

Model-Independent Online Learning for Influence Maximization

Sharan Vaswani ¹ Branislav Kveton ² Zheng Wen ² Mohammad Ghavamzadeh ³ Laks.V.S.Lakshmanan ¹ Mark Schmidt ¹

¹ University of British Columbia ²Adobe Research ³Deepmind

Influence Maximization

- ▶ Underlying principle: Influence propagates through word of mouth in a social network.
- ▶ Idea: Give discounts to influential users who will trigger off word-of-mouth epidemics.
- ▶ Aim: Find a subset of users ('seed set') who will influence maximum people to become aware of a product:
- ▶ Challenge 1: IM is not robust to the choice of the diffusion model (Du, 2014) nor its model parameters (Goyal, 2010).
- ▶ Challenge 2: It is difficult for a new marketer to have data to learn the large number of model parameters.
- Summary of paper:
- ▶ Develop a model-independent parametrization for IM and a corresponding surrogate objective function.
- ▶ Propose and analyze a UCB based algorithm for model-independent online IM.
- ▶ Propose a scalable linear parametrization and empirically verify its effectiveness.

(a) Information diffusion in a social network

(b) Input for an IM problem

- ▶ Input: Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$; Set of feasible seed sets $\mathcal{C} \subseteq \{\mathcal{S} \subseteq \mathcal{V} : |\mathcal{S}| \leq K\}$; Stochastic diffusion model \mathcal{D} .
- ▶ Formal objective: Find $S^* \in \arg\max_{S \in C} F(S)$ where $F(S) = \sum_{v \in V} F(S, v)$.

Model-Independent Formulation

- **Assumption 1:** The diffusion model is progressive i.e. F(S) is monotonic in S.
- **Key idea:** Parametrize the problem in terms of pairwise reachability probabilities $p_{u,v}^* = F(\{u\}, v)$.
- ▶ Surrogate objective: Find \widetilde{S} s.t. $\widetilde{S} \in \arg\max_{S \in \mathcal{C}} \left[\sum_{v \in \mathcal{V}} \left(\max_{u \in S} p_{u,v}^* \right) \right]$.
- ► Advantage: Surrogate objective is submodular irrespective of the diffusion model.

Theorem

For any graph G, seed set $S \in C$, and diffusion model D satisfying Assumption 1,

- 1 $f(S, p^*) \leq F(S)$,
- 2 If F(S) is submodular in S and $\rho = f(\widetilde{S}, p^*)/F(S^*)$, then $1/K \le \rho \le 1$.

Online Influence Maximization

- ▶ **Setting:** New marketer who has no past data to learn the reachability probabilities.
- ▶ Idea: Perform IM while simultaneously learning parameters through trial and error across multiple rounds.
- ▶ **Protocol:** For t = 1 to T:
- 1 Select seed set: $S_t \leftarrow \text{DRACLE}(\mathcal{G}, \mathcal{C}, \overline{p})$.
- 2 Diffusion occurs according to an underlying diffusion model.
- 3 Observe semi-bandit feedback: $\forall u \in \mathcal{S}_t$, get pairwise influence feedback $y_{u,t}$.
- 4 Update parameter estimates $\overline{p}_{\mu\nu}$.
- Challenges:
- 1 Learn n^2 reachability probabilities.
- 2 Choose S_t to trade off exploration and exploitation.
- ▶ Linear parametrization: For all $u, v \in \mathcal{V}$, $p_{u,v}^* \approx \langle \theta_u^*, \mathbf{x}_v \rangle$.
- 1 Reduces the number of parameters to O(dn).
- 2 In each round, mean estimates of $\overline{p}_{u,v}$ can be updated efficiently by solving K regression problems.

DILinUCB Algorithm

- ▶ Upper confidence bound (UCB) based algorithm: If $\widehat{\theta}_{u,t}$ and $\Sigma_{u,t}$ is the mean estimate and covariance matrix for the regression problem for node u at round t, then $\overline{p}_{u,v} = \text{Proj}_{[0,1]} \left[\langle \widehat{\theta}_{u,t} x_v \rangle + c \| x_v \|_{\Sigma_{u,t}^{-1}} \right]$.
- **Computational Complexity:** $O(Knd^2)$ for updating UCBs and O(Kn) for oracle computation.

Regret Bound

- ▶ Performance Metric: Scaled regret: $R^{\kappa}(T) = T \cdot F(S^*) \frac{1}{\kappa} \mathbb{E}\left[\sum_{t=1}^{T} F(S_t)\right]$.
- With linear generalization: $R^{\rho\alpha}(T) = \widetilde{O}(n^2 d\sqrt{KT}/(\alpha\rho))$.
- ▶ Without linear generalization: $R^{\rho\alpha}(T) = \widetilde{O}(n^{2.5}\sqrt{KT}/(\alpha\rho))$.
- \blacktriangleright Model-independent regret bound with near optimal dependence on T, d and K.

Experiments

Figure: Experimental verification of surrogate objective.

Algorithms compared: (1) CUCB (Chen, 2016) [CUCB(K)] (2) DILinUCB without linear generalization [TAB(K)] (3) DILinUCB with linear generalization [I(K, d)] (4) DILinUCB with linear generalization + Laplacian regularization [L(K, d)].

Figure: Comparing DILinUCB and CUCB on the Facebook subgraph with K=10.

Future Work

- Extend the framework to different feedback models and bandit algorithms.
- ▶ Generalization across source nodes for better statistical efficiency and improved regret bounds.