

Overview

- ► We study the online influence maximization (OIM) problem in social networks under the independent cascade model with edge-level semi-bandit feedback
- ► We propose a LinUCB-based algorithm, referred to as IMLinUCB
- IMLinUCB permits linear generalization, and is both statistically and computationally efficient for large-scale problems
- ► We also propose an approach to construct features based on node2vec
- ► We have derived regret bounds for IMLinUCB when linear generalization is perfect
- Our bounds reflect the topology of the network and the activation probabilities of its edges Experiments show that in several representative graph topologies, the regret of IMLinUCB scales
- as suggested by our upper bounds
- Demonstrate experiment results in a subgraph of Facebook network

Influence Maximization under Independent Cascade (IC) Model

- This problem is characterized by $(\mathcal{G}, K, \bar{w})$
- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a directed graph with $L = |\mathcal{V}|$ nodes and $|\mathcal{E}|$ edges
- $K \leq L$ is the cardinality of source nodes
- $\bar{w}: \mathcal{E} \to [0, 1]$ encodes the activation probabilities of edges
- The influence diffuses according to the IC model
- Initialization: source nodes are influenced
- Each influenced node has a single chance to activate its currently uninfluenced neighbors
- \blacktriangleright The successes of these activations are independent Bernoulli r.v. with mean specified by \overline{w}

(a) Information diffusion in a social network

(b) Input for an IM problem

Influence maximization:

$\max_{\mathcal{S}: |\mathcal{S}|=K} f(\mathcal{S}, \bar{w})$

- $f(S, \bar{w})$ is the expected number of influenced nodes when the source node set is S and the edge activation probabilities are \bar{w}
- ► NP-hard, but efficient approximation algorithms (referred to as oracles) exist
- For any $\alpha, \gamma \in [0, 1]$, we say that ORACLE is an (α, γ) -approximation oracle if for any \overline{w} ,

$$f(\mathcal{S}^*, ar{w}) \geq \gamma f(\mathcal{S}^{ ext{opt}}, ar{w})$$

with probability at least lpha, where ${\cal S}^{
m opt}$ is the optimal solution and ${\cal S}^*={
m ORACLE}({\cal G},{\sf K},ar w)$

Influence Maximization Semi-Bandit

- ▶ Also characterized by $(\mathcal{G}, K, \overline{w})$, but \overline{w} is unknown to the agent
- ► **Goal:** maximize the expected cumulative reward in *n* rounds
- Protocol at each time t:
 - Agent adaptively chooses a source node set S_t , based on its prior information and past observations
- Influence diffuses from S_t according to the IC model
- ► Agent receives a reward = (the number of influenced nodes)
- Agent observes the success/failure of each activation attempt from all influenced nodes (edge-level semi-bandit feedback)

Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback

¹ Adobe Research ²SequeL team, INRIA Lille - Nord Europe ³University of British Columbia Linear Generalization # of edges in real-world social networks tends to be in millions or even billions Efficient learning in such cases requires exploiting generalization models • This paper: we assume a linear generalization model for \overline{w} $\blacktriangleright \ \bar{w}(e) \approx x_e^T \theta^*$ for all $e \in \mathcal{E}$ ▶ $x_e \in \Re^d$ is a known feature vector for edge e, and $\theta^* \in \Re^d$ is an unknown coefficient vector • "Linear generalization is perfect" iff $\bar{w}(e) = x_e^T \theta^* \ \forall e \in \mathcal{E}$

- Standard assumption in linear bandit literature
- Use $X \in \Re^{|\mathcal{E}| \times d}$ to denote the feature matrix
- ► Tabular case: $X = I \in \Re^{|\mathcal{E}| \times |\mathcal{E}|}$

IMLinUCB Algorithm

- ▶ Input: \mathcal{G} , K, ORACLE, feature vector x_e 's, and algorithm parameters σ , c > 0
- ▶ Initialization: $B_0 \leftarrow 0 \in \Re^d$, $M_0 \leftarrow I \in \Re^{d \times d}$
- For t = 1, 2, ..., n: ▶ Set $\bar{\theta}_{t-1} \leftarrow \sigma^{-2} M_{t-1}^{-1} B_{t-1}$ and the UCBs as

$$U_t(e) \leftarrow \operatorname{Proj}_{[0,1]}\left(x_e^T \overline{\theta}_{t-1} + e^{-t}\right)$$

- for all $e \in \mathcal{E}$
- ▶ Choose $S_t \in \text{ORACLE}(G, K, U_t)$, and observe the edge-level semi-bandit feedback
- ▶ Update statistics: (a) Initialize $M_t \leftarrow M_{t-1}$ and $B_t \leftarrow B_{t-1}$ (b) For all observed edges $e \in \mathcal{E}$,
- update $M_t \leftarrow M_t + \sigma^{-2} x_e x_e^T$ and $B_t \leftarrow B_t + x_e \mathbf{w}_t(e)$

Maximum Observed Relevance C_*

- ► A novel complexity metric reflecting both (1) the topology of the network and (2) the activation probabilities of its edges
- **Edge-node relevance:** under given source node set $S \subseteq V$, an edge $e \in \mathcal{E}$ is relevant to a node $v \in \mathcal{V} \setminus S$ if \exists a path p from a source node $s \in S$ to v s.t. (1) $e \in p$ and (2) p does not contain another source node.
- ▶ Define $N_{\mathcal{S},e}$ as the number of nodes edge *e* is relevant to under source node set \mathcal{S} , and $P_{\mathcal{S}.e} \stackrel{\Delta}{=} \mathbb{P}(e \text{ is observed } | \mathcal{S})$
- Maximum observed relevance C_* is defined as the maximum (over S) 2-norm of $N_{\mathcal{S},e}$'s weighted by $P_{\mathcal{S},e}$'s,

$$C_* \stackrel{\Delta}{=} \max_{\mathcal{S}: |\mathcal{S}| = \mathcal{K}} \sqrt{\sum_{e \in \mathcal{E}} N_{\mathcal{S},e}^2 P_{\mathcal{S},e}} \stackrel{(a)}{\leq} \max_{\mathcal{S}: |\mathcal{S}| = \mathcal{K}} \sqrt{\sum_{e \in \mathcal{E}} N_{\mathcal{S},e}^2} \stackrel{(b)}{\leq} (L - \mathcal{K}) \sqrt{|\mathcal{E}|},$$

where (a) is a topology-based upper bound (see the table below), and (b) is a size-based upper bound. Both bounds are far from tight if $\overline{w}(e)$'s are small.

Figure: **a**. Bar graph. **b**. Star graph. **c**. Ray graph. **d**. Grid graph.

;							
	topology	bar graph	star graph	ray graph	tree graph	grid graph	complete graph
	<i>C</i> _*	$\mathcal{O}(\sqrt{K})$	$\mathcal{O}(L\sqrt{K})$	$\mathcal{O}(L^{\frac{5}{4}}\sqrt{K})$	$\mathcal{O}(L^{\frac{3}{2}})$	$\mathcal{O}(L^{\frac{3}{2}})$	$\mathcal{O}(L^2)$
	regret bound	$ ilde{\mathcal{O}}(d\sqrt{Kn})$	$\tilde{\mathcal{O}}(Ld\sqrt{Kn})$	$\tilde{\mathcal{O}}(dL^{\frac{5}{4}}\sqrt{Kn})$	$\tilde{\mathcal{O}}(dL^{\frac{3}{2}}\sqrt{n})$	$\tilde{\mathcal{O}}(dL^{\frac{3}{2}}\sqrt{n})$	$ ilde{\mathcal{O}}(dL^2\sqrt{n})$
:							

Table: C_* and regret bounds for different topologies.

Zheng Wen¹ Branislav Kveton¹ Michal Valko² Sharan Vaswani³

$$\left(\sqrt{x_e^T M_{t-1}^{-1} x_e}\right)$$

Regret Bounds

defined as

 σ and c, we have

Experiment 2: Subgraph of Facebook Network

Consider a subgraph of Facebook network from Snap datasets [Leskovec and Krevl 2014] First use node2vec algorithm to generate a node feature in \Re^d for each node $v \in \mathcal{V}$ \blacktriangleright Then for each edge e, we generate x_e as the element-wise product of node features of the two

Experiment result: dramatic regret reduction of IMLinUCB by exploiting even