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Overview

» We study the online influence maximization (OIM) problem in social networks

under the independent cascade model with edge-level semi-bandit feedback
» We propose a LinUCB-based algorithm, referred to as IMLinUCB
» IMLinUCB permits linear generalization, and is both statistically and computationally efficient for
large-scale problems
» We also propose an approach to construct features based on node2vec
» We have derived regret bounds for IMLinUCB when linear generalization is perfect

» Our bounds reflect the topology of the network and the activation probabilities of its edges
» Experiments show that in several representative graph topologies, the regret of IMLinUCB scales
as suggested by our upper bounds

» Demonstrate experiment results in a subgraph of Facebook network

Influence Maximization under Independent Cascade (IC) Model

» This problem is characterized by (G, K, w)
» G =(V,&) is a directed graph with L = |V| nodes and |£| edges
» K < L is the cardinality of source nodes
w : & — [0, 1] encodes the activation probabilities of edges
» The influence diffuses according to the IC model
» [nitialization: source nodes are influenced
» Each influenced node has a single chance to activate its currently uninfluenced neighbors
» The successes of these activations are independent Bernoulli r.v. with mean specified by w

(a) Information diffusion in a social network (b) Input for an IM problem

» Influence maximization:

max (S, w)
S:|S|=K

» (S, w) is the expected number of influenced nodes when the source node set is S and the edge
activation probabilities are w

» NP-hard, but efficient approximation algorithms (referred to as oracles) exist

» For any a,y € [0, 1], we say that ORACLE is an («, 7y)-approximation oracle if for any w,

(", W) > 7F(S™, W)
with probability at least o, where S is the optimal solution and S* = ORACLE(G, K, w)

Influence Maximization Semi-Bandit

» Also characterized by (G, K, w), but w is unknown to the agent
» Goal: maximize the expected cumulative reward in n rounds

» Protocol at each time t:

» Agent adaptively chooses a source node set S;, based on its prior information
and past observations

» Influence diffuses from &; according to the IC model
» Agent receives a reward = (the number of influenced nodes)

» Agent observes the success/failure of each activation attempt from all influenced
nodes (edge-level semi-bandit feedback)

Linear Generalization

# of edges in real-world social networks tends to be in millions or even billions

Efficient learning in such cases requires exploiting generalization models
This paper: we assume a linear generalization model for w
w(e) ~ x0* forall e € £
xe € N7 is a known feature vector for edge e, and 0* € R? is an unknown coefficient vector
“Linear generalization is perfect” iff w(e) = x/0* Ve € £
Standard assumption in linear bandit literature
Use X € RI€1*9 to denote the feature matrix
» Tabular case: X =/ € RIEIxIE

IMLinUCB Algorithm

» Input: G, K, ORACLE, feature vector x.'s, and algorithm parameters o, c > 0
» Initialization: By < 0 € R, My < | € R

» Fort=1,2,..., n:
» Set 0, ; 0_2Mt__118t_1 and the UCBs as

Us(e) < ij[o,l] (XeTétl + C\/ TM 1Xe)

forall e € £

» Choose S; € ORACLE(G, K, U;), and observe the edge-level semi-bandit feedback

» Update statistics: (a) Initialize M; <~ M;_1 and B; <— B;_1 (b) For all observed edges e € &,
update M, < M, + 0 °x.x] and B; + B; + x.w;(e)

Maximum Observed Relevance C,

» A novel complexity metric reflecting both (1) the topology of the network and (2)
the activation probabilities of its edges

» Edge-node relevance: under given source node set S C V), an edge e € £ is
relevant to a node v € V' \ § if 3 a path p from a source node s € S to v s.t. (1)
e € p and (2) p does not contain another source node.

Define Ns . as the number of nodes edge e is relevant to under source node set S,
and Ps = P (e is observed | S)

Maximum observed relevance C, is defined as the maximum (over &) 2-norm
of Ns.'s weighted by Ps.'s,

> N2, Ps.e < max
S:|S|=K
ecf

ZNée_ - K)VIE],

ec&

A
C, = max
S:|S|=K

where (a) is a topology-based upper bound (see the table below) and (b) is a
size-based upper bound. Both bounds are far from tight if w(e)'s are small.
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Figure: @. Bar graph. b. Star graph. €. Ray graph. d. Grid graph.

(a)

topology | bar graph | star graph | ray graph | tree graph | grid graph complete graph
C, OWK)  OVK)  O(iVK) | O(z) | O(L) O(L?)
regret bound | O(dvKn) O(LdvKn) O(dLiv/Kn) O(dLz\/n) O(dL2y/n)  O(dL2\/n)

Table: C, and regret bounds for different topologies.

Regret Bounds

» Scaled cumulative regret: for any 17 > 0, the scaled cumulative regret is
defined as .
Ri(n) = > Enf (ST, w) — £(Se, w)]

» When nn =1, R"(n) reduces to the standard cumulative regret R(n)

Theorem 1: Assume that (1) w(e) = x/6* for all e € £ and (2) ORACLE is an
(cv, v)-approximation algorithm, then if we apply IMLinUCB with properly chosen
o and ¢, we have

R*(n) < O (dC,v/n) < O (d(L - K)\/\S\n)
See the left table for topology-dependent regret bounds
Tabular case: X =/ and hence d = |£]

For bar graph with K =1, R(n) = O(d+/n)
» Matches the known regret bound of LinUCB

Experiment 1: Stars and Rays

» We validate that when applying IMLinUCB to stars and rays, the regret's
dependence on L is as predicted by Theorem 1

» Setting: tabular case, K = 1, n = 10* and w(e) = w Ve
» The IM problem can be solved exactly
» The exponent of L is estimated by linear regression in the log-log space of L and regret

topology | Theorem 1's prediction | estimation (w = 0.8) |estimation (w = 0.7)
star R(n) = @(LQ) R(n) _ O(L2'040) R(n) _ O(L2'056)
ray R(n) = O(L3) R(n) = O(L2*8) | R(n) = O(L2%")

Table: Validation of regret’'s dependence on L in stars and rays.
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(a) Stars and Rays (b) Subgraph of Facebook network

Experiment 2: Subgraph of Facebook Network

» Consider a subgraph of Facebook network from Snap datasets [Leskovec and Krevl 2014]
» Setting: L =327, |€| =5038, n =5000, K =10, and d = 10
» w(e)'s are independently sampled from U(0,0.1)
» Choose ORACLE as the IM algorithm proposed in [Tang et al. 2014]
» Regret is measured against S* = ORACLE(G, K, w)
» Feature construction approach:

» First use node2vec algorithm to generate a node feature in 3¢ for each node v € V

» Then for each edge e, we generate x, as the element-wise product of node features of the two
nodes connected to e

» Linear generalization is imperfect in this case

» Baseline: CUCB [Chen et al. 2013]
» Another UCB-like algorithm that does not exploit generalization models

» Experiment result: dramatic regret reduction of IMLinUCB by exploiting even
imperfect linear generalization




