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Summary Experiments

» We address a recommender system setting without prior rating data and constantly-changing items (E.g. news articles) » Graph Based: G-EG, GOBLIN (Cesa-Bianchi'13), GOBLIN++ (scalable GOBLIN), G-TS

» Previous work (Cesa-Bianchi'13) show that, in addition to features, sharing information across users improves performance. » Baselines: No sharing: EG-IND, LINUCB-IND, TS-IND; No personalization: LINUCB-SIN; Clustering: CLUB
But previous algorithms are not scalable. Other previous approaches cluster nodes (Gentile'14), but lose personalization. » Scalability:

» We show how to scale to large graphs by making a connection to Gaussian Markov Random Fields (GMRFs).
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» We also prove regret bounds and give a heuristic to learn the graph on the fly.
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Gang of Bandits model (Cesa-Bianchi'13)
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Figure: Synthetic network: Runtime (in seconds/iteration) vs (a) Number of nodes (b) Dimension
Input:
» Recommender system (RS) with no past rating data or user meta-data.
» Each item j can be described by a set of features x;.
> RS has an associated network (with Laplacian L).

» Regret:
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Aim: Use contextual bandits to trade-off exploration (learn users’ preferences) and exploitation (recommend items which
the user likes) and the associated network to share information between users and improve recommendations.
Assumptions:

» Linear generative model: r;; = (w?, x;) +7; ;.

» Homophily: Users connected in the network have similar preferences.
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Objective: Minimize regret R(T) = Z;l max; e, ((w* xj>) — (W?, x;,)
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Mean estimation: w; = argminy | Y7 1 > e ur (WX — ri)* + Aw’ (L ® Iy)w
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Figure: Regret Minimization
Basic Idea: Mean estimation is equivalent to MAP estimation in a GMRF.

Likelihood: r;; ~ N ({wj;, x;}, %), Prior: w ~ N(0,(A\L® Iy)™ )
Posterior: A'(W¢, ¥; 1) such that ¥, = %X]Xt + ML ® Iy) and w; = #Zt_lbt with b, = X.r,.
Solve linear system using conjugate gradient in O(x(nd? + d - nnz(L))) time and O(nd? + nnz(L)) space. » If the graph is not available, write a joint minimization w.r.t w; and precision matrix V;:
[we, Vi] = argmingy y [|re — Xew|[3 + Tr (VOWTW + V,2Y)) + Xo| V|1 — (dn+ 1) In| V]
Algorithms » Variants: L-EG: Learning starting from empty graph; U-EG: Updating starting from given graph

Learning the graph on the fly
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» Algorithm: Pick j; = argmax;_c, ({wt,x,-td) + at\/xitT’th_lx,-t,j) .
» Epoch Greedy:

» Algorithm: Explicitly separate exploration and exploitation rounds. Exploration - Pick a random item. Exploitation - Pick j; = argmaxject<wt,x,-t,j>.

» Regret: R(T) =0 <n1/3 (M>§ T§>
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Large Scale Thompson Sampling

» Algorithm: Obtain sample from posterior i.e. W; ~ N(wy, ¥ 1). Pick j; = argmax; ¢ (We, X;,j).
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» Regret: R( T) =0 d'z/\g\/bg (3Tr57 ) | T;\(dnga)gT) Figure: Regret Minimization while learning the graph

» Naive Sampling: Using Cholesky factorization. Requires O(n°d?) computation.
» Proposed Sampling: To obtain unbiased sample from a GMRF (Papandreou’10), solve ¥ W, = (L ® Iy)Wq + X, ¥:. Future Work

Same computational complexity as MAP estimation. » Tighten the regret bound for Thompson Sampling and prove regret bounds for the learning the graph variant.




