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Introduction -

Protocol:
Fort=1to T

e Recommend an item j to target user

e Observe rating 7i,;

e Obtain new estimate for preferences of user i




Introduction

e New marketer without any user meta-data or available rating information.
e Each item j can be described by its content X;

e The generative model for ratings is linear, i.e.
X

ri; = (W% + 1,5,
_ \ .

Rating by userionitem| “Trye” user preference  Zero mean sub-gaussian noise

Framework: Contextual Bandits' - Sequential framework to trade-off exploration
(learning about user preferences) and exploitation (making good
recommendations).

Li, Lihong, et al. "A contextual-bandit approach to personalized news article recommendation", 2010.



Introduction

Aim: Minimize regret across a time horizon T.

&
R(T) =) | max(w; x;) — wix;,

=1 LieC \
[ Context vector for item |

Set of context vectors ltem chosen by the

“True” preference for the algorithm
target user



Gang of Bandits (GOB)"

Motivation: Users interact with each other. Especially true for RS associated

with social networks. Eg: u@@

Basic Idea:
e Extend the contextual bandits to use the social network to make better
recommendations by sharing feedback between users.
e Assume homophily?: Users connected in the network have similar preferences

1.Cesa-Bianchi et al. "A gang of bandits", 2013..

2. McPherson, et al. "Birds of a feather: Homophily in social networks", 2001



Estimating user preferences in GOB

W; = argmin S: S: (W] xp — T@',k)Q —|—)\WT(L ® ]d)W
W i=1 keM; ¢ \ \ 3

Observed rating
dn-dimensional mean

estimate of concatenated Set of items rated by user i until round t
preferences

Laplacian of the social network

Limitations of previous work:
e Algorithm in [1] has O(n?d?) space and time complexity. Not scalable
e Clustering based approaches?® lose personalization.

1.Cesa-Bianchi et al. "A gang of bandits", 2013..
2. Gentile et al. "Online clustering of bandits", 2014



Contributions

e Propose a scalable solution for estimating the mean by making a connection to
Gaussian Markov Random Fields.

e Analyze the computational complexity and prove regret bounds for
Epoch-Greedy and Thompson sampling.

e Propose a heuristic to learn the graph on the fly.



Scaling up GOB

Basic Idea: Mean estimation in GOB is equivalent to MAP estimation in a GMRF
Likelihood: i, ~ N (W; xj,0°)  Prior: w ~ N (0, (AL ® I,)"")

Posterior: A/ (W, ¥ 1) Wt — %Zt_lbt

o= X Xt ML L) b= X,

Covariance matrix 4, y 4n dimensional block diagonal matrix

Number of CG iterations

e Solve by conjugate gradient in time O(k(nd*+d-nnz(L)))
e Space: O(nd*+nnz(L))



Contributions

e Make a connection to Gaussian Markov Random Fields and propose a scalable
solution for estimating the mean

e Analyze the computational complexity and prove regret bounds for
Epoch-Greedy and Thompson sampling.

e Propose a heuristic to learn the graph on the fly.



Algorithms - Upper Confidence Bound
UCB rule:
jt — argmaxject (<Wt7 x"t,j> + 03 It,_jz x’ta_l)

\ J \ j

Requires O(d) time Requires O(k(nd?+d-nnz(L))) time

e Not scalable if the number of context vectors is large
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Algorithms - Epoch-Greedy

e Algorithm: Divide T into Q epochs. In each epoch,
o Do 1 round of random exploration (Pick an available item at
random)

Do “some” steps of exploitation i.e. ), .
o ps of exp Jt = argmaxject<wt,x,w>

e Regret Bound:
i Te(L71)\ 3
R(T) — 0 <n1/3 I’( )) T

wiro

AN

Sub-optimal depend T
Connectivity of the graph ub-optimal dependence on
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Algorithms - Thompson Sampling
e Algorithm:
e Obtain a sample from the posterior, i.e. Wy ~ N(Wt, Zt_l)

e Pick greedily using this sample i.e. j, = argmax. ieC, <Wt, X,tjj>

e Naive Sampling:
o Compute sparse Cholesky factor from prior covariance = L @ I4
o Make rank-1 updates to it to obtain Cholesky factor for
covariance at round t

Problem: Cholesky factor gets dense, leading to O(d?n?) cost for sampling
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Algorithms - Thompson Sampling

e Proposed Sampling®:

MAP estimation ! Sample from prior covariance

e Regret Bound:

Perturbed (with standard normal
noise) ratings

d | STI(L_l) ; Tr(L-1)T
og n Adn?o?

Near-optimal dependence onT

1. Papandreou et al. "Gaussian sampling by local perturbations
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Experiments - Scalability

Graph Based: G-EG, GOBLIN (Cesa-Bianchi'13), GOBLIN++ (scalable GOBLIN), G-TS
Baselines: No sharing: EG-IND, LINUCB-IND, TS-IND; Clustering: CLUB

Runtime (in s/iter)
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Experiments - Regret

Cum.Regret(algo)/Cum.Regret(random)
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Contributions

e Make a connection to Gaussian Markov Random Fields and propose a scalable
solution for estimating the mean

e Analyze the computational complexity and prove regret bounds for
Epoch-Greedy and Thompson sampling.

e Propose a heuristic to learn the graph on the fly.
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Learning the Graph

Cum.Regret(algo)/Cum.Regret(random)

L-EG: Learning starting from empty graph; U-EG: Updating starting from given graph

Cum.Regret(algo)/Cum.Regret(random) vs Reun
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Future Work

e Tighten the regret bound for Thompson Sampling
e Prove regret bounds for “Learning the graph” variant
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Contributions

e Make a connection to Gaussian Markov Random Fields and propose a scalable
solution for estimating the mean

e Analyze the computational complexity and prove regret bounds for
Epoch-Greedy and Thompson sampling.

® Propose a heuristic to learn the graph on the fly.
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Backup slides



Learning the Graph
wy, Vi] = a%u‘l/m ey — ®ewl|5 + Tr (VAW W + V,21)) + X[V — (dn + 1) In |V]

e -

f
\ Smooth change \
Estimate of the " Smoothness of  in graph structure Penalize
inverse covariance Data fitting term preferences Encourage a complexity
matrix wrt to learnt graph sparse graph of graph

e Solve by alternating minimization:
o w-subproblem: Same as MAP estimation
o V-subproblem: Same as Graphical Lasso

V; = argmin Tr ((V[AW?Wt + VD) + XV = (dn+ 1) In|V]|
v \ )
f

Empirical Covariance
21



