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Motivation

Policy gradient (PG) methods based on REINFORCE:
Each policy update requires recomputing the policy gradient.

✓ Theoretical guarantees [Agarwal et al., 2020] with function approximation.
× Each update requires computationally expensive interactions with the environment.

Methods such as TRPO, PPO and MPO:
Rely on constructing surrogate functions and update the policy to maximize these surrogates.

✓ Support off-policy updates – can update the policy without requiring additional environment
interactions. Have good empirical performance, and widely used.

× Only have theoretical guarantees in the tabular setting, and can fail to converge in simple
scenarios [Hsu et al., 2020].

No systematic way to design theoretically principled surrogate
functions, or a unified framework to analyze their properties.
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Problem Formulation

Infinite-horizon discounted MDP: M = ⟨S,A, p, r , ρ, γ⟩.
Distributions induced by policy π: For each state s ∈ S, pπ(·|s) over actions. State
occupancy measure: dπ(s) = (1− γ)

∑∞
τ=0 γ

τP(sτ = s | s0 ∼ ρ, aτ ∼ pπ(·|sτ )).
State-action occupancy measure: µπ(s, a) = dπ(s)pπ(a|s).
Expected discounted return for π: J(π) = Es0,a0,...[

∑∞
τ=0 γ

τ r(sτ , aτ )], where
s0 ∼ ρ, aτ ∼ pπ(·|sτ ), and sτ+1 ∼ p(·|sτ , aτ ).
Objective: Given a set of feasible policies Π, maxπ∈Π J(π). π∗ := argmaxπ∈Π J(π).
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Functional representation vs Policy parameterization

Functional representation: Specifies a policy’s sufficient statistics and is implicit.
Examples:

Direct functional representation: Conditional distribution over actions pπ(·|s) for each s.
Softmax functional representation: Logits zπ(s, a) such that pπ(a|s) = exp(zπ(s,a))∑

a′ exp(zπ(s,a′)) .

Policy parameterization: Practical realization of the sufficient statistics. Determines Π

(the set of feasible policies). Examples:
Tabular parameterization for the direct functional representation: pπ(a|s) = θ(s, a).
Linear parameterization for the softmax functional representation: zπ(s, a) = ⟨θ, X(s, a)⟩,
where X(s, a) are the state-action features and θ ∈ Rd are the parameters of a linear model.

The functional representation of a policy is independent of its parameterization.

Standard PG approach: Use a model (with parameters θ) to parameterize (the functional
representation of) π and directly optimize J(π(θ)) w.r.t. θ.
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Functional Mirror Ascent

Idea: Iteratively optimize J w.r.t π and project onto Π (depends on the parameterization).
Overload π to be a general functional representation, with π(θ) as its parametric realization.
For a strictly convex, differentiable function Φ (mirror map), DΦ(π, π

′) is the Bregman
divergence between policies π and π′. DΦ(π, π

′) := Φ(π)− Φ(π′)− ⟨∇Φ(π′), π − π′⟩.
E.g. If Φ(π) = 1

2 ∥π∥
2
2, DΦ(π, π

′) = 1
2 ∥π − π′∥22.

In each iteration t ∈ [T ] of functional mirror ascent (FMA), with step-size η,

πt+1/2 = (∇Φ)−1 (∇Φ(πt) + η∇πJ(πt)) ; πt+1 = argmin
π∈Π

DΦ(π, πt+1/2)

πt+1 = argmax
π∈Π

[
⟨π, ∇πJ(πt)⟩ −

1
η
DΦ(π, πt)

]
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FMA-PG Framework

The complexity of the projection onto Π depends on the parameterization. Examples:
For a tabular parameterization, Π allows all memoryless policies.
For a linear parameterization, Π is restricted, but is a convex set in θ.
For a neural network, Π is restricted and non-convex, making the projection ill-defined.

If Π consists of policies realizable by a parametric model, then

πt+1 = argmin
π∈Π

DΦ(π, πt+1/2) = arg min
θ∈Rd

DΦ(π(θ), πt+1/2) (Reparameterization)

Ensures that πt+1 ∈ Π.

With this reparameterization, the FMA update can be rewritten as:

πt+1 = π(θt+1) ; θt+1 = argmax
θ∈Rd

[
J(π(θt)) + ⟨π(θ)− π(θt), ∇πJ(π(θt))⟩ −

1
η
DΦ(π(θ), π(θt))

]
︸ ︷︷ ︸

Surrogate function ℓπ,Φ,η
t (θ)

ℓt(θ) is non-concave in general, and we optimize it using a gradient-based method.
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FMA-PG Framework – Algorithm

Algorithm 1: Generic policy optimization

Input: π (functional representation), θ0 (initial policy parameterization), T (PG iterations),
m (inner-loops), η (step-size for functional update), α (step-size for parametric update)

for t ← 0 to T − 1 do
Compute ∇πJ(πt) and form the surrogate ℓπ,Φ,η

t (θ).
Initialize inner-loop: ω0 = θt
for k ← 0 to m do

ωk+1 = ωk + α∇ωℓ
π,Φ,η
t (ωk) /* Off-policy actor updates */

θt+1 = ωm

πt+1 = π(θt+1)
Return θT
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Theoretical Guarantees

Recall that, ℓt(θ) = J(π(θt)) + ⟨π(θ)− π(θt), ∇πJ(π(θt))⟩ − 1
η
DΦ(π(θ), π(θt)).

Sufficient conditions to ensure monotonic policy improvement, i.e. J(πt+1) ≥ J(πt):
(i) ℓt(θt+1) ≥ ℓt(θt), [Inner-loop improves the surrogate value]
(ii) ℓt(θ) ≤ J(π(θ)) for all θ. [Surrogate is a global lower bound on J(π(θ))]

If these conditions are satisfied, then,

J(πt+1)
Def
= J(π(θt+1))

(ii)

≥ ℓt(θt+1)
(i)

≥ ℓt(θt)
Def
= J(π(θt))

Def
= J(πt)

Since J(π) is upper-bounded by 1
1−γ , this guarantees convergence to a stationary point for any

complicated policy parameterization.

(i) is satisfied by setting the parametric step-size α according to the smoothness of ℓt(θ).
Specifically, if ℓt(θ) is β-smooth, any α ≤ 1

β and m ≥ 1 guarantees (i).
(ii) is satisfied by setting the functional step-size η according to the relative smoothness of
J(π) w.r.t DΦ. Specifically, any η that ensures J + 1

ηΦ is a convex function guarantees (ii).
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Instantiating FMA-PG – Direct functional representation

Policy is represented by distributions pπ(·|s) over actions for each state s ∈ S.
We choose DΦ(π, π

′) =
∑

s d
π(s)Dϕ(p

π(·|s), pπ′
(·|s)).

Since ∂J(π)
∂pπ(a|s) = dπ(s)Qπ(s, a), the surrogate function at iteration t is given by,

ℓπ,Φ,η
t (θ) = E(s,a)∼µπt

[(
Qπt (s, a)

pπ(a|s, θ)
pπ(a|s, θt)

)]
− 1

η
Es∼dπt [Dϕ(p

π(·|s, θ), pπ(·|s, θt))] + C .

For the negative entropy mirror-map i.e. when ϕ(pπ(·|s)) =
∑

a p
π(a|s) log pπ(a|s),

ℓπ,NE,η
t (θ) = E(s,a)∼µπt

[(
Qπt (s, a)

pπ(a|s, θ)
pπ(a|s, θt)

)]
− 1

η
Es∼dπt [KL (pπ(·|s, θ)||pπ(·|s, θt))] + C .

Setting η for the direct functional representation with negative entropy mirror map

For any policy parameterization, ∀θ, J(π(θ)) ≥ ℓπ,NE,η
t (θ) for η ≤ (1−γ)3

2γ|A| .

× Involves the importance-sampling ratio pπ(a|s,θ)
pπ(a|s,θt) that could be potentially large.

× Involves the reverse KL divergence making it mode seeking hindering exploration.
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Instantiating FMA-PG – Softmax functional representation

Policy is represented by the logits zπ(s, a) such that pπ(a|s) ∝ exp(zπ(s, a)) for each state.

We choose DΦ(π, π
′) =

∑
s d

π(s)Dϕz (z(s, ·), z ′(s, ·)).

Since ∂J(π)
∂zπ(s,a) = dπ(s)Aπ(s, a)pπ(a|s), the surrogate function at iteration t is given by,

ℓπ,Φ,η
t (θ) = E(s,a)∼µπt [A

πt (s, a) zπ(s, a|θ)]− 1
η

∑
s

dπt (s)Dϕz (z
π(s, ·|θ), zπ(s, ·|θt)) + C .

For the log-sum-exp mirror-map i.e. when ϕz(z(s, ·)) = log (
∑

a exp(z
π(s, a))),

ℓπ,LSE,η
t (θ) = E(s,a)∼µπt

[(
Aπt (s, a) +

1
η

)
log

pπ(a|s, θ)
pπ(a|s, θt)

]
+ C .

Setting η for the softmax functional representation with log-sum-exp mirror map

For any policy parameterization, ∀θ, J(π(θ)) ≥ ℓπ,LSE,η
t (θ) for η ≤ 1− γ.
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Instantiating FMA-PG – Softmax functional representation

The surrogate can be rewritten as

ℓπ,LSE,η
t (θ) = Es∼dπt

[
Ea∼pπt

(
Aπt (s, a) log pπ(a|s,θ)

pπ(a|s,θt )

)
− 1

η
KL(pπ(·|s, θt)||pπ(·|s, θ))

]
+ C .

✓ Compared to ℓπ,NE,η
t (θ), the above surrogate depends on the log of the importance sampling ratio.

✓ Surrogate involves the forward KL divergence making it mode covering encouraging exploration.

Compared to TRPO: maxθ∈Rd E(s,a)∼µπt [A
πt (s, a) pπ(a|s,θ)

pπ(a|s,θt ) ] s.t. Es∼dπt [KL(pπt (·|s, θt)||pπ(·|s, θ))] ≤ δ,

ℓπ,LSE,η
t (θ) involves the log of the importance sampling ratio, and enforces proximity between

policies using a regularization (with parameter 1/η) rather than a constraint.

we ensure monotonic policy improvement for any policy parameterization.
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Conclusion

✓ Used functional mirror ascent to propose FMA-PG, a systematic way to define surrogate
functions for generic policy optimization. Ensures monotonic policy improvement for
arbitrary policy parameterization.

✓ Can use the FMA-PG framework to “lift” existing theoretical guarantees [Mei et al., 2020,
Xiao, 2022] for policy optimization algorithms in the tabular setting to use off-policy
updates and function approximation.

✓ Show experimental evidence that on simple tabular MDPs, the algorithms instantiated with
FMA-PG are competitive with popular PG algorithms such as TRPO, PPO. The framework
suggests an alternative method, sPPO that out-performs PPO on the MuJoCo suite.
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Motivation

× FMA-PG relies on the knowledge of the true gradient ∇πJ(π), which involves either the
action-value (Qπ) or the advantage (Aπ) functions. This information is rarely available,
making FMA-PG impractical in realistic settings.

Can estimate ∇πJ(π) using Monte-Carlo samples obtained via environment
interactions [Williams, 1992] and use the estimated gradient.
× Resulting estimator has high variance, leading to higher sample-complexity.

Can estimate ∇πJ(π) using a value-based method (“critic”). Results in a low-variance, but
biased estimate.
× Critic is usually trained by minimizing the TD error, an objective that is potentially

decorrelated with the true goal of achieving a high reward with the actor.

Lack of theoretically principled objectives to jointly train the actor
and critic in order to learn good policies.
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Decision-aware Actor Critic

Idea: Generalize the lower-bound on J(π) to handle inexact gradients.

Generic lower-bound on J(π)

For any gradient estimator ĝt at iteration t of FMA-PG, for c > 0 and η such that J + 1
ηΦ is

convex in π, if Φ∗(y) := maxπ[⟨y , π⟩ − Φ(π)] is the Fenchel conjugate of Φ, we have
inequality (I): J(π)− J(πt) ≥

⟨ĝt , π(θ)− πt⟩ −
(

1
η
+

1
c

)
DΦ(π(θ), πt)︸ ︷︷ ︸

Surrogate function that can be maximized as before

− 1
c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt ],∇Φ(πt)

)
︸ ︷︷ ︸

Error in Qπ or Aπ estimation. Can be minimized by training a critic

.

To maximize policy improvement, an algorithm should (i) learn ĝt to minimize the blue term
(critic objective) and (ii) compute π ∈ Π that maximizes the green term (actor objective).

c is a parameter relating the critic error to the permissible movement in the actor update.
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Decision-aware Actor-Critic – Algorithm

Algorithm 2: Generic actor-critic algorithm

Input: π (choice of functional representation), θ0 (initial policy parameters), ω(−1) (initial
critic parameters), T (AC iterations), ma (actor inner-loops), mc (critic inner-loops), η
(functional step-size for actor), c (trade-off parameter), αa (parametric step-size for actor),
αc (parametric step-size for critic)

Initialization: π0 = π(θ0)

for t ← 0 to T − 1 do

Estimate ∇̂πJ(πt) and form Lt(ω) :=
1
c DΦ∗

(
∇Φ(πt)− c [∇̂πJ(πt)− ĝt(ω)],∇Φ(πt)

)
Initialize inner-loop: υ0 = ωt−1

for k ← 0 to mc − 1 do
υk+1 = υk − αc ∇υ Lt(υk) /* Critic Updates */

ωt = υmc ; ĝt = ĝt(ωt)

Form ℓt(θ) := ⟨ĝt , π(θ)− πt⟩ −
(

1
η + 1

c

)
DΦ(π(θ), πt)

Initialize inner-loop: ν0 = θt
for k ← 0 to ma − 1 do

νk+1 = νk + αa∇ν ℓt(νk) /* Off-policy actor updates */
θt+1 = νma ; πt+1 = π(θt+1)

Return πT = π(θT ) 17



Instantiating Decision-aware Actor-Critic – Direct functional representation

Lower-bound for direct representation

For the direct representation and negative entropy mirror map, c > 0, η ≤ (1−γ)3

2γ |A| ,

J(π)− J(πt) ≥ C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt (a|s)

(
Q̂πt (s, a)−

(
1
η
+

1
c

)
log

(
pπ(a|s)
pπt (a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt (s, a)− Q̂πt (s, a)] +
1
c

log
(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt (s, a)− Q̂πt (s, a)]

)])]

Lower-bound holds for any policy or critic parameterization i.e. pπ(·|s) = pπ(·|s, θ),
Q̂π(s, a) = Qπ(s, a|ω), and instantiates the actor and critic objectives at iteration t.

The blue term is referred to as the decision-aware critic loss since minimizing it directly
improves the lower-bound on J(π) and can result in policy improvement.
Critic loss is asymmetric and penalizes the under/over-estimation of the Qπ function
differently. Unlike the standard squared critic loss: Es∼dπt Ea∼pπt (·|s) [Q

πt (s, a)− Qπt (s, a|ω)]2.

18



Instantiating Decision-aware Actor-Critic – Direct functional representation

Importance of the decision-aware critic loss
Consider a two-armed bandit example with deterministic rewards where arm 1 is optimal and
has reward r1 = Q1 = 2, whereas arm 2 has reward r2 = Q2 = 1. Using a linear
parameterization for the critic, Q function is estimated as: Q̂i = xi ω. Set x1 = −2 and x2 = 1
and let pt be the probability of pulling the optimal arm at iteration t.
Consider minimizing two alternative objectives to estimate ω:
(1) Squared loss: ω

(1)
t := argminTD(ω) := argmin

{
pt
2 [Q̂1(ω)− Q1]

2 + 1−pt
2 [Q̂2(ω)− Q2]

2
}

.

(2) Decision-aware critic loss: ω
(2)
t := argminLt(ω) := pt [Q1 − Q̂1(ω)] + (1 − pt) [Q2 − Q̂2(ω)] +

1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1 − pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.

Using the tabular parameterization for the actor, the policy update at iteration t is given by:
pt+1 = pt exp(ηQ̂1)

pt exp(ηQ̂1)+(1−pt) exp(ηQ̂2)
.

For any η, for p0 < 2
5 , minimizing the squared loss results in convergence to the sub-optimal

action, while minimizing the decision-aware loss (for any c , p0 > 0) results in convergence to
the optimal action.

Similar results for the softmax functional representation. 19



Theoretical Guarantees

Monotonic policy improvement for AC algorithm
For any policy representation and any policy or critic parameterization, there exists a (θ, c) pair
that makes the RHS of inequality (I) strictly positive, and hence guarantees monotonic policy
improvement (J(πt+1) > J(πt)), if and only if the critic error satisfies a technical condition
that depends on the policy parameterization and the mirror map.

Special case: For the tabular policy parameterization with the Euclidean mirror map, this
condition is equivalent to: ∥∇J(πt)− ĝt∥22 < ∥ĝt∥22.

Convergence of AC algorithm

For any critic error, policy representation and mirror map Φ such that (i) J + 1
ηΦ is convex in

π, any policy parameterization such that (ii) ℓt(θ) is smooth w.r.t θ and satisfies a gradient
domination condition, for c > 0, the AC algorithm converges to a neighbourhood of a
stationary point at an O(1/T ) rate. The neighbourhood depends on the critic error and the
number of off-policy actor updates.
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Conclusions and Future Work

✓ Generalized FMA-PG to design a generic decision-aware actor-critic framework where the
actor and critic are trained cooperatively to optimize a joint objective.

✓ Tabular RL experiments with a linear parameterization for the actor/critic demonstrate that
being decision-aware is important when the critic is not as expressive.

Prove convergence rates to the (neighbourhood) of the optimal policy for the AC algorithm.

Benchmark the AC framework for complex deep RL environments.
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Questions?

Papers: https://arxiv.org/abs/2108.05828, https://arxiv.org/abs/2305.15249
Contact: vaswani.sharan@gmail.com, nicolas.le.roux@gmail.com

22

https://arxiv.org/abs/2108.05828
https://arxiv.org/abs/2305.15249
vaswani.sharan@gmail.com
nicolas.le.roux@gmail.com


References i

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. Optimality and approximation with policy
gradient methods in Markov decision processes. In Conference on Learning Theory (COLT), pages 64–66, 2020.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision processes. In
International Conference on Machine Learning, pages 2160–2169. PMLR, 2019.

Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, and Moritz Hardt. Revisiting design choices in proximal policy
optimization. arXiv preprint arXiv:2009.10897, 2020.

Sham Kakade. A natural policy gradient. In NIPS, volume 14, pages 1531–1538, 2001.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence rates of softmax
policy gradient methods. In International Conference on Machine Learning, pages 6820–6829. PMLR, 2020.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global convergence and
faster rates for regularized mdps. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 5668–5675, 2020.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy optimization.
arXiv preprint arXiv:2005.09814, 2020.

23



References ii

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algorithms.
Connection Science, 3(3):241–268, 1991.

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning Research, 23(282):
1–36, 2022.

24



Backup Slides

24



FMA-PG – Experimental Evaluation - Tabular MDP

Compare MDPO (direct + negative entropy mirror map), sMDPO (softmax + logsumexp
mirror map), PPO, TRPO with access to exact Qπ, Aπ values (no function approximation).

Use best-tuned values of the functional step-size η for MDPO and sMDPO, clipping value ϵ

for PPO and KL constraint value δ for TRPO. Using best-tuned α for each method.

# of iterations

CliffWorld DeepSeaTreasure

J
 (

P
G

 o
bj

ec
ti

ve
)

0.0

0.2

0.4

0.6

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0 50 100 150 200

sMDPO: η=0.03125

MDPO: η=0.03125

TRPO: δ=6.1×10-5

PPO: ϵ=0.1

PPO: ϵ=0.3

TRPO: δ=1.5×10-5

MDPO: η=0.125

sMDPO: η=0.125

25



FMA-PG – Experimental Evaluation - Tabular MDP

Ablation study on MDPO, sMDPO, TRPO to evaluate the effect of m, algorithm
hyperparameters (η, δ) and design decisions – line-search in the inner-loop and using a
constraint vs regularization.
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FMA-PG – Experimental Evaluation - Continuous control

FMA-PG with the softmax representation suggests sPPO with the following surrogate:

ℓπ,Φ,η
t (θ) = E(s,a)∼µπt

[
Aπt (s, a) log

(
clip

(
pπ(a|s, θ)
pπ(a|s, θt)

,
1

1 + ϵ
, 1 + ϵ

))]
.
Compare to PPO on standard Mujoco tasks, with both algorithms using a critic.
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FMA-PG – Experimental Evaluation - Continuous control

Ablation study on sPPO, PPO disabling both learning rate decay and gradient clipping.
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Decision-aware Actor-Critic – Theoretical Guarantees

Necessary and sufficient conditions for monotonic policy improvement for AC algorithm
For any policy representation and any policy or critic parameterization, there exists a (θ, c) pair
that makes the RHS of inequality (I) strictly positive, and hence guarantees monotonic policy
improvement (J(πt+1) > J(πt)), if and only if

⟨bt , H̃†
t bt⟩ > ⟨[∇J(πt)− ĝt ], [∇2

πΦ(πt)]
−1 [∇J(πt)− ĝt ]⟩ ,

bt ∈ Rn :=
∑

s∈S
∑

a∈A [ĝt ]s,a∇θ[π(θt)]s,a, H̃t ∈ Rn×n := ∇θπ(θt)
T∇2

πΦ(πt)∇θπ(θt).
For the special case of the tabular policy parameterization, the above condition becomes

⟨ĝt , [∇2
πΦ(πt)]

−1ĝt⟩ > ⟨[∇J(πt)− ĝt ], [∇2
πΦ(πt)]

−1 [∇J(πt)− ĝt ]⟩ .
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Decision-aware Actor-Critic – Theoretical Guarantees

Convergence of AC algorithm

Proposition: For any policy representation and mirror map Φ such that (i) J + 1
ηΦ is convex

in π, any policy parameterization such that (ii) ℓt(θ) is smooth w.r.t θ and satisfies the
Polyak-Lojasiewicz (PL) condition, for c > 0, after T iterations of the AC algorithm we have
that,

E
[
DΦ(π̄R+1, πR)

ζ2

]
≤ 1

ζT

[
J(π∗)− J(π0) +

T−1∑
t=0

(
1
c
EDΦ∗

(
∇Φ(πt)− c δt ,∇Φ(πt)

)
+ E[et ]

)]

where δt := ∇J(πt)− ĝt , 1
ζ = 1

η + 1
c , R is a random variable chosen uniformly from

{0, 1, 2, . . .T − 1} and et ∈ O(exp (−ma)) is the approximation error at iteration t.
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Instantiating Decision-aware Actor-Critic – Softmax functional representation

Lower-bound for softmax representation
For the softmax representation and log-sum-exp mirror map, c > 0, η ≤ 1− γ,

J(π)− J(πt) ≥ Es∼dπt Ea∼pπt (·|s)

[(
Âπt (s, a) +

1
η
+

1
c

)
log

(
pπ(a|s)
pπt (a|s)

)]
− 1

c
Es∼dπt Ea∼pπt (·|s)

[(
1 − c [Aπt (s, a)− Âπt (s, a)]

)
log

(
1 − c [Aπt (s, a)− Âπt (s, a)]

)]
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Instantiating Decision-aware Actor-Critic – Softmax functional representation

Importance of the decision-aware critic loss
Consider a two-armed bandit example and define p ∈ [0, 1] as the probability of pulling arm 1.
Given p, let the advantage of arm 1 be equal to A1 := 1

2 > 0, while that of arm 2 is
A2 := − p

2 (1−p) < 0 implying that arm 1 is optimal. For ε ∈
( 1

2 , 1
)
, consider approximating the

advantage of the two arms using a function approximation model with two hypotheses that
depend on p: H0 : Â1 = 1

2 + ε , Â2 = − p
1−p

( 1
2 + ε

)
and

H1 : Â1 = 1
2 − ε sgn

( 1
2 − p

)
, Â2 = − p

1−p

( 1
2 − ε sgn

( 1
2 − p

))
where sgn is the signum

function. If pt is the probability of pulling arm 1 at iteration t, consider minimizing two
alternative loss functions to choose the hypothesis Ht :
(1) Squared loss: Ht = argmin{H0,H1}

{
pt
2 [A1 − Â1]

2 + 1−pt
2 [A2 − Â2]

2
}

.

(2) Decision-aware critic loss with c = 1: Ht = argmin{H0,H1}{
pt (1 − [A1 − Â1]) log(1 − [A1 − Â1]) + (1 − pt) (1 − [A2 − Â2]) log(1 − [A2 − Â2])

}
.

For any η, for p0 ≤ 1
2 , the squared loss cannot distinguish between H0 and H1 and minimizing

it can result in convergence to the sub-optimal action. For any η, minimizing the divergence
loss (for any p0 > 0) results in convergence to the optimal arm.
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Decision-aware Actor-Critic – Experimental Evaluation

Comparison of decision-aware, AdvTD and TD loss functions using a linear actor and linear
(with three different dimensions) critic in the Cliff World environment for direct and softmax
policy representations.
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Instantiating FMA-PG – Direct functional representation

Recall that ℓπ,NE,η
t (θ) = E(s,a)∼µπt

[(
Qπt (s, a) pπ(a|s,θ)

pπ(a|s,θt )

)]
− 1

η
Es∼dπt [KL (pπ(·|s, θ)||pπ(·|s, θt))] + C .

With the tabular parameterization,

similar to uniform TRPO [Shani et al., 2020] and Mirror Descent Modified Policy
Iteration [Geist et al., 2019].
with m = ∞ (exact maximization of the surrogate), and,
(i) squared Euclidean distance mirror map, same as REINFORCE [Williams and Peng, 1991]
(ii) negative entropy mirror map, same as natural policy gradient [Kakade, 2001].

For gradient-based maximization of the surrogate, the resulting update is the same as Mirror
Descent Policy Optimization [Tomar et al., 2020], but we set the step-sizes that ensure monotonic
policy improvement for any policy parameterization and any number of inner-loops.
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