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Abstract—Heterogeneous computer architectures, where CPUs
co-exist with accelerators such as vector coprocessors, GPUs
and FPGAs, are rapidly evolving to be powerful platforms for
tomorrow’s exa-scale computing. The Intel R© Many Integrated
Core (MIC) architecture is Intel’s first step towards heteroge-
neous computing. This paper investigates the performance of
the MIC platform in the context of medical imaging and signal
processing. Specifically, we analyze the achieved performance
of two popular algorithms: Complex Finite Impulse Response
(FIR) filtering which is used in ultrasound signal processing and
Simultaneous Algebraic Reconstruction Technique (SART) which
is used in 3D Computed tomography (CT) volume reconstruction.

These algorithms are evaluated on Intel R© Xeon Phi
TM

using
Intel’s heterogeneous offload model. Our analysis indicates that
execution times of both of these algorithms are dominated by
the memory access times and hence effective cache utilization as
well as vectorization play a significant role in determining the
achieved performance. Overall, we perceive that Intel R© MIC is
an easy-to-program accelerator of the future that shows good
potential in terms of performance.

Index Terms—Intel MIC, algebraic reconstruction algorithms,
FIR, many-core, accelerators

I. INTRODUCTION

Growing complexities, scale and performance needs of

applications across all domains, be it scientific computing or

business, have placed heavy demands for powerful computa-

tional resources. Though technology development has resulted

in the ability to add more and more transistors on a single chip,

the CPU clock speeds have hit a plateau due to several factors:

heat and power barriers, memory wall, propagation delays and

other physical limits. This, coupled with the limits on ILP

(instruction level parallelism) as well as hardware limitations

(register renaming, branch mis-predictions, instruction window

sizes etc.), have led to the rise of multi-core systems and thread

level parallelism (TLP) [1].

Traditionally, CPU design in multi-core systems focuses

on improving single thread performance. To scale up to the

computing needs of future, a new paradigm of accelerator

designs focusing on throughput and increased data and thread

level parallelism (TLP) has emerged. The accelerator cores are

larger in number and operate at lower frequencies resulting in

better power-efficiency as compared to multi-cores. Thus, het-

erogeneous architectures that combine general purpose multi-

core CPUs with accelerators have an attractive performance-

to-power ratios and are crucial players in the road to exascale

and green computing [2], [3].

Intel’s first commercial product for heterogeneous comput-

ing is its x86 based co-processor architecture called Many

Integrated Core (MIC). The MIC architecture combines a

large number of smaller x86 cores with lower single threaded

performance and operating at low power, to deliver a high

aggregate performance. The first instantiation of the MIC

architecture, Intel R© Xeon Phi
TM

code-named Knights Corner

(KNC) was released in late 2012.

This paper evaluates the performance of the Intel MIC co-

processor, specifically, the Knights Corner (KNC) platform

in the context of medical imaging and signal processing. We

analyze the achieved performance of two popular algorithms:

Complex Finite Impulse Response (FIR) filtering which is

used in ultrasound signal processing and Simultaneous Al-

gebraic Reconstruction Technique (SART) which is used in

3D Computed tomography (CT) volume reconstruction. Our

analysis indicates that execution times of both of these algo-

rithms on MIC are dominated by the memory access times and

hence effective cache utilization as well as vectorization play

a significant role in determining the achieved performance.

Overall, we perceive that Intel R© MIC is an easy-to-program

accelerator of the future that shows good potential in terms of

performance.

The rest of this paper is organized as follows. Section II

gives an overview of the MIC architecture and its program-

ming model. Section III, provides details of the FIR and SART

algorithms. Section IV highlights the optimization strategies

used to maximize performance. Section V presents the per-

formance results and analysis and Section VI concludes the

paper. Please note that we use the terms Intel R© Xeon Phi
TM

,

KNC and MIC interchangeably.

II. THE INTEL MANY INTEGRATED CORE (MIC)

ARCHITECTURE AND PROGRAMMING MODEL

A. MIC Architecture

Figure 1 shows a schematic illustration of the Intel MIC

architecture. The MIC co-processor cores are based on the

x86 architecture. They are in-order cores operating at lower

frequencies, but are more in number than traditional multi-

cores and allow for high compute throughput.
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Fig. 1. The Intel MIC Architecture.

(a) MIC Core (b) MIC VPU

Fig. 2. Block diagrams of Intel MIC core and Vector Processing Unit
(VPU) [4]

The expensive x86 processor features such as out-of-order

execution are stripped out in MIC (Figure 2(a)) but much of the

silicon is dedicated to floating point operations. Each core runs

an extended version of the x86 instruction set that includes 512

bit wide vector processing operations and is a fully functional

in-order core, that supports fetch and decode instructions from

four hardware thread execution contexts.

The Intel R© Xeon Phi
TM

codenamed Knights Corner (KNC),

is the first product implementation of the MIC architecture

manufactured using 22nm process and 3D trigate transistors.

It is implemented as a co-processor on a PCIe card with upto

61 x86 cores and peak DP performance > 1 TFLOP/s. Each

core has 32KB L1 instruction cache, 32KB L1 data cache and

512KB L2 cache. Cache coherency is maintained across the L2

caches by a bi-directional high bandwidth ring network, which

is used to communicate between the cores, GDDR memory

and PCIe. The MIC device has a fast GDDR5 memory.

An important highlight of the MIC architecture is the

512 bit wide vector processing unit (VPU)(Figure 2(b)) and

the corresponding VPU instructions. In addition to standard

arithmetic and logic instructions on integer and floating point

data types, MIC provides fused multiply-add, gather, scatter

and mask instructions. It supports up to 8 double precision

(DP) or 16 single precision (SP) floating point operations

within a single vector instruction.

B. MIC Programming Model

Program execution in systems with accelerators typically

begins on the host CPU and some user-defined sections of

the code and the corresponding data are offloaded by the

CPU to the accelerators. Programming for accelerators is

cumbersome and effort-intensive as compared to traditional

CPU programming due to two main reasons: a) the instruction

sets on the host CPU and the accelerators may not be identical,

and b) the host and the accelerators do not share system

memory. Mitigation of the lack of easy programmability of

these systems is an active area of research.

The Intel MIC co-processor is based on x86 architecture,

and hence existing code using standard parallel programming

models like OpenMP [5] and MPI [6] can be easily ported

to MIC. MIC supports three programming models: Native

execution, heterogeneous offload programming and MPI. This

paper only discusses about MIC programming using the het-

erogeneous offload model.

In the MIC offload programming model, the statement or

the block of code following the “offload” pragma or directive

is targeted for execution on MIC. An example is shown

in Listing 1 in which the code section that performs the

vector addition is offloaded to MIC by using “#pragma offload

target(mic)”. Also, please note that the code is parallelized by

using OpenMP “parallel for” constructs to take advantage of

the multiple co-processor cores.

#pragma offload target(mic)

#pragma omp parallel for default (shared)

/* vector addition operation */

for(int i=0;i<N;i++) {

c[i] = a[i] + b[i];

} //end for i

Listing 1. A simple MIC program illustration

The functions and global variables to be compiled for the

MIC platform have to be prefixed with a keyword “ declspec(

target (mic))” or “ attribute (( target (mic)))”. All functions

in the program are always compiled for the CPU and are

available to be called on the CPU. However, only functions

marked with the above keyword are available to be called by

MIC-offloaded code. Global variables are treated in a similar

fashion. All global variables are always present in the CPU

code. But only global variables with the target attribute are

available on the co-processor. Compiling only functions and

data explicitly marked with the target attribute into the Intel

MIC architecture binary ensures that the code on the co-

processor is as small as possible. For example, in Listing 2,

the global arrays “input1”, “input2”, “output” and function

“func1()” are compiled for MIC by prefixing them with the

keyword “ declspec( target (mic))”. However, as mentioned

above, these arrays are also compiled for the CPU and are

available to be called on the CPU. The function “func2()”

is only compiled for CPU. When entering and leaving the

offloaded “for” loop, the arrays will be copied in and out of

MIC automatically. To optimize the data transfers between
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MIC and CPU, we can also explicitly specify each data

item with “in”, “out” or “inout” qualifiers, E.g., “pragma of-

fload target (mic) in(input1:length(100)) in (input2:length(100)

out(output:length(100))”.

__declspec ( target (mic) ) int numFloats = 100;

__declspec ( target (mic) ) float

input1[100],input2[100];

__declspec ( target (mic) ) float output[100];

__declspec ( target (mic) ) void func1() {

...

}

void func2() {

...

}

int main() {

read_input1();

read_input2();

#pragma offload target (mic)

for(int j=0;j<numFloats;j++) {

output[j] = input1[j] + input2[j];

}

func1();

func2();

}

Listing 2. The MIC offload compilation of a functions and global variables

There are also clauses like “alloc if“ and “free if“ which

allow persistence of memory allocation across multiple offload

calls. Interested readers are encouraged to refer to Intel R© Xeon

Phi
TM

Developer’s Guides [7], [4] for further details.

In addition to OpenMP, standard native parallel program-

ming models like TBB, Cilk Plus, MKL, Pthreads, MPI are

also supported on MIC.

III. ALGORITHMS

This section gives a detailed overview of the FIR and

SART algorithms. FIR filtering is widely used in ultrasound

image processing to reduce gaussian and speckle noise [8], [9].

SART is an iterative algebraic reconstruction technique used

in computed tomography reconstruction for obtaining good

quality reconstructions with lower radiation dose [10], [11],

[12].

A. Complex Finite Impulse Response Filter (FIR)

Finite Impulse Response or FIR filter [13] is one of the

primary types of filters used in digital signal processing. An

N th-order filter output y[j] for the current input value x[j] can

be expressed as the weighted sum of the current input value

x[j] and N previous input values as shown below,

y[j] =

N∑

i=0

cix[j − i] (1)

where:

• x[] is the input signal,

• y[] is the output signal,

• ci are the filter coefficients, also known as tap weights,

that make up the impulse response,

• and N is the filter order; an N th-order filter has (N +1)
summation terms

We have used a “symmetric complex FIR filter” for our

evaluations. In the case of complex FIR filter, the values

of input, output and filter coefficients contain both real and

imaginary components.

Algorithm 1 shows the psuedo-code for applying an N th-

order symmetric complex FIR filter on a 2D image of size

ySize×xSize. Note that the real and imaginary values of the

pixels of the input image are stored consecutively in the 1D

array ‘Src’ and the filter coefficients are stored consecutively

in the 1D array ‘Coeff’. Similarly, the pixels of output image

are stored in ‘Dest’.

Algorithm 1 FIR

{Arguments: Src, Dest, Coeff, N, xSize, ySize}
{Arrays are indexed from 0}
HN=N/2;

for k=0 to ySize-1 do

kInd=k*xSize*2

for j=0 to xSize-1 do

sumI=sumQ=0

for i=0 to N do

if (j+i-HN) ≥ 0 and (j+i-HN) < xSize then

I=Src[kInd+ (j+i-HN)*2]

Q=Src[kInd+ (j+i-HN)*2 + 1]

C=Coeff[(N-i)*2]

D=Coeff[(N-i)*2 +1]

sumI+= I*C-Q*D

sumQ+= Q*C+I*D

end if

end for

Dest[kInd+ j*2]=sumI

Dest[kInd+ j*2 +1]=sumQ

end for

end for

B. Simultaneous Algebraic Reconstruction Technique (SART)

This section discusses the Simultaneous Algebraic Recon-

struction Technique (SART) [10], [11] which is an iterative

tomographic reconstruction algorithm used commonly in cone

beam CT reconstruction. SART reconstructs a 2D or a 3D ob-

ject from its projection data by formulating the reconstruction

problem as a set of linear equations:

WV = P (2)

where, V is the unknown (N×1) vector of voxel values in the

n×n×n reconstruction grid (N = n3), P is the (R×1) vector

of pixel values in the acquired projection data and W is the

(R ×N ) weighting matrix. An element wij of the weighting

matrix denotes the influence of voxel j on the ray passing

through pixel i of the projection image and plays a vital role

in determining the reconstructed image quality.

To solve the above equation iteratively, SART starts with an

initial guess for the voxel values in the 3D reconstruction grid
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and iteratively refines these values by processing the projection

images. An iteration k of SART comprises of the following

three steps that are applied to all the projection images:

• Forward Projection: For each pixel, pi on a projection

image, compute the line integral of the ray through pi,

i.e.,
N∑

j=1

wijv
(k)
j (3)

This is illustrated in Figure 3. wij which is the weight or

influence of voxel j on the ray passing through pixel

i, is computed as the portion (length) of the ray that

passes through voxel j using the ray traversal algorithm

proposed by Jacobs et. al. [14].

• Correction Image Computation: Compute the difference

between the observed pixel value pi and the computed

line integral, normalized by the weights, i.e.,

pi −
∑N

j=1 wijv
(k)
j∑N

j=1 wij

(4)

• Backward Projection: Distributes the correction image to

the reconstruction grid. We use Feldkamp’s filtered back-

projection algorithm [15] to back-project the correction

image to the reconstruction volume.

Figure 4 depicts the cone-beam CT procedure. Cone-beam

x-rays are beamed at different angles and the attenuated beam

is caught on a detector plate and forms a projection image.

Using several projection images, the 3D volume of the object

through which the x-ray beam is transmitted, is reconstructed.

Algorithm 2 shows the pseudo code of our SART

implementation which reconstructs a 3D image of

size RECON DEPTH × RECON HEIGHT ×
RECON WIDTH from NUM PROJECTIONS 2D

projection images of size PROJECTION HEIGHT ×
PROJECTION WIDTH . The output 3D volume is

initialized with voxel values of 1. The algorithm iteratively

reads the N input projection images to “InProjData”,

computes the corresponding correction image data, that is,

“CorrProjData” by applying the forward projection, and then

distributes the correction image data to the reconstruction

volume, that is to, “OutVolData” by applying the backward

projection. Algorithm 3 and Algorithm 4 shows the pseudo

code for our SART forward projection and backward

projection implementations respectively.

IV. IMPLEMENTATION AND OPTIMIZATION ON MIC

In this section we describe in detail our implementation and

optimizations of FIR and SART on MIC.

A. FIR

The FIR code is parallelized to take advantage of the MIC

cores using the OpenMP programming model. The paralleliza-

tion is done at the level of the outermost ‘for’ loop so that

different threads can work in parallel on different image rows.

We have implemented the following optimizations to the

baseline code of FIR to minimize the compute time on MIC.

Fig. 3. Ray tracing in forward projection

Algorithm 2 SART

{Initialize the output 3D voxel values to 1}
InitOutputVoxels(OutVolData)

for i=1 to NUM ITERATIONS do

for j=1 to NUM PROJECTIONS do

{Get j’th projection data}
ReadProjectionData(InputProj,j)

{Apply forward projection for j’th projection input

image and compute correction data}
ForwardProjection(InputProj,OutVolData,CorrProjData)

{Back-project correction values to get accurate Output

volume}
BackwardProjection(CorrProjData,OutVolData)

end for

end for

Fig. 4. Illustration of CT geometry in cone beam in 3D space.
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Algorithm 3 ForwardProjection

{Arguments: InputProj, OutVolData, CorrProjData}
for i=1 to PROJECTION HEIGHT do

for j=1 to PROJECTION WIDTH do

{rij denotes the ray passing through pixel Input-

Proj[i,j]}
{Trace the path of the ray through reconstruction grid

using Jacob’s algorithm [14]}
raysum = 0, sum w = 0

while rij traverses through the reconstruction grid do

(x,y,z) = current voxel traversed by ray rij
w = length of ray within the voxel (x,y,z)

raysum += w * OutVolData[x,y,z]

sum w += w

end while

CorrProjData[i,j]=(InputProj[i,j] - raysum)/sum w

end for

end for

Algorithm 4 BackwardProjection

{Arguments: CorrProjData, OutVolData}
for k=1 to RECON DEPTH do

for i=1 to RECON HEIGHT do

for j=1 to RECON WIDTH do

{Use projection matrix calibration data (Feldkamp’s

algorithm [15]) to compute the region of CorrProj-

Data that will map to voxel OutVolData[k,i,j]}
(u,v) = centroid of the region in CorrProjData that

maps to voxel OutVolData[k,i,j]

{Refine voxel OutVolData[k,i,j] using bi-linearly in-

terpolated correction values around (u,v)}
OutVolData[k,i,j] += BiLinearInterpola-

tion(CorrProjData,u,v) * CorrectionFactor

end for

end for

end for

1) Vectorization: In order to take advantage of the MIC

VPUs, we have vectorized the innermost loop of our FIR filter

algorithm. For efficient vectorization of the loop, it is preferred

that there are no conditional branch statements within the

loop [16], [17], [18], [19]. So, we had to remove the ‘if’

statement present within the innermost loop (Algorithm 1).

We have addressed this by sufficiently padding each row of

the input image with zero values on either sides. With this

change, though the MIC compiler could vectorize the modified

code, we did not get much performance benefit from the

vectorization because of interleaved data accesses to the real

and imaginary values. So, we stripped the real and imaginary

values of both image and coefficient data to separate arrays.

With this modification, we obtained an average (across all tap

sizes) of 26% performance improvement over baseline (Refer

Section V-A, Figure 5). The vectorized code snippet is shown

in Listing 3.

__declspec ( target (mic) )

void ComplexFilterFIR_OptVectorization(

float *real_src, float *img_src,

float *real_coeff, float *img_coeff,

float *dest, int xSize, int ySize,

int N) {

const int OFFSET = (N+1)/2;

const int HN = N/2;

#pragma omp parallel default (shared)

{

#pragma omp for nowait

for (int k=0; k<ySize; k++) {

int kInd1 = k*(xSize+N+1);

int kInd2 = k*(xSize*2);

for (int j=0; j<xSize; j++) {

float sumI=0;

float sumQ=0;

float I,Q,C,D;

for (int i=0; i<=N; i++) {

I=real_src[kInd1+j+OFFSET+i-HN];

Q=img_src[kInd1+j+OFFSET+i-HN];

C=real_coeff[N-i];

D=img_coeff[N-i];

sumI += I*C-Q*D;

sumQ += Q*C+I*D;

} //end for i

dest[kInd2 + j*2] =sumI;

dest[kInd2 + j*2 + 1] =sumQ;

} //end for j

} //end for k

} //end paralell

} //end ComplexFilterFIR_OptVectorization

Listing 3. FIR Filter Parallelized and Vectorized Code Snippet

2) Loop Splitting: The vectorized FIR filter code snippet

shown in Listing 3 suffers from repeated loading of coefficient

values (both real and imaginary) for every image pixel. We

applied an optimization called ’loop splitting’ [18], [20] to

avoid this repeated loading of coefficient values. As high-

lighted in Listing 4, the innermost loop is split into two loops:

the original loop with index ‘i’, and the new loop with index

‘iOuter’. Please note that the iteration space of the original

innermost loop of Listing 3 (highlighted) is shared between the

two split loops of Listing 4. Having done this, we could hoist

the loading of 16 values of C and D to outside the ‘j’ loop.

This results in a small increase of runtime memory footprint

compared to vectorized code. However, due to the reduction in

redundant memory loads of co-efficient values, loop splitting

results in an average of 53% performance improvement over

vectorization (Section IV-A1).

3) Loop Unrolling: Loop unrolling [18], [20] is a loop

optimization technique which replicates the body of a loop

some number of times called the unrolling factor ‘u’ and

iterates by step ‘u’ instead of step 1. Unrolling can improve

the performance by reducing the loop overheads, increasing

instruction parallelism, and improving register, data cache, or

TLB locality. We implement loop unrolling in the FIR filter

algorithm for higher filter orders, i.e., N ≥ 128. For these

filter orders, the ‘iOuter’ loop is incremented in steps of 128

and hence the inner most ‘i’ loop trip count is increased to

128. This allows us to unroll the inner most ‘i’ loop with

an unrolling factor of 8. Listing 5 shows the FIR filter code
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#pragma omp parallel default (shared)

{

#pragma omp for nowait

for (int k=0; k<ySize; k++) {

int kInd1 = k*(xSize+N+1);

int kInd2 = k*(xSize*2);

for(iOuter=0; iOuter<=N; iOuter+=16) {

float C[16], D[16];

for (int l=iOuter; l<iOuter+16; l++) {

C[l-iOuter] = real_coeff[N-l];

D[l-iOuter] = img_coeff[N-l];

} //end for l

for (int j=0; j<xSize; j++) {

float sumI=0;

float sumQ=0;

float I,Q,C,D;

for (int i=iOuter; i<iOuter+16; i++) {

I=real_src[kInd1+j+OFFSET+i-HN];

Q=img_src[kInd1+j+OFFSET+i-HN];

sumI += I*C[i-iOuter]-Q*D[i-iOuter];

sumQ += Q*C[i-iOuter]+I*D[i-iOuter];

} //end for i

dest[kInd2 + j*2] +=sumI;

dest[kInd2 + j*2 + 1] +=sumQ;

} //end for j

} // end for iOuter

} //end for k

} //end parallel

Listing 4. FIR Filter Code Snippet for Loop Splitting Optimization

snippet for the loop unrolling optimization. Loop unrolling

showed mixed results.

#pragma omp parallel default (shared)

{

#pragma omp for nowait

for (int k=0; k<ySize; k++) {

...

for(iOuter=0; iOuter<=N; iOuter+=128) {

float C[128], D[128];

for (int l=iOuter; l<iOuter+128; l++) {

C[l-iOuter] = real_coeff[N-l];

D[l-iOuter] = img_coeff[N-l];

} //end for l

....

#pragma unroll(8)

for (int i=iOuter; i<iOuter+128; i++) {

....

Listing 5. FIR Filter Code Snippet for Loop Unrolling Optimization

B. SART

The code for both forward and backward projection of

SART is parallelized using OpenMP to take advantage of the

MIC cores. The parallelization is done at the level of the

outermost ‘for’ loop for both forward and backward projection

so that different threads can work in parallel on different

projection image rows, thereby maximizing spatial locality. To

optimize the data transfer and minimize offload overheads, we

concatenated all the projection data and made a single offload

call to MIC that would execute the forward and backward

projection on all of the projection data iteratively.

The SART forward and backward projection code included

many computations within conditional branch statements and

hence had to be modified to be amenable for vectorization.

The first modification was to split the innermost ‘j’ loop in

Algorithms 3 and 4 into two loops: the original ’j’ loop,

and the new innermost ’jInner’ loop. Please note that in the

modified code Listing 6, the ‘j’ loop is incremented in steps of

16, and the ‘jInner’ loop trip count is set to 16 (highlighted).

The reason behind setting the trip count of the ‘jInner’ loop

to 16 is to keep the MIC VPUs busy, which support 16 SP FP

operations. Also, note that the ’jInner’ loop is split into three

loops (highlighted): the first ’jInner’, the second ’jInner’ with

’while’ and the third ’jInner’; This split was required because

compiler can not vectorize a ’while’ loop. We also had to

apply loop interchange optimization for the second ’jInner’ to

facilitate vectorization (Listing 6).

We employed a voxel-driven parallelization approach for the

backward projection, where each MIC thread updated voxel

values of one slice of the reconstruction grid. This ensured

a lock-free algorithm as each thread updates an independent

set of voxels. This also maximizes the cache locality and

minimizes false sharing across threads.

Listing 6 shows the parallelized and vectorized pseudo code

for SART forward projection. A similar approach was used for

the backward projection.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we report the achieved performance on

Intel R© Xeon Phi
TM

(KNC) implemented with Intel’s hetero-

geneous offload model. Intel R© Xeon Phi
TM

processor has 60

cores operating at 1.053 GHz. Each core can run upto 4

hardware threads and has 32KB L1 instruction cache and

32KB L1 data cache. Each core also has 512 KB L2 cache.

The device has 8 GB of GDDR5 RAM.

We use Intel compiler version 13.1 using -O3 -openmp

switches. We use latest MPSS stack. We have used dynamic

scheduling of threads in OpenMP resulting in improved per-

formance. All performance numbers are average of 3 runs.

A. Performance Analysis of FIR

Figure 5 plots the FIR compute times when the different

optimization strategies discussed in Section IV-A are incre-

mentally applied. Though MIC supports up to four threads

per core, we could get the best performance by launching just

two threads per core. This may be because FIR code is able to

saturate functional units in MIC using two threads. As noted

before, vectorization yields an average of 26% performance

improvement over the baseline code. Adding loop splitting

further boosts the performance by 53% on an average by

optimizing locality and memory accesses. Unrolling does not

yield a significant benefit.

To understand the efficiency of our FIR implementation

on KNC, we compare the achieved compute and memory

throughput with the theoretical peak throughputs. The theo-

retical peak single precision compute throughput and memory

bandwidth offered by KNC are provided in Table I. This
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Vectorized_Forward_Projection(float *InProjData,

float *OutVolData, float *CorrProjData) {

#pragma omp parallel default (shared) {

float ray[16], ln[16], sum_w[16];

unsigned short FLAG;

#pragma omp for nowait

for (int k=0; k<PROJ_H; k++) {

for (int j=0; j<PROJ_W; j+=16) {

for (int jInner=j; jInner<j+16; jInner++) {

1. For the pixel InProjData[k,jInner],

compute the ray r through

InProjData[k,jInner]

and assign it to ray[jInner-j].

} //end for jInner

2. Initialize FLAG, ln[], and sum_w[] to 0.

while (FLAG < 0xFFFF) {

for (int i=0;i<16;i++) {

if (ray[i] passes through the output

volume) {

3. Compute the current voxel (x,y,z)

of OutVolData through which

ray[i] passes.

4. Compute the intersection length

’w’ of ray[i] through the voxel

(x,y,z).

5. ln[i] += w * OutVolData[x,y,z]

6. sum_w[i] += w

} //end if

else { // Set i’th bit of FLAG to

indicate completed traversal for

ray i

7. FLAG = FLAG | (1<<i);

} //end else

} //end for i

} //end while

for (int jInner=j; jInner<j+16; jInner++) {

8. CorrProjData[k,jInner] =

(InProjData[k,jInner]-ln[jInner-j])

/sum_w[jInner-j]

} //end for jInner

} //end for j

} //end for k

} //end parallel

} //Vectorized_Forward_Projection

Listing 6. Parallelized and Vectorized Pseudo Code Snippet for SART
Forward Projection

table also shows the achievable peak single precision com-

pute throughput for SGEMM benchmark and achievable peak

memory bandwidth for STREAM benchmark [21].

We estimate the total number of floating point operations

and bytes read/written in the FIR algorithm (caching effects

are ignored) and calculate the achieved compute and memory

throughput based on the actual execution time (Table II). We

notice that the FIR algorithm performs approximately twice

the number of memory operations than compute (8 GFLOP

compute and 17.2 GB memory accessed). Since the theoretical

single precision compute throughput of the KNC platform is

approximately 6x higher than the memory bandwidth offered

(Table I), we see that the overall time is largely dominated

by the memory accesses. Hence, we are not able to saturate

the cores and we operate at only 17% of the theoretical

peak compute throughput. FIR performs a streaming access

to the data and we see that we are able to utilize the cache

effectively through the loop splitting optimization and avoiding
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Fig. 5. FIR execution times (for 4096 x 512 image) in seconds on Intel R©

Xeon Phi
TM

(KNC)

Metric KNC

Theoretical SP GFlop/s 2021
Theoretical GB/s 320

Achievable SP GFlop/s 1729
Achievable GB/s 159

TABLE I
THEORETICAL AND ACHIEVABLE PEAK SINGLE PRECISION COMPUTE AND

MEMORY THROUGHPUTS FOR KNC [21].

interleaved access to real and imaginary data values (the

achieved memory performance is more than twice the peak

memory throughput due to caching effects).

To confirm our analysis, we profiled our baseline FIR and

optimized FIR (with all three optimizations) code. Baseline

FIR has L1 cache hit ratio 0.98, vectorization efficiency 50%

and CPI (Clocks per instruction) 3.47. With optimized code,

L1 cache hit ratio increases to 1.00, vectorization efficiency

increases to 100% and CPI improves to 2.04. We observed that

our optimizations improved cache utilization and vectorization

and as a result the CPI approaches ideal CPI of 2.0.

B. Performance Analysis of SART

Table III presents the execution time for SART to pro-

cess 180 projections (half scan) for three different re-

construction grid resolutions (128x128x128, 256x256x256

and 512x512x512). Each projection image is of resolution

512x512. In case of SART, we could get the best performance

by launching three threads per core.

The SART algorithm involves projecting the current ap-

Metric Algorithm Characteristics Achieved throughput

FIR compute SP 8 GFLOP 345 GFLOP/s
FIR memory 17.2 GB 740 GB/s

TABLE II
FIR ALGORITHM COMPUTE AND MEMORY CHARACTERISTICS AND

ACHIEVED SINGLE PRECISION COMPUTE AND MEMORY THROUGHPUTS ON

KNC. INPUT SIZE: 4096 X 512 AND FILTER TAPS = 512.
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Grid
size

Num. of
Projections

Total
Execution
Time

Forward
Projection
Execution time

Backward
Projection
Execution time

512
3 180 13.13 8.88 4.25

256
3 180 3.55 2.45 0.9

128
3 180 1.67 1.18 0.49

TABLE III
SART EXECUTION TIME IN SECONDS ON INTEL

R© XEON PHI
TM

(KNC).

Algorithm Compute Characteristics
(GFLOP)

Memory Characteristics
(GB)

ForwardProjection 420 112
BackwardProjection 930 388

TABLE IV
COMPUTE AND MEMORY CHARACTERISTICS OF SART FORWARD AND

BACKWARD PROJECTION PHASES FOR 512× 512 PROJECTED IMAGE SIZE

AND 512
3 RECONSTRUCTION VOLUME

proximate reconstruction space using forward projection, then

the errors are backprojected using backward projection, thus

deriving better approximation. This process repeats for all

available projections. Hence to evaluate SART, we analyze the

performance of ForwardProjection and BackwardProjection

algorithms.

Similar to the FIR analysis, we estimate the compute and

memory characteristics of the SART forward and backward

projection phases for a 512x512x512 reconstruction. We ig-

nore the caching effects while estimating the GBytes accessed.

Table IV presents both the compute and memory characteris-

tics of the forward and back projection phases for one iteration.

The operations in SART are also of single precision. Contrary

to FIR, for the SART algorithm, compute to memory access

ratio is approximately 4 for forward projection; for backward

projection, this ratio is approximately 2.4. However, the the-

oretical and achievable peak compute to memory throughput

ratios are 6x and 10x respectively (refer to Table I). Therefore,

we conclude that the SART algorithm is also dominated by

the memory access time.

Table V presents the achieved SART forward and backward

projection compute and memory throughput based on the char-

acteristics of algorithms (Table IV) and the actual execution

times (Table III). We observe that the forward projection phase

has very poor memory and computational efficiency. This is

due to non-contiguous memory accesses of the reconstruction

grid voxels during the ray traversal. Closely accessed voxels

would have good locality in 3D. However, in 1D these accesses

translate into non-contiguous access to memory resulting in

Algorithm Achieved compute
throughput (GFLOP/s)

Achieved memory
throughput (GB/s)

ForwardProjection 47.3 12.63
BackwardProjection 219 91.3

TABLE V
ACHIEVED COMPUTE AND MEMORY THROUGHPUT FOR SART FORWARD

AND BACKWARD PROJECTION PHASES ON KNC FOR 512× 512

PROJECTED IMAGE SIZE AND 512
3 RECONSTRUCTION VOLUME

poor cache and memory performance. Since the total time is

dominated by the memory access time, this also brings down

the achieved compute throughput.

The backward projection phase reports better achieved

memory throughput as compared to the forward projection

phase, i.e., about 50% of the achievable memory bandwidth

as reported in Table I. This is because accesses to the

reconstruction grid voxels are optimized for spatial locality.

However, accesses to the correction data to perform a bilinear

interpolation of correction values around the centroid to update

the voxel values are localized in 2D, which translates to non-

contiguous memory accesses. This may be the reason for drop

in memory access performance.

To confirm our analysis, we profiled the optimized forward

and backward projection code. Forward projection has L1 hit

ratio 0.927, vectorization efficiency 56% and CPI 7.35. Back-

ward projection has L1 hit ratio 0.99, vectorization efficiency

68% and CPI 4.14. Lower L1 hit ratio and higher CPI for

forward projection versus backward projection is due to non-

contiguous memory accesses in 3D versus 2D. We believe

that, there is room for performance improvement in SART

and needs further analysis.

To summarize, our analysis with SART indicates that algo-

rithms that have irregular memory accesses or non-contiguous

accesses may not be able to saturate the compute capacity of

KNC. Non-contiguous memory accesses are performed using

gather/scatter instructions in MIC, however performance of

the same is limited by the actual load latencies. Our analysis

of FIR shows that it has a regular access pattern with 1D

spatial locality and hence achieves better performance on MIC.

In addition to memory and cache performance, the scope for

vectorization offered by the algorithm also plays an important

role in determining the achievable performance on KNC.

As MIC is based on x86, it provides a natural extension

to conventional x86 programming models, like OpenMP. We

found that MIC programming has an easy learning curve.

With a knowledge of OpenMP, basic porting of a program to

execute on MIC can be achieved very quickly. Furthermore,

the MIC programming model shields the programmer from the

job of handling device memory aspects such as allocation/de-

allocation, data transfer to/from device memory, etc. Also,

clauses such as ‘alloc if’, ‘free if’ and ‘no copy’ are provided

to optimize data transfers. Performance optimization on the

MIC platform, on the other hand, is a more involved activity

and requires insight into compiler optimization techniques,

cache behaviour, access patterns etc. However, these concepts

are inherent principles of parallel programming even on multi-

core processors and can be extended to MIC optimization

seamlessly.

VI. CONCLUSION

Accelerators such as Intel R© Many Integrated Core (MIC)

are enablers of high performance, high throughput and power

efficient computing. However, efficient utilization of its com-

pute capability requires expressing underlying data-parallelism

in the problem. MIC architecture allows more traditional
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approach for expressing parallelism in programs with use of

OpenMP directives. Programmers rely on auto-vectorization

features of compilers to generate code for wide vector pro-

cessing units (VPU) on MIC co-processor.

This paper presents our experiences using the MIC platform.

We have evaluated its performance in the context of medical

imaging and signal processing using two algorithms: complex

Finite Impulse Response filter (FIR) used in ultrasound image

processing and Simultaneous Algebraic Reconstruction Tech-

nique (SART) used in computed tomography reconstruction.

Our evaluations indicate that the MIC co-processor holds a lot

of promise to be an easy-to-program accelerator of the future

that also demonstrates good performance. However, extracting

the best performance depends on efficient vectorization of

loops and cache utilization.
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