# Model-Independent Online Learning for Influence Maximization

Sharan Vaswani<sup>1</sup>, Branislav Kveton<sup>2</sup>, Zheng Wen<sup>2</sup>, Mohammad Ghavamzadeh<sup>3</sup>, Laks Lakshmanan<sup>1</sup>, Mark Schmidt<sup>1</sup> <sup>1</sup> University of British Columbia <sup>2</sup> Adobe Research <sup>3</sup> Deepmind

**Underlying principle:** Influence propagates through 'word of mouth' in a social network

**Idea:** Give discounts to 'influential' users who will trigger off word-of-mouth epidemics

**Aim:** Find a subset of users ('seed set') who will influence maximum people to become aware of a product





**Key Property:** For common diffusion models, F(S) is submodular in S

Challenges to using IM in practice:

- Challenge 1: IM is not robust to the choice of the diffusion model [1] nor its model parameters [2].
- Challenge 2: Learning model parameters requires considerable data, often unavailable to a new marketer.

[1] Du, Nan, et al. "Influence function learning in information diffusion networks." ICML, 2014[2] Goyal, Amit, et al. "Learning influence probabilities in social networks." WSDM, 2010

### Model Independent Formulation

### Assumption 1: F(S) is monotonic in S.

**Key Idea:** Parametrize the problem in terms of pairwise reachability probabilities  $p_{u,v}^* = F(\{u\}, v) \leftarrow \Pr(u \text{ influences } v \text{ under a diffusion model})$ 

Surrogate Objective: Find  $\widetilde{S} \in \arg \max_{S \in C} \left[ \sum_{v \in V} \left( \max_{u \in S} p_{u,v}^* \right) \right]$ 



### Advantages:

- Common parametrization for all progressive models.
- Guaranteed approximation.
- Surrogate objective  $f(\mathcal{S}, p^*)$  is submodular irrespective of the diffusion model.

Challenges to using IM in practice:

- **Challenge 1:** IM is not robust to the choice of the diffusion model [1] nor to the model parameters [2].
- Challenge 2: Learning model parameters requires considerable data, often unavailable to a new marketer.

**Setting:** New marketer who has no past data to learn the reachability probabilities **Idea:** Perform IM while simultaneously learning  $p_{u,v}^*$  through trial and error across multiple

rounds.

**Basic Protocol:** 

for t = 1 to T do

submodular optimization subroutine

probability estimates

- Choose  $\mathcal{S}_t \leftarrow \mathsf{ORACLE}\left(\mathcal{G}, \mathcal{C}, \frac{\bullet}{p}\right)$
- Diffusion occurs according to an underlying diffusion model.
- Observe semi-bandit feedback. for  $u \in S_t$  do size n binary vector. each entry = 1 iff that node is influenced by the seed u Get pairwise influence feedback  $y_{u,t}^{\downarrow}$
- Update parameter estimates  $\overline{p}_{u,v}$

**Challenge 1:** Learn n<sup>2</sup> reachability probabilities

**Assumption 2.** For all  $u, v \in V$ ,  $p_{u,v}^*$  can be "well approximated" by the inner product of  $\theta_u^*$  and  $x_v$ , i.e.,

$$p_{u,v}^* \approx \langle \boldsymbol{\theta}_u^*, \boldsymbol{x}_v \rangle \stackrel{\Delta}{=} \boldsymbol{x}_v^\top \boldsymbol{\theta}_u^*$$

d dimensional feature describing a target node Vector to be learnt for every source node. (Eigenbasis features, node2vec [3])

#### Advantages:

- Reduces the number of parameters from  $O(n^2)$  to O(dn).
- In each round, mean estimates of  $\overline{p}_{u,v}$  can be updated by solving K regression problems.

[3] Grover, Aditya, et al. "node2vec: Scalable feature learning for networks." KDD, 2016.

**Challenge 2:** Trade off exploration and exploitation

### **Basic Idea:**

Use the Upper Confidence Bound algorithm i.e. use overestimate (mean + variance) of reachability probabilities as input to the oracle.

### **Computational Complexity:**

Per-round time:  $O(Knd^2) + O(Kn)$ 

### **Performance metric:**



### Experiments on Facebook dataset



## Conclusion

### **Contributions:**

- Developed a model-independent parametrization for IM and proposed a surrogate objective function.
- Proposed and analyzed a UCB based algorithm for model-independent online IM.

### **Future Work:**

- Extend the framework to different feedback models and bandit algorithms.
- Generalization across source nodes for better statistical efficiency.