(a′′) [Xy](a′′)
)∣∣∣∣.

Denote

H(πθ) := diag(πθ)− πθπ⊤
θ ∈ RK×K .

We have,∣∣∣y⊤Sy
∣∣∣ =

∣∣∣∣(H(πθ) r
)⊤ (Xy ⊙Xy)−

(
H(πθ) r

)⊤(
Xy
) (

π⊤
θ Xy

)
−
(
π⊤

θ Xy
) (

H(πθ)Xy
)⊤

r

∣∣∣∣
=
∣∣∣∣(H(πθ) r

)⊤ (Xy ⊙Xy)− 2
(
H(πθ) r

)⊤(
Xy
) (

π⊤
θ Xy

)∣∣∣∣,
where ⊙ is Hadamard (component-wise) product. According to the triangle inequality and
Hölder’s inequality, we have,∣∣∣y⊤Sy

∣∣∣ ≤ ∣∣∣(H(πθ) r
)⊤ (Xy ⊙Xy)

∣∣∣+ 2
∣∣∣(H(πθ) r

)⊤(
Xy
)∣∣∣ ∣∣π⊤

θ Xy
∣∣

≤ ∥H(πθ)r∥∞ ∥Xy ⊙Xy∥1 + 2 ∥H(πθ)r∥1 ∥Xy∥∞ ∥πθ∥1 ∥Xy∥∞
= ∥H(πθ)r∥∞ ∥Xy∥22 + 2 ∥H(πθ)r∥1 ∥Xy∥2∞

(
∥Xy ⊙Xy∥1 = ∥Xy∥22, ∥πθ∥1 = 1

)
≤ ∥H(πθ)r∥∞ ∥Xy∥22 + 2 ∥H(πθ)r∥1 ∥Xy∥22 . (∥Xy∥∞ ≤ ∥Xy∥2)

For a ∈ [K], denote by Ha,:(πθ) the a-th row of H(πθ) as a row vector. Then,

∥Ha,:(πθ)∥1 = πθ(a)− πθ(a)2 + πθ(a)
∑
a′ ̸=a

πθ(a′)

= πθ(a)− πθ(a)2 + πθ(a) (1− πθ(a))
= 2 πθ(a) (1− πθ(a))

≤ 1
2 . (using x (1− x) ≤ 1/4 for all x ∈ [0, 1])

On the other hand,

∥H(πθ)r∥1 =
∑

a∈[K]
πθ(a)

∣∣∣r(a)− π⊤
θ r
∣∣∣

≤ max
a∈[K]

∣∣∣r(a)− π⊤
θ r
∣∣∣

≤ 2 ∥r∥∞.
(
using r ∈

[
− ∥r∥∞, ∥r∥∞

]K)

100

Therefore, we have,∣∣∣y⊤S(X, r, θ) y
∣∣∣ ≤ ∥H(πθ)r∥∞ ∥Xy∥22 + 2 ∥H(πθ)r∥1 ∥Xy∥22

= max
a∈[K]

∣∣∣(Ha,:(πθ))⊤ r
∣∣∣ ∥Xy∥22 + 2 ∥H(πθ)r∥1 ∥Xy∥22

≤ max
a∈[K]

∥Ha,:(πθ)∥1 ∥r∥∞ ∥Xy∥22 + 4 ∥r∥∞ ∥Xy∥22

≤
(1

2 + 4
)
∥r∥∞ ∥Xy∥22

≤ 9
2 ∥r∥∞ ∥X∥

2
op ∥y∥

2
2

= 9
2 ∥r∥∞ λmax(X⊤X) ∥y∥22 ,

where ∥X∥op is the operator norm of X ∈ RK×d (squared root of largest eigenvalue of
X⊤X),

∥X∥op = sup
{
∥Xv∥2 : ∥v∥2 ≤ 1, v ∈ Rd}.

According to Taylor’s theorem, for all θ, θ′ ∈ Rd, there exists θζ := ζ θ + (1− ζ) θ′ with
ζ ∈ [0, 1], such that,∣∣∣∣∣(πθ′ − πθ)⊤r −

〈dπ⊤
θ r

dθ
, θ′ − θ

〉∣∣∣∣∣ = 1
2

∣∣∣(θ′ − θ
)⊤

S(X, r, θζ)
(
θ′ − θ

)∣∣∣
≤ 9

4 ∥r∥∞ λmax(X⊤X) ∥θ′ − θ∥22.

Lemma 46 (Non-uniform smoothness). For all θ ∈ Rd, the spectral radius of Hessian
matrix d2{⟨πθ,r⟩}

d2θ2 ∈ Rd×d is upper bounded by 3 λmax[X⊤X]∥d⟨π̄z ,r⟩
dz ∥ , i.e. for all y ∈ Rd,

|y⊤ d2{⟨πθ, r⟩}
d2θ2 y| ≤ 3 λmax[X⊤X]∥d⟨π̄z, r⟩

dz
∥ ∥y∥22.

Proof. Following the initial proof of Lemma 45, let S := S(r, θ) ∈ Rd×d be the second
derivative of the map θ → ⟨πθ, r⟩,

S = d

dθ

{
d⟨πθ, r⟩

dθ

}
= d

dθ

{
X⊤H(πθ) r

}
.

101

For fixed i, j ∈ [d],

Si,j = d [X⊤H(πθ) r](i)
dθ(j)

= d [
∑K

a=1 Xa,i πθ(a) (r(a)− ⟨πθ, r⟩)
dθ(j)

=
K∑

a=1
Xa,i

πθ(a)
dθ(j) (r(a)− ⟨πθ, r⟩)−

K∑
a=1

Xa,i πθ(a)
K∑

a′=1

dπθ(a′)
dθ(j) r(a′).

For all a ∈ [K] and j ∈ [d]

dπθ(a)
dθ(j) = d

dθ(j)

{
exp([Xθ](a))∑

a′∈[K] exp([Xθ](a′))

}

=
d exp([Xθ](a))

dθ(j)
∑

a′∈[K] exp([Xθ](a′))− exp([Xθ](a))
d
∑

a′∈[K] exp([Xθ](a′))
dθ(j)

(
∑

a′∈[K] exp([Xθ](a′))2

=
exp([Xθ](a)) Xa,j

∑
a′∈[K] exp([Xθ](a′))− exp([Xθ](a))

∑
a′∈[K] exp([Xθ](a′)) Xa′,j

(
∑

a′∈[K] exp([Xθ](a′))2

=
exp([Xθ](a)) Xa,j − exp([Xθ](a))

∑
a′∈[K] πθ(a′) Xa′,j∑

a′∈[K] exp([Xθ](a′))

= πθ(a)

Xa,j −
∑

a′∈[K]
πθ(a′) Xa′,j


Combining the above inequalities,

Si,j =
K∑

a=1
Xa,i πθ(a) (r(a)− ⟨πθ, r⟩) Xa,j −

K∑
a=1

Xa,i πθ(a) (r(a)− ⟨πθ, r⟩)
K∑

a′=1
πθ(a′) Xa′, j

−
K∑

a=1
Xa,i πθ(a)

K∑
a′=1

πθ(a′)
(

Xa′, j −
K∑

a′′=1
πθ(a′′) Xa′′, j

)
r(a′).

To show the bound on the spectral radius of S, pick y ∈ Rd. Then,

|y⊤Sy| = |
d∑

i=1

d∑
j=1

Si,j y(i) y(j)|

=

∣∣∣∣∣∣
d∑

i=1

d∑
j=1

K∑
a=1

y(i) Xa,i πθ(a) (r(a)− ⟨πθ, r⟩) Xa,j y(j)

−
d∑

i=1

d∑
j=1

K∑
a=1

y(i) Xa,i πθ(a) (r(a)− ⟨πθ, r⟩)
K∑

a′=1
πθ(a′) Xa′,j y(j)

−
d∑

i=1

d∑
j=1

K∑
a=1

y(i) Xa,i πθ(a)
K∑

a′=1
πθ(a′)

(
Xa′,j −

K∑
a′′=1

πθ(a′′) Xa′′, j

)
r(a′) y(j)

∣∣∣∣∣∣

102

which is equal to,

|y⊤Sy| =
∣∣∣∣∣

K∑
a=1

[Xy](a) πθ(a) (r(a)− ⟨πθ, r⟩) [Xy](a)

−
K∑

a=1
[Xy](a) πθ(a) (r(a)− ⟨πθ, r⟩)

K∑
a′=1

πθ(a′) [Xy](a′)

−
K∑

a=1
[Xy](a) πθ(a)

K∑
a′=1

πθ(a′) r(a′)
(

[Xy](a′)−
K∑

a′′=1
πθ(a′′) [Xy]a′′

)∣∣∣∣∣ .
Denote

H(πθ) = diag(πθ)− πθ π⊤
θ ∈ RK×K .

We then have,

|y⊤Sy| = |(H(πθ) r)⊤(Xy ⊙Xy)− (H(πθ) r)⊤(Xy) (π⊤
θ Xy)−

(
π⊤

θ Xy
)

(H(πθ) Xy)⊤r|
(⊙ is the Hadamard (component-wise) product)

= |(H(πθ) r)⊤(Xy ⊙Xy)− 2 (H(πθ) r)⊤(Xy) (π⊤
θ Xy)|

≤ |(H(πθ) r)⊤(Xy ⊙Xy)|+ 2 |(H(πθ) r)⊤(Xy) (π⊤
θ Xy)| (Triangle Inequality)

≤ ∥H(πθ) r∥∞∥Xy ⊙Xy∥1 + 2 ∥H(πθ) r∥ ∥Xy∥ ∥πθ∥1∥Xy∥∞ (Hölder’s inequality)
≤ 3∥H(πθ) r∥ ∥Xy∥22 (∥ ∥∞ ≤ ∥∥, ∥Xy ⊙Xy∥1 = ∥Xy∥22, ∥πθ∥1 ≤ 1)
≤ 3 λmax[X⊤X] ∥H(πθ) r∥ ∥y∥22

= 3 λmax[X⊤X] ∥d⟨π̄z, r⟩
dz

∥ ∥y∥22

103

B.6 Experiments

(a) K = 3 (b) K = 6

Figure B.1: Softmax PG on exact linear bandits. The learning rate is set by Equation (4.5).
Each experiment is run on 50 randomly generated environments for 106 iterations. For each
environment, the features X and the reward vector r are randomly generated such that
Assumption 8 is satisfied, and the features satisfy Assumption 9 when (a) K = 3 and satisfy
Assumption 10 when (b) K = 6. Softmax PG converges to the optimal policy for different
feature dimensions d, confirming the results of Theorems 4 and 7.

104

	Declaration of Committee
	Abstract
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Related Works
	Limitations and Challenges

	Thesis Contributions

	Background and Preliminaries
	Fundamentals of Reinforcement Learning
	Policy Optimization
	Policy Parameterization
	Properties of the Objective Function
	Smoothness and Non-Concavity
	Łojasiewicz Conditions

	Softmax Policy Gradient
	Exact Setting
	Stochastic Setting

	Softmax Policy Gradient with Entropy Regularization
	Introduction
	Problem Formulation
	Exact Setting
	Stochastic Setting
	Experimental Evaluation

	Discussion

	Linear Softmax Policy Gradient
	Introduction
	Setting and Background
	The Limitations of Approximation Error in Characterizing Convergence
	Global Convergence is Achievable with Non-zero Approximation Error
	Global Convergence is Irrelevant to Non-zero Approximation Error

	Global Convergence For Linear Bandits In The Exact Setting
	Warm up: Global Convergence when K = 3
	Global Convergence for all K 3

	Global Convergence For Linear Bandits In The Stochastic Setting
	Decomposition of Stochastic Process
	Asymptotic Global Convergence
	Rates of Convergence Convergence

	Discussion

	Conclusion
	Bibliography
	Appendix Proofs of chapter:entropy
	Definitions
	Proofs of sec:pgentropy
	Proof of theorem:multistageabstract
	Lemmas for the Bandit Setting
	Lemmas for Tabular MDP Setting

	Proofs of sec:spgentropy
	Proof of Theorem 2

	Additional Lemmas
	Smoothness
	Stochastic Policy Gradients

	Appendix Proofs of chapter:linear
	Definitions
	Proofs of Section 4.3
	Proof of Proposition 3

	Proofs of Section 4.4
	Warm up: Global Convergence when K = 3
	Global Convergence for all K 3
	Additional Lemmas

	Proofs of Section 4.5
	Asymptotic Global Convergence
	Rate of Convergence
	Additional Lemmas

	Additional Lemmas
	Experiments

