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INnfluence Maximization

Underlying principle: Influence ,_

propagates through ‘word of mouth’ in a P N

social network

Idea: Give discounts to ‘influential’ users =
who will trigger off word-of-mouth
epidemics

Aim: Find a subset of users (‘seed set’) who will
influence maximum people to become aware of
a product
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INnfluence Maximization

Input. (g, C D)\I
/ \ Stochastic diffusion Model

Weighted Graph Set of feasible seed sets
Eg: CC {SCV:|[S £ K}
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Objective: Find S* € argmaxg.-c F(S) = D ,ev .?7(8, V)

Expected number of nodes influenced by S Pr (S influences target node v)

Key Property: For common diffusion models, I'(S) is submodular in S



INnfluence Maximization

Challenges to using IM in practice:

Challenge 1: IM is not robust to the choice of the diffusion model [1] nor
its model parameters [2].

Challenge 2: Learning model parameters requires considerable data, often
unavailable to a new marketer.

[1] Du, Nan, et al. "Influence function learning in information diffusion networks." ICML, 2014
[2] Goyal, Amit, et al. "Learning influence probabilities in social networks." WSDM, 2010



Model Independent Formulation

Assumption 1: F(S) is monotonic in S.

Key Idea: Parametrize the problem in terms of pairwise reachability
probabillities ]),: . F({ U} ) <— Pr(uinfluences v under a diffusion model)

Surrogate Objective: Find S € arg maxXgec [ZVGV (maXUES PZV)}

QO ?/ |
Advantages: @

« Common parametrization for all progressive models.
* Guaranteed approximation.

* Surrogate objective f(S, p*) is submodular irrespective of the
diffusion model.
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Online Influence Maximization

Setting: New marketer who has no past data to learn the reachability probabilities

Idea: Perform IM while simultaneously learning pz,vthrough trial and error across multiple
rounds.

Basic Protocol:
fort =1to 1l do

submodular optimization subroutine
l probability estimates

v
e Choose S; < ORACLE (G,C,D)

e Diffusion occurs according to an underlying diffusion model.

® QObserve semi-bandit feedback.
fOI’ = St do size n binary vector. each entry = 1 iff that node is influenced by the seed u

'

Get pairwise influence teedback y,; ;

e Update parameter estimates p,, .,



Online Influence Maximization

Challenge 1: Learn n® reachability probabilities

Assumption 2. For all u,v € V, p;, , can be “well ap-
proximated” by the inner product of 8, and x,,, i.e.,

X : JAY *
p'u._,v ™ <9u?m‘0> = &y, 911.
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d dimensional feature describing a target node Vector to be learnt for every source node.
(Eigenbasis features, node2vec [3])

Advantages:
- Reduces the number of parameters from O(n?) to O(dn).

- In each round, mean estimates of p,, , can be updated by solving K regression problems.

[3] Grover, Aditya, et al. "node2vec: Scalable feature learning for networks." KDD, 2016.



Online Influence Maximization

Challenge 2: Trade off exploration and exploitation

Basic Idea:
Use the Upper Confidence Bound algorithm i.e. use overestimate (mean + variance) of

reachability probabilities as input to the oracle.

Computational Complexity:

UCB computation oracle Iompu"atmn

Per-round time: O(Knl,d?) + O(Kn)



Online Influence Maximization

Performance metric:

RYT) =T F(§*) — “E[T, F(S,)

Regret after T rounds Optimal seed set in hindsight \ Selected seed set
To account for the approximation

in ORACLE
Regret Bound:

standard combinatorial
bandit dependence near optimal dependence

Rpa (T) fl dw?zpjjf Surrogate approximation factor

best dependence on network size ORACLE approximation factor

standard linear bandit dependence
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Cumulative Regret

Experiments on Facebook dataset
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Conclusion

Contributions:

e Developed a model-independent parametrization for IM and proposed a
surrogate objective function.

» Proposed and analyzed a UCB based algorithm for model-independent
online IM.

Future Work:

* Extend the framework to different feedback models and bandit algorithms.

* (Generalization across source nodes for better statistical efficiency.
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