
Online Influence Maximization under Independent Cascade Model with
Semi-Bandit Feedback

Zheng Wen 1 Branislav Kveton 1 Michal Valko 2 Sharan Vaswani 3

1 Adobe Research 2SequeL team, INRIA Lille - Nord Europe 3University of British Columbia

Overview

I We study the online influence maximization (OIM) problem in social networks
under the independent cascade model with edge-level semi-bandit feedback

I We propose a LinUCB-based algorithm, referred to as IMLinUCB
I IMLinUCB permits linear generalization, and is both statistically and computationally efficient for

large-scale problems
I We also propose an approach to construct features based on node2vec

I We have derived regret bounds for IMLinUCB when linear generalization is perfect
I Our bounds reflect the topology of the network and the activation probabilities of its edges
I Experiments show that in several representative graph topologies, the regret of IMLinUCB scales

as suggested by our upper bounds

I Demonstrate experiment results in a subgraph of Facebook network

Influence Maximization under Independent Cascade (IC) Model

I This problem is characterized by (G,K , w̄)
I G = (V , E) is a directed graph with L = |V| nodes and |E| edges
I K ≤ L is the cardinality of source nodes
I w̄ : E → [0, 1] encodes the activation probabilities of edges

I The influence diffuses according to the IC model
I Initialization: source nodes are influenced
I Each influenced node has a single chance to activate its currently uninfluenced neighbors
I The successes of these activations are independent Bernoulli r.v. with mean specified by w̄

(a) Information diffusion in a social network (b) Input for an IM problem

I Influence maximization:
max
S: |S|=K

f (S, w̄)

I f (S, w̄) is the expected number of influenced nodes when the source node set is S and the edge
activation probabilities are w̄

I NP-hard, but efficient approximation algorithms (referred to as oracles) exist
I For any α, γ ∈ [0, 1], we say that ORACLE is an (α, γ)-approximation oracle if for any w̄ ,

f (S∗, w̄) ≥ γf (Sopt, w̄)

with probability at least α, where Sopt is the optimal solution and S∗ = ORACLE(G,K , w̄)

Influence Maximization Semi-Bandit

I Also characterized by (G,K , w̄), but w̄ is unknown to the agent

I Goal: maximize the expected cumulative reward in n rounds

I Protocol at each time t:
I Agent adaptively chooses a source node set St, based on its prior information

and past observations
I Influence diffuses from St according to the IC model
I Agent receives a reward = (the number of influenced nodes)
I Agent observes the success/failure of each activation attempt from all influenced

nodes (edge-level semi-bandit feedback)

Linear Generalization

I # of edges in real-world social networks tends to be in millions or even billions

I Efficient learning in such cases requires exploiting generalization models
I This paper: we assume a linear generalization model for w̄

I w̄(e) ≈ xTe θ
∗ for all e ∈ E

I xe ∈ <d is a known feature vector for edge e, and θ∗ ∈ <d is an unknown coefficient vector
I “Linear generalization is perfect” iff w̄(e) = xTe θ

∗ ∀e ∈ E
I Standard assumption in linear bandit literature

I Use X ∈ <|E|×d to denote the feature matrix
I Tabular case: X = I ∈ <|E|×|E|

IMLinUCB Algorithm

I Input: G, K , ORACLE, feature vector xe’s, and algorithm parameters σ, c > 0

I Initialization: B0 ← 0 ∈ <d , M0 ← I ∈ <d×d

I For t = 1, 2, . . . , n:
I Set θ̄t−1 ← σ−2M−1

t−1Bt−1 and the UCBs as

Ut(e)← Proj[0,1]

(
xTe θ̄t−1 + c

√
xTe M

−1
t−1xe

)
for all e ∈ E

I Choose St ∈ ORACLE(G,K ,Ut), and observe the edge-level semi-bandit feedback
I Update statistics: (a) Initialize Mt ← Mt−1 and Bt ← Bt−1 (b) For all observed edges e ∈ E ,

update Mt ← Mt + σ−2xex
T
e and Bt ← Bt + xewt(e)

Maximum Observed Relevance C∗

I A novel complexity metric reflecting both (1) the topology of the network and (2)
the activation probabilities of its edges

I Edge-node relevance: under given source node set S ⊆ V , an edge e ∈ E is
relevant to a node v ∈ V \ S if ∃ a path p from a source node s ∈ S to v s.t. (1)
e ∈ p and (2) p does not contain another source node.

I Define NS,e as the number of nodes edge e is relevant to under source node set S,

and PS,e
∆
= P (e is observed | S)

I Maximum observed relevance C∗ is defined as the maximum (over S) 2-norm
of NS,e’s weighted by PS,e’s,

C∗
∆
= max
S: |S|=K

√∑
e∈E

N2
S,ePS,e

(a)

≤ max
S: |S|=K

√∑
e∈E

N2
S,e

(b)

≤ (L− K)
√
|E|,

where (a) is a topology-based upper bound (see the table below), and (b) is a
size-based upper bound. Both bounds are far from tight if w̄(e)’s are small.

(a) (b) (c) (d)

Figure: a. Bar graph. b. Star graph. c. Ray graph. d. Grid graph.

topology bar graph star graph ray graph tree graph grid graph complete graph

C∗ O(
√
K) O(L

√
K) O(L

5
4

√
K) O(L

3
2) O(L

3
2) O(L2)

regret bound Õ(d
√
Kn) Õ(Ld

√
Kn) Õ(dL

5
4

√
Kn) Õ(dL

3
2
√
n) Õ(dL

3
2
√
n) Õ(dL2

√
n)

Table: C∗ and regret bounds for different topologies.

Regret Bounds

I Scaled cumulative regret: for any η > 0, the scaled cumulative regret is
defined as

Rη(n)
∆
=
∑n

t=1 E [ηf (Sopt, w̄)− f (St, w̄)]

I When η = 1, Rη(n) reduces to the standard cumulative regret R(n)

I Theorem 1: Assume that (1) w̄(e) = xTe θ
∗ for all e ∈ E and (2) ORACLE is an

(α, γ)-approximation algorithm, then if we apply IMLinUCB with properly chosen
σ and c , we have

Rαγ(n) ≤ Õ
(
dC∗
√
n
)
≤ Õ

(
d(L− K)

√
|E|n

)
I See the left table for topology-dependent regret bounds

I Tabular case: X = I and hence d = |E|
I For bar graph with K = 1, R(n) = Õ(d

√
n)

I Matches the known regret bound of LinUCB

Experiment 1: Stars and Rays

I We validate that when applying IMLinUCB to stars and rays, the regret’s
dependence on L is as predicted by Theorem 1

I Setting: tabular case, K = 1, n = 104, and w̄(e) = w ∀e
I The IM problem can be solved exactly
I The exponent of L is estimated by linear regression in the log-log space of L and regret

topology Theorem 1’s prediction estimation (w = 0.8) estimation (w = 0.7)

star R(n) = Õ(L2) R(n) = O(L2.040) R(n) = O(L2.056)

ray R(n) = Õ(L
9
4) R(n) = O(L2.488) R(n) = O(L2.467)

Table: Validation of regret’s dependence on L in stars and rays.

(a) Stars and Rays

0 1000 2000 3000 4000 5000

Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook network

Experiment 2: Subgraph of Facebook Network

I Consider a subgraph of Facebook network from Snap datasets [Leskovec and Krevl 2014]

I Setting: L = 327, |E| = 5038, n = 5000, K = 10, and d = 10
I w̄(e)’s are independently sampled from U(0, 0.1)
I Choose ORACLE as the IM algorithm proposed in [Tang et al. 2014]

I Regret is measured against S∗ = ORACLE(G,K , w̄)

I Feature construction approach:
I First use node2vec algorithm to generate a node feature in <d for each node v ∈ V
I Then for each edge e, we generate xe as the element-wise product of node features of the two

nodes connected to e
I Linear generalization is imperfect in this case

I Baseline: CUCB [Chen et al. 2013]

I Another UCB-like algorithm that does not exploit generalization models

I Experiment result: dramatic regret reduction of IMLinUCB by exploiting even
imperfect linear generalization

