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Problem Formulation

Optimize functions with a composition structure h(θ) := ℓ(f (θ)).

Canonical example: Supervised learning where ℓ(z) is the loss function (squared loss,
cross-entropy) and z = f (θ) is the model (linear model, neural network).

Linear Regression: h(θ) = 1
2 ∥Xθ − y∥22 = ℓ(f (θ)) where ℓ(z) = 1

2 ∥z − y∥22 and
z = f (θ) = Xθ.

minθ ℓ(f (θ)) is equivalent to minz∈Zθ
ℓ(z) where Zθ := {z |∃θ s.t z = f (θ)}.

Focus on problems in sequential decision-making where computing
{ℓ(z),∇zℓ(z)} can be much more computationally expensive

compared to {f (θ),∇θf (θ)}
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Motivating example: Policy Optimization in Reinforcement Learning

Objective: Given a Markov decision process
(MDP) with state space S and action space A,
learn a policy π : S → ∆A that maximizes the
expected cumulative discounted reward
J(π) := E[r0 + γr1 + γ2r2 + . . .].

Policy π is parameterized by a model f with parameters θ such that π = f (θ).

Computing {J(π),∇πJ(π)} requires interacting with the environment and is
computationally expensive.
Generic Algorithm: Starting from an initial policy π0, at every iteration t,

Use the current policy πt to interact with the environment and gather data (Slow step)
Use the gathered data to update the policy by solving: maxπ∈Πθ J(π) = maxθ J(f (θ))

where Πθ is the set of policies that can be expressed by the model.

If z = π, Zθ = Πθ, ℓ = −J, equivalent to solving minθ h(θ) = ℓ(f (θ)).
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Motivating example: Online Imitation Learning

Objective: Learn a policy that tries to “imitate”
the expert. E.g: Learning to control a robot
from human supervision.

Policy π is parameterized by a model f with parameters θ such that π = f (θ).

Generic Algorithm:: Starting from an initial policy π0, at every iteration t,

Use the current policy πt to interact with the environment and receive feedback from the
expert (Slow step).
Update the policy to minimize the discrepancy D to the expert policy πe :
minπ∈Πθ ℓt(π) := Es∼dπt [D(π(·|s)||πe(·|s))].

If z = π, Zθ = Πθ, equivalent to minimizing a sequence of functions of the form
ht(θ) := ℓt(f (θ)).
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Outline

Target-based Surrogate Optimization

Functional Mirror Ascent for Policy Gradient (FMA-PG)

Conclusions and Future Work
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Naive Idea: Parametric Gradient Descent

Ignore the composition structure and optimize h(θ) = ℓ(f (θ)) directly w.r.t θ.

Parametric Gradient Descent: θt+1 = θt − η∇h(θt) ; zt+1 = f (θt+1).

Example: In RL, this approach is broadly referred to as policy gradient.

× Each policy update requires computing ∇θh(θ) = ∇zℓ(z)∇θf (θ). Since computing ∇zℓ(z)

involves interacting with the environment, it is computationally expensive.

Idea: Form a surrogate function that exploits the composition structure and enables “reusing”
the gathered data i.e can update the policy multiple times without computing ∇zℓ(z).

Example: In RL, methods such as TRPO/PPO construct such surrogate functions and
update the policy to maximize the surrogates.
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Digression: Parametric GD as Surrogate Minimization

At iteration t, gradient descent on a smooth
(possibly non-convex) function h(θ) is equivalent to
minimizing a local quadratic surrogate function
around θt :
gt(θ) := h(θt) + ⟨∇h(θt), θ − θt⟩+ 1

2η ∥θ − θt∥22.

For “small” enough η, ∀θ, gt(θ) ≥ h(θ) i.e. the
surrogate is a global upper-bound on h(θ).

Update: θt+1 = argminθ gt(θ) =⇒ θt+1 = θt − η∇h(θt).
Algorithm: Iteratively form the surrogate gt(θ) around θt and minimize it to update θ.
Exactly gradient descent!
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Target-based Surrogate Minimization

At iteration t, gradient descent on a smooth (possibly non-convex) function ℓ(z) is
equivalent to minimizing a local quadratic surrogate function around zt :

gt(z) := ℓ(zt) + ⟨∇zℓ(zt), z − zt⟩+
1
2η
∥z − zt∥22

.

For “small” enough η, ∀z , gt(z) ≥ ℓ(z) i.e. the surrogate is a global upper-bound on ℓ(z).

Update: zt+1 = argminz∈Zθ
gt(z). Since z = f (θ) for all z ∈ Zθ,

θt+1 = argmin gt(θ) := ℓ(f (θt)) + ⟨∇zℓ(f (θt)), f (θ)− f (θt)⟩+
1
2η
∥f (θ)− f (θt)∥22

.Algorithm: Iteratively form the surrogate gt(θ) around zt , minimize it w.r.t θ and update
zt+1 = f (θt+1).

Equivalent to projected gradient descent in the target space: zt+1 = ProjZθ
[zt − η∇ℓ(zt)]
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Target-based Surrogate Minimization

Recall that gt(θ) := ℓ(f (θt)) + ⟨∇zℓ(f (θt)), f (θ)− f (θt)⟩+ 1
2η ∥f (θ)− f (θt)∥2

2

Since gt(θ) is a potentially non-convex
function, we cannot optimize it exactly.

Idea: Optimize gt(θ) using mt steps of
gradient descent w.r.t θ.

Forming gt(θ) requires access to ∇zℓ(z),
but optimizing gt(θ) does not. Inner-loop
can update θ without accessing the
expensive gradient oracle.

Example: In RL, the inner-loop updates
to the policy parameters are referred to
as off-policy updates.

Using m = 1 in the Alg 1. recovers
parametric GD.
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Target-based Surrogate Minimization – Example

Recall that gt(θ) := ℓ(f (θt)) + ⟨∇zℓ(f (θt)), f (θ)− f (θt)⟩+ 1
2η ∥f (θ)− f (θt)∥2

2

To gain some intuition, consider linear regression: ℓ(z) = 1
2 ∥z − y∥22 ; z = f (θ) = Xθ.

gt(θ) =
1
2 ∥Xθt − y∥22 +

〈
[Xθt − y ],X (θ − θt)

〉
+ 1

2η ∥X (θ − θt)∥22
Alg. 1 with m = 1 is equivalent to parametric GD: θt+1 = θt − η XT[Xθt − y ]

Alg. 1 with m =∞ and η = 1 is equivalent to Newton’s method:
θt+1 = θt − η (XTX )−1 [XT(Xθt − y)].

Hence, Alg. 1 with m ∈ [1,∞) interpolates between a first-order and second-order method
without explicitly forming the Hessian.
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Theoretical Guarantees

Recall that gt(θ) := ℓ(f (θt)) + ⟨∇zℓ(f (θt)), f (θ)− f (θt)⟩+ 1
2η ∥f (θ)− f (θt)∥2

2

Property (i): For an appropriate η (set according to the smoothness of ℓ(z)), ∀θ,
gt(θ) ≥ ℓ(f (θ)) = h(θ) and gt(θt) = ℓ(f (θt)) = h(θt).

Property (ii): With an appropriate step-size α (set according to the smoothness of gt(θ))
and any value of m, GD on gt(θ) ensures descent implying that gt(θt+1) ≤ gt(θt).

Lemma: ℓ(zt+1)
Def
= h(θt+1)

(i)

≤ gt(θt+1)
(ii)

≤ gt(θt)
Def
= h(θt)

Def
= ℓ(zt) meaning that Alg. 1

results in a decrease in ℓ(z) for any model f .

Other theoretical results:

Prove that Alg. 1 converges to a stationary point of h(θ) at an O(1/T ) rate.
For convex ℓ, prove convergence rates even when we only have access to a stochastic,
unbiased gradient of ℓ(z).
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Experiments – Imitation Learning

SSO results in strong empirical performance without the need to tune step-sizes.
Using larger values of m (more off-policy updates) results in better performance.

Using a larger number of trajectories results in more
computational cost for evaluating ∇ℓ(z), amortizing
the cost of multiple off-policy updates.
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Conclusion

✓ Constructed a sequence of surrogate functions that exploit the composition structure, and
result in efficient updates for imitation learning.

✓ Proved that the resulting surrogate minimization algorithm will result in convergence to a
stationary point.

✓ Strong empirical performance with better robustness towards hyper-parameters.

✓ Black-box structure for stochastic optimization: Can use any stochastic optimization
algorithm to form surrogates which can then be optimized using any deterministic
optimization algorithm.
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Outline

Target-based Surrogate Optimization

Functional Mirror Ascent for Policy Gradient (FMA-PG)

Conclusions and Future Work
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Motivation

Policy gradient (PG) methods based on REINFORCE:
Each policy update requires recomputing the policy gradient.

✓ Theoretical guarantees [Agarwal et al., 2020] with function approximation.
× Each update requires computationally expensive interactions with the environment.

Methods such as TRPO, PPO and MPO:
Rely on constructing surrogate functions and update the policy to maximize these surrogates.

✓ Support off-policy updates – can update the policy without requiring additional environment
interactions. Have good empirical performance, and widely used.

× Only have theoretical guarantees in the tabular setting, and can fail to converge in simple
scenarios [Hsu et al., 2020].

No systematic way to design theoretically principled surrogate
functions, or a unified framework to analyze their properties.
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Functional representation vs Policy parameterization

Functional representation: Specifies a policy’s sufficient statistics and is implicit.
Examples:

Direct functional representation: Conditional distribution over actions pπ(·|s) for each s.
Softmax functional representation: Logits zπ(s, a) such that pπ(a|s) = exp(zπ(s,a))∑

a′ exp(zπ(s,a′)) .

Policy parameterization: Practical realization of the sufficient statistics. Determines Π

(the set of feasible policies). Examples:
Tabular parameterization for the direct functional representation: pπ(a|s) = θ(s, a).
Linear parameterization for the softmax functional representation: zπ(s, a) = ⟨θ, X(s, a)⟩,
where X(s, a) are the state-action features and θ ∈ Rd are the parameters of a linear model.

The functional representation of a policy is independent of its parameterization.

Standard PG approach: Use a model (with parameters θ) to parameterize (the functional
representation of) π and directly maximize J(π(θ)) w.r.t. θ.
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Functional Mirror Ascent

Target-based surrogate optimization: Iteratively optimize J w.r.t π and project onto Πθ.

Overload π to be a general functional representation, with π(θ) as its parametric realization.
For a strictly convex, differentiable function Φ (mirror map), DΦ(π, π

′) is the Bregman
divergence between policies π and π′. DΦ(π, π

′) := Φ(π)− Φ(π′)− ⟨∇Φ(π′), π − π′⟩.
E.g. If Φ(π) = 1

2 ∥π∥
2
2, DΦ(π, π

′) = 1
2 ∥π − π′∥22.

In each iteration t ∈ [T ] of functional mirror ascent (FMA), with step-size η,

πt+1 = arg max
π∈Πθ

[
⟨π, ∇πJ(πt)⟩ −

1
η
DΦ(π, πt)

]
Since π ∈ Πθ,

πt+1 = π(θt+1) ; θt+1 = argmax
θ∈Rd

[
J(π(θt)) + ⟨π(θ)− π(θt), ∇πJ(π(θt))⟩ −

1
η
DΦ(π(θ), π(θt))

]
︸ ︷︷ ︸

Surrogate function gt(θ)
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FMA-PG Framework – Algorithm

Algorithm 1: Generic policy optimization

Input: π (functional representation), θ0 (initial policy parameterization), T (PG iterations),
m (inner-loops), η (step-size for functional update), α (step-size for parametric update)

for t ← 0 to T − 1 do
Compute ∇πJ(πt) and form the surrogate gt(θ).
Initialize inner-loop: ω0 = θt
for k ← 0 to m do

ωk+1 = ωk + α∇ωgt(ωk) /* Off-policy actor updates */
θt+1 = ωm

πt+1 = π(θt+1)
Return θT

If we can guarantee that (i) gt(θ) ≤ J(π(θ)) and (ii) gt(θt+1) ≥ gt(θt), then the above
algorithm results in monotonic policy improvement regardless of the policy parameterization.
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Instantiating FMA-PG – Direct functional representation

Policy is represented by distributions pπ(·|s) over actions for each state s ∈ S.

We choose DΦ(π, π
′) =

∑
s d

π(s)Dϕ(p
π(·|s), pπ′

(·|s)).

Since ∂J(π)
∂pπ(a|s) = dπ(s)Qπ(s, a), the surrogate function at iteration t is given by,

gt(θ) = E(s,a)∼µπt

[(
Qπt (s, a)

pπ(a|s, θ)
pπ(a|s, θt)

)]
− 1

η
Es∼dπt [Dϕ(p

π(·|s, θ), pπ(·|s, θt))] + C .

For the negative entropy mirror-map i.e. when ϕ(pπ(·|s)) =
∑

a p
π(a|s) log pπ(a|s),

gt(θ) = E(s,a)∼µπt

[(
Qπt (s, a)

pπ(a|s, θ)
pπ(a|s, θt)

)]
− 1

η
Es∼dπt [KL (pπ(·|s, θ)||pπ(·|s, θt))] + C .

Setting η for the direct functional representation with negative entropy mirror map

For any policy parameterization, ∀θ, J(π(θ)) ≥ gt(θ) for η ≤ (1−γ)3

2γ|A| .

× Involves the importance-sampling ratio pπ(a|s,θ)
pπ(a|s,θt) that could be potentially large.

× Involves the reverse KL divergence making it mode seeking hindering exploration.
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Instantiating FMA-PG – Softmax functional representation

Policy is represented by the logits zπ(s, a) such that pπ(a|s) ∝ exp(zπ(s, a)) for each state.

We choose DΦ(π, π
′) =

∑
s d

π(s)Dϕz (z(s, ·), z ′(s, ·)).

Since ∂J(π)
∂zπ(s,a) = dπ(s)Aπ(s, a)pπ(a|s), the surrogate function at iteration t is given by,

gt(θ) = E(s,a)∼µπt [A
πt (s, a) zπ(s, a|θ)]− 1

η

∑
s

dπt (s)Dϕz (z
π(s, ·|θ), zπ(s, ·|θt)) + C .

For the log-sum-exp mirror-map i.e. when ϕz(z(s, ·)) = log (
∑

a exp(z
π(s, a))),

gt(θ) = E(s,a)∼µπt

[(
Aπt (s, a) +

1
η

)
log

pπ(a|s, θ)
pπ(a|s, θt)

]
+ C .

Setting η for the softmax functional representation with log-sum-exp mirror map
For any policy parameterization, ∀θ, J(π(θ)) ≥ gt(θ) for η ≤ 1− γ.
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Instantiating FMA-PG – Softmax functional representation

The surrogate can be rewritten as

gt(θ) = Es∼dπt

[
Ea∼pπt

(
Aπt (s, a) log pπ(a|s,θ)

pπ(a|s,θt )

)
− 1

η
KL(pπ(·|s, θt)||pπ(·|s, θ))

]
+ C .

✓ Above surrogate depends on the log of the importance sampling ratio.

✓ Surrogate involves the forward KL divergence making it mode covering encouraging exploration.

Compared to TRPO: maxθ∈Rd E(s,a)∼µπt [A
πt (s, a) pπ(a|s,θ)

pπ(a|s,θt ) ] s.t. Es∼dπt [KL(pπt (·|s, θt)||pπ(·|s, θ))] ≤ δ,

gt(θ) involves the log of the importance sampling ratio, and enforces proximity between policies
using a regularization (with parameter 1/η) rather than a constraint.

we ensure monotonic policy improvement for any policy parameterization.
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FMA-PG – Experimental Evaluation - Continuous control

FMA-PG with the softmax representation suggests sPPO with the following surrogate:

gt(θ) = E(s,a)∼µπt

[
Aπt (s, a) log

(
clip

(
pπ(a|s, θ)
pπ(a|s, θt)

,
1

1 + ϵ
, 1 + ϵ

))]
.
Compare to PPO on standard Mujoco tasks, with both algorithms using a critic.
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Outline

Target-based Surrogate Optimization

Functional Mirror Ascent for Policy Gradient (FMA-PG)

Conclusion
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Conclusion

✓ Used functional mirror ascent to propose FMA-PG, a systematic way to define surrogate
functions for generic policy optimization. Ensures monotonic policy improvement for
arbitrary policy parameterization.

✓ Can use the FMA-PG framework to “lift” existing theoretical guarantees [Mei et al., 2020,
Xiao, 2022] for policy optimization algorithms in the tabular setting to use off-policy
updates and function approximation.

✓ Show experimental evidence that on simple tabular MDPs, the algorithms instantiated with
FMA-PG are competitive with popular PG algorithms such as TRPO, PPO. The framework
suggests an alternative method, sPPO that out-performs PPO on the MuJoCo suite.

✓ Recent work [Vaswani et al., 2023]: Generalized FMA-PG to design a decision-aware
actor-critic framework where the actor and critic are trained cooperatively to optimize a
joint objective.
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Questions?

Papers: https://arxiv.org/abs/2108.05828, https://arxiv.org/abs/2302.02607
Contact: vaswani.sharan@gmail.com, nicolas.le.roux@gmail.com
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FMA-PG – Experimental Evaluation - Tabular MDP

Compare MDPO (direct + negative entropy mirror map), sMDPO (softmax + logsumexp
mirror map), PPO, TRPO with access to exact Qπ, Aπ values (no function approximation).

Use best-tuned values of the functional step-size η for MDPO and sMDPO, clipping value ϵ
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FMA-PG – Experimental Evaluation - Tabular MDP

Ablation study on MDPO, sMDPO, TRPO to evaluate the effect of m, algorithm
hyperparameters (η, δ) and design decisions – line-search in the inner-loop and using a
constraint vs regularization.
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FMA-PG – Experimental Evaluation - Tabular MDP

Ablation study on MDPO, sMDPO, TRPO to evaluate the effect of m, algorithm
hyperparameters (η, δ) and design decisions – line-search in the inner-loop and using a
constraint vs regularization.
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FMA-PG – Experimental Evaluation - Continuous control

Ablation study on sPPO, PPO disabling both learning rate decay and gradient clipping.
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Instantiating FMA-PG – Direct functional representation

Recall that gt(θ) = E(s,a)∼µπt

[(
Qπt (s, a) pπ(a|s,θ)

pπ(a|s,θt )

)]
− 1

η
Es∼dπt [KL (pπ(·|s, θ)||pπ(·|s, θt))] + C .

With the tabular parameterization,

similar to uniform TRPO [Shani et al., 2020] and Mirror Descent Modified Policy
Iteration [Geist et al., 2019].
with m = ∞ (exact maximization of the surrogate), and,
(i) squared Euclidean distance mirror map, same as REINFORCE [Williams and Peng, 1991]
(ii) negative entropy mirror map, same as natural policy gradient [Kakade, 2001].

For gradient-based maximization of the surrogate, the resulting update is the same as Mirror
Descent Policy Optimization [Tomar et al., 2020], but we set the step-sizes that ensure monotonic
policy improvement for any policy parameterization and any number of inner-loops.
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