
Horde of Bandits using Gaussian Markov Random Fields
Sharan Vaswani, Mark Schmidt, Laks.V.S.Lakshmanan

Department of Computer Science, University of British Columbia

Summary

I We address a recommender system setting without prior rating data and constantly-changing items (E.g. news articles)

I Previous work (Cesa-Bianchi’13) show that, in addition to features, sharing information across users improves performance.
But previous algorithms are not scalable. Other previous approaches cluster nodes (Gentile’14), but lose personalization.

I We show how to scale to large graphs by making a connection to Gaussian Markov Random Fields (GMRFs).

I We also prove regret bounds and give a heuristic to learn the graph on the fly.

Gang of Bandits model (Cesa-Bianchi’13)

I Input:
I Recommender system (RS) with no past rating data or user meta-data.
I Each item j can be described by a set of features xj .
I RS has an associated network (with Laplacian L).

I Aim: Use contextual bandits to trade-off exploration (learn users’ preferences) and exploitation (recommend items which
the user likes) and the associated network to share information between users and improve recommendations.

I Assumptions:
I Linear generative model: ri ,j = 〈w∗i , xj〉 + ηi ,j ,t.
I Homophily: Users connected in the network have similar preferences.

I Objective: Minimize regret R(T) =
∑T

t=1

[
maxj∈Ct

(
〈w∗it, xj〉

)
− 〈w∗it, xjt〉

]
I Mean estimation: wt = argminw

[∑n
i=1

∑
k∈Mi ,t

(wT
i xk − ri ,k)2 + λwT (L⊗ Id)w

]

Scaling up Gang of Bandits

I Basic Idea: Mean estimation is equivalent to MAP estimation in a GMRF.

I Likelihood: ri ,j ∼ N (〈wi , xj〉, σ2), Prior: w ∼ N (0, (λL⊗ Id)−1)

I Posterior: N (ŵt,Σ−1
t) such that Σt = 1

σ2X
T
t Xt + λ(L⊗ Id) and ŵt = 1

σ2Σ
−1
t bt with bt = X T

t rt.
I Solve linear system using conjugate gradient in O(κ(nd 2 + d · nnz(L))) time and O(nd 2 + nnz(L)) space.

Algorithms

I UCB
I Algorithm: Pick jt = argmaxj∈Ct

(
〈wt, xit,j〉 + αt

√
xTit,jΣ

−1
t xit,j

)
I Epoch Greedy:

I Algorithm: Explicitly separate exploration and exploitation rounds. Exploration - Pick a random item. Exploitation - Pick jt = argmaxj∈Ct〈wt, xit,j〉.

I Regret: R(T) = Õ

(
n1/3

(
Tr(L−1)
λn

)1
3

T
2
3

)

Large Scale Thompson Sampling

I Algorithm: Obtain sample from posterior i.e. w̃t ∼ N (wt,Σ−1
t). Pick jt = argmaxj∈Ct〈w̃t, xit,j〉.

I Regret: R(T) = Õ

(
dn
√
T√
λ

√
log
(

3 Tr(L−1)
n + Tr(L−1)T

λdn2σ2

))
I Naive Sampling: Using Cholesky factorization. Requires O(n2d 2) computation.

I Proposed Sampling: To obtain unbiased sample from a GMRF (Papandreou’10), solve Σtw̃t = (L⊗ Id)w̃0 + X T
t r̃t.

Same computational complexity as MAP estimation.

Experiments

I Graph Based: G-EG, GOBLIN (Cesa-Bianchi’13), GOBLIN++ (scalable GOBLIN), G-TS

I Baselines: No sharing: EG-IND, LINUCB-IND, TS-IND; No personalization: LINUCB-SIN; Clustering: CLUB

I Scalability:

(a) (b)

Figure: Synthetic network: Runtime (in seconds/iteration) vs (a) Number of nodes (b) Dimension

I Regret:

(a) Last.fm (b) Delicious

Figure: Regret Minimization

Learning the graph on the fly

I If the graph is not available, write a joint minimization w.r.t wt and precision matrix Vt:
[wt,Vt] = argminw,V ||rt − Xtw||22 + Tr

(
V (λW TW + V−1

t−1)
)

+ λ2||V ||1 − (dn + 1) ln |V |
I Variants: L-EG: Learning starting from empty graph; U-EG: Updating starting from given graph

(a) Last.fm (b) Delicious

Figure: Regret Minimization while learning the graph

Future Work

I Tighten the regret bound for Thompson Sampling and prove regret bounds for the learning the graph variant.

