
Modeling Non-Progressive Phenomena for Influence Propagation

Vincent Yun Lou†, Smriti Bhagat§, Laks V.S. Lakshmanan‡, Sharan Vaswani‡

† Stanford University, § Technicolor , ‡University of British Columbia
† yunlou@stanford.edu, §smriti.bhagat@technicolor.com , ‡{laks,sharanv}@cs.ubc.ca

Abstract

Recent work on modeling influence propagation focus on progressive models, i.e., once a node is influenced
(active) the node stays in that state and cannot become inactive. However, this assumption is unrealistic in
many settings where nodes can transition between active and inactive states. For instance, a user of a social
network may stop using an app and become inactive, but again activate when instigated by a friend, or when
the app adds a new feature or releases a new version. In this work, we study such non-progressive phenomena
and propose an efficient model of influence propagation. Specifically, we model influence propagation as a
continuous-time Markov process with 2 states: active and inactive. Such a model is both highly scalable (we
evaluated on graphs with over 2 million nodes), 17-20 times faster, and more accurate for estimating the
spread of influence, as compared with state-of-the-art progressive models for several applications where nodes
may switch states.

1 Introduction

Study of information and influence propagation over social networks has attracted significant research interest over
the past decade, driven by applications such as viral marketing [22, 10], social feed ranking [34], contamination
detection [24, 29, 1], and spread of innovation [35] to name a few. A prototypical problem that has received
wide attention is influence maximization: given a social network along with pairwise influence probabilities
between peers, and a number k, find k seed nodes such that activating them at start will eventually lead
to the largest number of activated nodes in the network in the expected sense. Following the early work of
Domingos and Richardson [10] and Kempe et al. [22], there has been a burst of activity in this area (e.g., see
[5, 8, 9, 17, 16, 11, 18]). While the majority of previous studies employ propagation models with discrete time,
in recent work, continuous time models have been shown to be more accurate at modeling influence propagation
phenomena [11, 16, 28]. We refer the reader to the book [7] for a comprehensive survey and a detailed discussion
of recent advances in influence maximization.

As discussed in [22], the propagation models can be classified into progressive and non-progressive (NP)
models. In progressive models, an inactive node can become active, but once active, a node cannot become
inactive. Non-progressive models relax this restriction and allow nodes to repeatedly transition between active
and inactive states.

Indeed, an overwhelming majority of studies of information propagation have confined themselves to progressive
models. For applications such as buying a product, the progressive assumption makes perfect sense: buying
a product is not easily reversible in many cases. On the other hand, there are real applications which are not
naturally captured by progressive models. For example, consider a user adopting a mobile app. Over time, its
appeal may fade and her usage of the app may decline over time. Her interest in the app may be rejuvenated by
a friend telling her about a new cool feature being added to the app at which point, she decides to try the app
again and may continue using it once again. Alternatively, whenever a new version of the app is released, the
user feels tempted to try it again and may, with some probability, decide to continue using it again. As a second
example, it is well known that fashion follows cycles. Choices that are in fashion at the moment may fall out of
fashion and may again become fashionable in the future, as it has been recognized that social choices follow
cyclic trends [33]. As a third example, there are many applications where users may become active and stay in
that state for a period of time before deactivating, such as, adopting a feature on a content sharing site where
the feature may be the “like” or “favorite” button for a post, filters (sepia, sketch, outline) for photo editing,

1

ar
X

iv
:1

40
8.

64
66

v1
 [

cs
.S

I]
 2

6
A

ug
 2

01
4

or “check-in” to a location or a show. Finally, in epidemiology, it is well known that an infected person may
recover from a disease but not necessarily acquire lifelong immunity from the disease, thus being susceptible to
the disease. In all the above examples, the phenomena in question are subject to spreading via influence. As
we will show with experiments on real datasets in this paper, the use of progressive models for capturing such
phenomena leads to considerable error. There is a clear need for a non-progressive model for studying these
phenomena.

We next briefly review related work on non-progressive models. A more detailed comparison appears in
the next section. In their seminal paper, Kempe et al. [22] propose a non-progressive model and show that
it can be reduced to a progressive model by replicating each node for every timestamp in the time horizon
under consideration, and connecting each node to its neighbors in the previous timestamp. They show that this
reduction preserves equivalence, which implies all techniques developed for progressive models can in principle
be applied to non-progressive models. However, replicating a large network for each timestamp over a large time
horizon will clearly make this approach impractical for large social networks containing millions of nodes. Thus,
this approach is largely of theoretical interest. Fazli et al. [14] study a simple non-progressive model based on
deterministic linear threshold, where the threshold is given by strict majority. Their focus is on finding a minimum
perfect target set, i.e., a set of seeds of the smallest size which leads to the eventual activation of all network
nodes. The goals and approaches are considerably different from those of this paper. In epidemic modeling, the
SIRS (Susceptible-Infected-Recovered-Susceptible) model [31, 15] follows the non-progressive paradigm, and
explicitly allows for recovered patients to remain susceptible to the disease and become infected again. In the
economics literature, there have studies [4, 12, 20] on non-progressive models. A detailed comparison with these
and other related works appears in the next section.

Another related area is competitive influence maximization, where competing parties choose seed nodes
in order to maximize the adoption of their product or opinion [7]. Non-progressiveness arises naturally from
the perspective of any one party involved in the competition. Our focus in this paper is not competition. As
illustrated above, there are several example applications where propagation of information or influence happens
in a non-progressive manner and it is our goal to model and study them in this paper.

Influence maximization is known to be a computationally hard problem, even over the relatively simpler
progressive models. We don’t expect influence maximization to be easier over non-progressive models. We face
the challenge, whether we can design approximation algorithms for influence maximization over non-progressive
models that scale to large data sets. To this end, we first propose a discrete time non-progressive model
called DNP. It will turn out that DNP, while accurate at modeling non-progressive phenomena, does not lead
to a scalable solution for estimating influence spread. To mitigate this, we draw inspiration from the recent
observations that continuous time models lead to greater accuracy in predicting node activations [11, 16], and
we propose a continuous time non-progressive model (CNP), which models the underlying influence propagation
as a Markov process. This model can also capture progressive phenomena by appropriately setting the model
parameters. We call this variant CNP-Progressive (CP for short). It is interesting to investigate how CP
compares with the state-of-the-art progressive continuous time models such as [11, 16].

A second challenge centers on the question, what should the objective be when selecting seeds with respect
to non-progressive models. As opposed to maximizing the number of active nodes at some time, as done in
progressive models, we argue that it is more appropriate to maximize the expected time during which nodes may
have been active.

Finally, while example applications demonstrating the value of and need for non-progressive models exist,
to date, no empirical studies have compared non-progressive models with their progressive counterparts with
an aim of calibrating their accuracy for explaining propagation phenomena over real data sets. This is partly
exacerbated by the fact that real non-progressive data sets are relatively difficult to obtain. Can we establish the
value of non-progressive models using any publicly available data sets?

In this paper, we address all the above challenges. Specifically, we make the following contributions.

• We propose a discrete time non-progressive model and implement it without graph replication (Section 3).

• We propose an efficient continuous time non-progressive model (Section 4).

• We define the objective of influence maximization as choosing seeds so as to maximize the total expected
activation time of nodes. We show that the objective function of total expected activation time is both
monotone and submodular. This implies the classic greedy seed selection algorithm, combined with our
direct approach for computing expected total activation time, provides a (1− 1/e)-approximation to the
optimal solution (Section 6).

2

• Through experiments on synthetic and real datasets, we show that the accuracy of our non-progressive model
for estimating expected total activation time is much higher than its progressive counterparts, including the
recently proposed continuous time model [11]. Further, we show that our method is more than one order of
magnitude faster than an efficient implementation of the DNP model, whose accuracy is comparable to that
of CNP. We also show that on datasets that have no deactivations (i.e., progressive setting), our method
using CP is 17-20 times faster than the continuous time progressive model of [11] (Section 7).

We start by presenting related work in Section 2, and conclude with a summary of the paper and a discussion
on future work in Section 8. The major bottleneck in scaling influence maximization is in estimating the spread
(in our case, expected active time). Our CNP model significantly outperforms the competition on this step and
it’s trivial to see this advantage will carry over to influence maximization.

2 related work

Bharathi et al. [2] use exponential distribution to model the information propagation delay between nodes, and
use this to avoid tie-breaking for simultaneous activation attempts by multiple neighbors. We share with them
the use of exponential distribution to model activation delays in our CNP model. However, their main goal is
designing response strategies to competing cascades rather than maximizing the spread. Considerable work on
non-progressive models has been done by the economics community [4]. But they do not focus on computational
issues, especially in relation to influence spread computation and maximization.

Kempe et al. [22] proposed several propagation models, including non-progressive ones, but all based on
discrete time. Indeed, the DNP model we describe is fashioned after the non-progressive LT model they describe.
As we show, our continuous time model CNP significantly outperforms DNP in terms of scalability. Our model
and contributions are orthogonal to theirs. In particular, our efficient sampling strategy enables a scalable
implementation of influence maximization. Recently, non-progressive models have received attention from the
research community [14, 13, 25, 30]. As observed in [14], progressive models are not accurate and there is
scalability issue with non-progressive models. Their model is a simplistic model based on strict majority. While
theoretically appealing, it’s easy to show it’s not submodular and no scalable influence maximization algorithm
is provided. Furthermore, they focus on finding a perfect target set, one that ends up activating every node, not
a realistic goal. Maximizing the overall activation times of nodes is more realistic goal for a business, which is
what we study. [13] studies a voter model on an unsigned undirected graph and show that the most effective
seeds for maximizing influence over long term are the highest degree nodes. [25] study the considerably more
complex case of voter model on a signed network with competing opinions. [30] considers a generalization of the
LT model with k competing cascades and analyzes the steady state distribution of the network using a stochastic
graph coloring process. As such the goal and contributions of our paper are orthogonal to all these. Prakash et
al. [31] find a condition under which an infection will die out in a given network and not cause an epidemic under
the SIRS virus propagation model. The problem studied is significantly different from influence maximization or
spread estimation, the focus of our paper. Ayalvadi et al. [15] examine the topological properties of a network
that determine the persistence of epidemics under a continuous time epidemic spread model. They formulate
the state transitions (infected/recovered) for nodes using a Markov process. Again, influence maximization is
not their focus. Kuhlman et al. [23] study a bi-threshold diffusion process, where an inactive node activates if
the number of active neighbors exceeds a threshold θ1 and an active node deactivates if the number of inactive
neighbors exceeds θ2, else the node remains in its previous state. They show the process converges to a steady
state and study the problem of finding a “critical” set of nodes such that the total cost spent in forcing the
these nodes is under a given budget and the number of nodes in the active state at steady state is maximized.
While the goal seems similar to influence maximization, the model and objective function are technically very
different from ours. Bischi et al. [3] study word of mouth rumors. Each individual has an initial state. A subset
of individuals meet at each iteration and switches to state (true / false) according to the majority state in the
set. There are multiple such disjoint meetings at each iteration of the diffusion process. They do not consider an
explicit network but one can be induced. Their focus is different from influence maximization.

Finally, a continuous-time Markov chain based progressive model was proposed by Rodriguez et al. [16],
and more recently improved upon by Du et al. [11]. In [16], the authors use continuous-time Markov chains to
analytically compute the spread, i.e., the average total number of nodes reached by a diffusion process starting
from a set of seed nodes. Their model also uses exponential activation time delays on edges and thus the action
time of a node is the shortest path distance from any seed node to that node. However, their methods do not

3

scale well as the time complexity of their solution can be exponentially large for “dense networks”, which the
authors define as networks with average node degree > 2.5. By that definition, most social networks are dense.
Although the authors propose speed-ups that provide approximate solutions or sparsify the networks, their
experiments are run on small graphs of at most 1000 edges. In comparison, we evaluate our model on graphs
with nearly 30 million edges. Furthermore, it is not easy to directly extend their model to the non-progressive
setting.

The recent paper by Du et al. [11] avoids calculating the shortest path distance mentioned above and instead
makes use of a randomized algorithm for estimating the neighborhood size of a single source node and leverages
this for estimating the influence spread within a given time horizon. Another nice feature of this paper is
that they don’t restrict to exponential distributions for their edge activation delays and allow a broad class of
distributions. As such, this approach dominates [16].In our experiments, we compare our CNP and its progressive
variant CP with the method in [11]. On data sets corresponding to progressive phenomena, both [11] and CP
have a comparable accuracy (which is very high). On data sets corresponding to non-progressive phenomena,
both CP and [11] suffer from high error rates while CNP enjoys a very high level of accuracy. In all experiments,
both CP and CNP run 17-20 times faster than [11].

3 Discrete time NP model

There are two popular influence propagation models [22]: independent cascade (IC) and linear threshold (LT).
In [22], Kempe et al. also described an intuitive non-progressive extension of the discrete time LT model.
Fundamentally, the models we propose in the next sections are close to the IC model. To set the proper context,
in this section, we describe a discrete time non-progressive model that is inspired by the framework given in [22],
but closer to the framework we will follow for our CNP model.

3.1 DNP Model

Let G = (V,E, P) be a weighted, directed graph representing a social network, with nodes (users) V and
edges (social ties) E, with the function P : E → [0, 1] representing the probability of influence along edges:
P (u, v) := Pu,v on edge (u, v) ∈ E is the probability that node v will be activated at time t + 1 given that u
is active at time t. Additionally, the function q : V → [0, 1] associates each node u ∈ V with a deactivation
probability: q(u) := qu represents the probability that u will deactivate at time t+ 1 given that it’s active at t.
These are the key ingredients of our discrete time non-progressive model. Given the social network graph and a
seed set of nodes S that are active at the start of the propagation process, time unfolds in discrete steps. At
time t = 0, nodes in S are active. At any time t > 0, each of the currently active nodes u makes one attempt
at activating each of its neighbors v and succeeds with probability Pu,v. At any time, an active node u can
deactivate with probability qu. We refer to this model as the discrete-time non-progressive (DNP) model.

Progressive implementation using replicated graphs. In non-progressive models, nodes can get activated
and deactivated infinitely often, so the influence propagation process can continue indefinitely. Thus, we need to
consider a fixed time horizon as the time period within which we would like to study the propagation process.
Kempe et al. [22] showed that their non-progressive (LT) model’s behavior over a given time horizon T can be
simulated using a progressive model. The key is to replicate the social network graph for each timestamp. We
mimic their steps, and adapt them to the context of our DNP model described above.

Essentially, we create a node uti for each node ui and each timestamp t. For any edge (ui, uj) ∈ E in the
original social network, create an edge (ut−1i , utj), the edge weight is same as the probability of edge (ui, uj).

Also, each node uti is connected to ut−1i (each node is connected to itself at previous timestamp) with edge weight
(1− qui

). A node uit+ 1 is active if it has a neighbor which is active at t and the activation attempt succeeds.
Note that the deactivation probability qu has been compiled into the activation probability (1− qu) from ut to
ut+1. Following the footsteps of [22], the equivalence between the DNP model and the replicated progressive
model can be shown.

Clearly, an implementation of the non-progressive model based on the above simulation is not scalable. The
graph is replicated for each time stamp, which makes it memory intensive. Consider for example, one of the
graphs in our evaluation which has 2.5M nodes and 30M edges, and a time horizon of 365 days. Assuming we
store only two integers for the end points of an edge, and one double as the edge weight, the memory required to

4

store just the edge weights would be approximately 160 GB! Therefore, a näıve implementation with replicated
graphs is not practical.

Space efficient implementation. Here, we propose an efficient implementation of our non-progressive DNP
model above, and use that as our baseline method for comparison purposes. We reduce the memory footprint of
the implementation described above by avoiding the replication of nodes. Notice that the influence from node u
to v is the same for any timestamp, so we only need to store the edge weights Pu,v once for each edge (u, v) in
the original social graph. In the simulation, we only need to store the state (active or inactive) of each node
at the current and previous timestamp. A node u is active at time t if it was active at time t − 1 and it did
not deactivate; or if a neighbor v was active at time t − 1 and it activated node u (with success probability
probability Pv,u). With appropriate mapping of edge and deactivation probabilities, the activation conditions at
each timestamp in DNP can be made the same as that in the näıve implementation with graph replication. As a
result, the expected spread will be the same for the two models. In the sequel, by DNP model, we mean this
improved implementation.

In spite of the savings achieved by avoiding graph replication, the DNP model still suffers from a serious
inefficiency, described next. The DNP model involves each node making a decision at each time step of whether
the node changes its state. Thus, in an implementation, at each time step, n nodes need to sample a uniform
distribution to decide their state at the next time step. Several nodes may stay in their current state for long
periods of time. Hence, sampling at each time step at each node is extremely inefficient. We therefore move
to the continuous-time regime to allow for a much more efficient modeling of the non-progressive phenomena.
Later, in Section 4.3 we show how the discrete-time and continuous-time models are related.

4 Continuous-time NP Model

4.1 Model description

In this section, we present a continuous-time non-progressive model that permits a far more efficient implementa-
tion compared to the DNP model.We model influence propagation as a continuous-time Markov process with
nodes being in one of two states: active and inactive. As in classical propagation models, in our model, events
trigger state changes and happen probabilistically. We start with a seed set of active nodes. At any time, there
are two events that may happen at an active node: the node may activate its neighbor, or may deactivate itself.
Similarly, for any inactive node, the node may get activated by one of its active neighbors, or stay inactive. We
refer to an event that activates an inactive node as an activation event and one that deactivates an already
active node as a deactivation event. It is these deactivation events that allow the model to be non-progressive.

More specifically, there are two parameters, one for activation and the other for deactivation, both being
exponentially distributed random variables. In Section 7.1 we show how these parameters can be learned from
data.Each edge (u, v) ∈ E has an associated activation rate parameter γ+,u,v, and each node u has a deactivation
rate parameter γ−,u. We start with a seed set of nodes that are, by definition, active at time 0. For each node
u that is activated at time t, (a) a time τ sampled according to rate parameter γ+,u,v has the semantic that
v will be activated no later than t + τ , and (b) a time τ ′ sampled according to rate parameter γ−,u, has the
semantic that node u will deactivate at time t+ τ ′. Notice that another neighbor of v may activate it sooner. In
particular, an inactive node v that is reachable from one or more active nodes activates at a time equal to the
shortest path from those active nodes, that is shortest in terms of the sum of sampled propagation times of the
edges forming the path. However, each activation or deactivation with its associated rate parameter is one local
event. That is, only the ego-centric network of a node is involved in any event. This observation is key to the
scalability of our proposed method. In particular, unlike the recently proposed continuous time (but progressive)
models [11, 16], we don’t need to compute or even estimate the shortest path length directly.

4.2 Semantics of the propagation

During an influence propagation cascade, there are multiple activation and deactivation events that may happen.
In order to model the cascade, we need to find the one that happens first and update the activation status of
the corresponding node. For instance, if u is active, it deactivates with some rate parameter, however, it is also
trying to activate its inactive neighbor v with some rate parameter. If u deactivates before activating v, then v
may not have a chance to activate (assuming it has only one neighbor) unless u activates again. Further, if there
are multiple neighbors trying to activate a node v, it will get activated by the local event that happens first, i.e.,

5

by the neighbor that first activates it. Therefore, it is important to understand and model the order of events.
We crucially make use of two key properties of exponential distributions for modeling the time and order of
events.

Property 1. For n different events with rate parameters γ1, γ2 . . . γn, the probability that the ith event will
happen first is γi∑n

i=1 γi
.

Property 2. For different events with rate parameters γ1, γ2 . . . γn, the time of the first event is exponentially
distributed with rate parameter:

∑n
i=1 γi.

We keep track of the current time tcur during a propagation process. At each iteration, the categorical
distribution in Property 1 is sampled to determine the event that happens first (or next). Then, the exponential
distribution with rate parameter

∑n
i=1 γi is sampled (Property 2) to obtain the time elapsed τ between last

event and this event. The current time is then updated as tcur = tcur + τ , and we proceed to the next iteration if
tcur < T , where T is the time horizon, and stop otherwise. In other words, even though the model is continuous
time, it has a clear interpretation in terms of discrete steps, namely the occurrence of events.

Another way to understand the model semantics is in terms of possible worlds. A deterministic possible
world for our model can be constructed as follows: For each edge (u, v) ∈ E we sample an array of timestamps
and sort it. A timestamp in the array indicates that if u is active at that time, it will activate node v. We call
this array the schedule of activations. Similarly, for each node u ∈ V , we sample an array of deactivation times.
If u is active at those timestamps, it will get deactivated. We refer to this array as the schedule of deactivations.
The set of possible worlds for a given instance of our CNP model is the set of all such edge activation schedules
and node deactivation schedules, for every edge and node in the given social graph. Such a construction of
possible world aptly covers all possibilities in our random process. The following example illustrates the notion
of schedule of activations. The notion of schedule of deactivations works analogously.

Example 1. For instance, let the time horizon be T = 6 and the sampled array for the edge(u, v) be [1, 3.2, 5.8].
Let and node u be active in the time interval (2, 4.2). We go over the schedule of activations: at t = 1, v is not
influenced by node u as u is inactive; at t = 3.2, if v is not active it will be activated by u; and nothing will
happen at t = 5.8.

We will use these semantics to prove monotonicity and submodularity of the spread under the CNP model in
Section 6.

4.3 Advantages of CNP over DNP

If we correctly map the rate parameters in CNP model to the probabilities in DNP model, the simulation results
of two models will be similar. We note that the models are not equivalent, but have similar accuracy in terms
of the expected spread, when the following mapping holds. In CNP, for any edge (u, v) where u is active but
v is not, the probability that u activates v within the next time unit is equal to the CDF(1, γ), where CDF is
the cumulative distribution function of the exponential distribution, γ is the rate parameter associated with
(u, v), and 1 is the time unit. The corresponding edge probabilities in the DNP model would be CDF(1, γ).
Similarly, we map the deactivation rates in CNP to deactivation probabilities in DNP. Then, the resulting DNP
model will be a discrete-time approximation of the CNP model. Therefore, we expect the accuracy of CNP
and DNP to be similar. We now compare the two models in terms of the computational cost incurred at each
activation and deactivation. In the discrete time case, for each active node, we need to sample from a uniform
distribution once at each timestamp to determine whether or not the node deactivates. For example, let the
deactivation probability for the node be 0.001, then the expected number of samplings for a deactivation is 1000.
In the continuous-time setting, however, we first need to randomly choose the event that occurs with probability
governed by Property 1, then we need to sample the exponential distribution to get the time at which it occurs,
using Property 2. Therefore, one activation or deactivation happens for each pair of samplings. Revisiting our
example above, each deactivation requires sampling an exponential distribution twice, a significant improvement
(500 times) over the expected number of samplings in the discrete-time case.Therefore, for nodes that do not
deactivate in the time window, their cost of (attempted) deactivation is zero in the continuous-time setting,
again, a significant saving from the discrete-time regime.

Since sampling is the main action that is repeatedly performed, we delve into further improving the efficiency
of the sampling process even further in the next section. These methods are similar to those described in [27].

6

.5 .375 .125 .25 .5

1 2 3 4 5

Figure 1: Categorical distribution for Example 2

2-1

1

5

2

4 3

2

2-2 2-3

Figure 2: Arrays of shards corresponding to Table 1

5 Fast Sampling Algorithm

The most basic action performed by our method is that of sampling a categorical distribution. The categorical
distribution is one of all rate parameters associated with the nodes and edges of the social network. The sampled
value, determined by the rate parameter, decides the next event that will occur, which may be an activation
or a deactivation. Furthermore, this sampling is repeatedly performed. Therefore, any improvements made to
the speed of a single sampling action will greatly improve the efficiency of our method. Conceptually, a typical
sampling action for picking the next event would work as follows. A line segment of length equal to the rate
parameter is drawn for each event. Then, all such segments are laid out in an arbitrary order. A point x is
sampled uniformly at random from this line, and the event associated with that point is chosen. The process
may be repeated for sampling many events.

Example 2. Consider a categorical distribution with rate parameters γ1, . . . , γ5 corresponding to five different
events 0.5, 0.375, 0.125, 0.25 and 0.5. The sum of the rate parameters

∑n
k=1 γk = 1.75. Figure 1 illustrates the

line segments for the events. Say the point x sampled on the line is 0.6, then, the event chosen will be the second
(green in Figure 1) one corresponding to the rate parameter 0.375.

A key challenge that we face in using this standard approach is that, in our setting the sampling is without
replacement. That is, as events occur, the rate parameter corresponding to that event is removed, and cannot be
sampled again. Therefore, an update equivalent to removing a line segment would leave a “gap” or “hole”. A
simple hack of filling the hole with the last end point would not work, as the line segments have varying lengths.
It would require shifting all subsequent line segments to cover the gap, which is computationally expensive. This
näıve approach turns out to be extremely inefficient in our setting. To ensure an efficient implementation of our
model, our goal is to be able to sample in O(1) time.

Therefore, we need to design a new, efficient method for sampling a categorical distribution which undergoes
frequent updates, owing to sampling without replacement. In our setting, these updates reflect the addition and
removal of potential activation and deactivation events. We make two simple but important observations that
motivate the design of our sampling method.

1) If we divide each line segment into smaller “shards”, the sampling process would be statistically equivalent
to that from the original categorical distribution, as long as the sum of the lengths of these shards is equal to
the original segment.

2) If the length of the line segment for each event is the same, we can simply replace an event that we want
to remove with the last one.

Data Structure. We choose to represent the categorical distribution as a set of m arrays. Each array
corresponds to a fixed shard length from 2−1, . . . , 2−m. For instance, say m = 3, the 3 arrays would correspond
to shards of length 0.5, 0.25, 0.125 respectively. Intuitively, m can be viewed as the precision of the rate parameter
when using the array representation. In particular, m decides the granularity of shards, since the smallest shard
that a line segment is divided into is of length 2−m. A line segment corresponding to a rate parameter may be
divided into shards of different lengths, and hence may be present in multiple arrays. Furthermore, since the
elements of each array are of equal length (length 2−i for the tth array), the total length of the array can be
easily determined by simply maintaining the count of elements in the array. Let ci denote the count or number
of elements in array i. Then, the length of array i is 2−i × ci.

Example 3. Figure 2 shows the array representation of the categorical distribution from Example 2, for m = 3
arrays (to ensure fine granularity we use m = 20 in our implementation). Event 1 with γ1 = 0.5 belongs

7

Event Id γ Columns
2−1 2−2 2−3

1 0.5 1 0 0
2 0.375 0 1 1
3 0.125 0 0 1
4 0.25 0 1 0
5 0.5 1 0 0

Total
∑

k γk = 1.75 c1=2 c2=2 c3= 2

Table 1: Tabular representation of arrays of shards in Figure 2

completely to array corresponding to 2−1, while Event 2 with γ1 = 0.375 is broken into shards of length 0.25, 0.125
and hence is present in arrays corresponding to 2−2, 2−3. Further, we can consider array 1 as covering the
interval (0,1] as it contains two shards (c1 = 2) of length 2−1. Similarly, arrays 2 and 3 cover the intervals
(1,1.5] and (1.5,1.75], respectively. Purely for clarity, we can think of sharding as mapping the m arrays to a
table of m columns and n rows as illustrated by Table 1 for the categorical distribution in Example 2. The arrays
are a sparse representation of the table.

Sampling. As before the first step in sampling is to pick a number x uniformly at random from the interval
(0,
∑
k γk]. Notice that this interval is equal to (0,

∑
i 2−i × ci] in the array representation. We have a two step

process to determine which event the sampled point x maps to. First, find the ith array in which x lies. Second,
find the jth event in that array to be chosen as the sampled event.

As described above, the length of the ith array is 2−i × ci. Assuming c0 = 0, the ith array to which x belongs
is the one that satisfies:

2−(i−1) × ci−1 < x ≤ 2−i × ci (1)

Next, we find the index j of the event chosen from array i as:

j =

⌈
x− 2−(i−1) × ci−1

2−i × ci − 2−(i−1) × ci−1
× ci

⌉
(2)

Example 4. Say x = 1.3, then it lies in the interval (1,1.5] covered by array 2, resulting in i = 2. Then,
j =

⌈
1.3−1
1.5−1 × 2

⌉
= 2. The sampled event is then the second event in the second array in Figure 2, i.e., event 4.

Updates. Now, we show how our array representation helps prevent the “holes” created by updates with the
näıve approach. First, it is easy to see that an update involving an addition of an event is trivial. Simply divide
the line segment corresponding to the rate parameter of the event into shards, and append the shards to the
end of the corresponding arrays. Now, if the update involves an event being removed because it has occurred,
we need to find elements in all arrays that correspond to that event, and replace those elements with the last
element in the corresponding arrays. In order to efficiently find all the indices at which an event lies in different
arrays, a mapping of positions of an event in different arrays can be maintained in memory. Finally, ci of each
array i that was updated is changed to reflect the new counts. Notice that all shards in an array are of equal
length, so shards can be replaced without resulting in gaps in the arrays.

Example 5. Say the event 2 was sampled from the distribution by determining that i = 2 and j = 1. We
keep track of each event’s associated positions in all arrays, so we know that event 2 lies in arrays 2, 3, and
corresponds to index 1 for both arrays, as shown in this example. We replace the first element of arrays 2 and 3
with events 4 and 3 respectively, and update c2 = 1, c3 = 1.

Algorithm 1 summarizes the proposed sampling procedure, that includes the sampling and update steps.

Running Time. Sampling x, and computing j using Equation (2) takes constant time. We need O(logm) time
to compute i. Updating the arrays takes O(m) time. We store each event’s associated positions in all arrays,
so step 4 takes O(1). The time to update events’ associated positions each time an event is updated is O(m).
Therefore, sampling one event using our ShardSampling algorithm takes O(m) time. Obviously, the number of
sampling actions performed in a propagation depend on several factors, such as, the size of the graph, the time
horizon, and the seed set size. We discuss these factors in detail in our evaluation section.

8

Algorithm 1 ShardSampling

1: x← a number sampled uniformly at random from (0,
∑n
k=1 γk]

2: i← the array containing x using Equation (1)
3: j ← the index in array i determined using Equation (2)
4: e← the chosen event at jth index in ith array
5: Update arrays by replacing occurrences of e with last element in respective arrays; update cis accordingly.
6: Update the array positions for the set of events associated with the moved elements
7: return e

6 Influence Maximization

Next, we discuss influence maximization, i.e., the process of seed selection to maximize the spread of influence
under the CNP model. The influence maximization problem for non-progressive models is similar to that
described in [22]. However, since nodes can deactivate, the spread, traditionally defined as the expected number
of active nodes, changes with time. Thus, maximizing the expected number of active nodes at a given timestamp,
or at the time horizon may not be ideal from the point of view of a company initiating a viral marketing campaign.
We start by proposing an intuitive objective function for spread under a non-progressive model. Importantly,
we show that our proposed spread function is monotone and submodular, hence the greedy approach yields a
(1− 1/e)-approximation to the optimal solution.

6.1 Objective Function

In a non-progressive world, an intuitive objective from the point of view of a marketer is to maximize the “active
time” of its customers in a given social network. That is, maximize the total amount of time that nodes in the
network are active, in expectation. Given a seed set A,

spreadA =
∑
v∈V

τv

where τv is the sum of time intervals within T for which node v is active. Then, the influence maximization
problem [22] is defined as: select a seed set of nodes A ⊆ V to be activated such that the expected spreadA is
maximized over a chosen time horizon T , given the non-progressive influence propagation model.

6.2 Monotonicity and Submodularity

As an important step towards solving the influence maximization problem, we show that the expected spread
is monotone and submodular. Then, we can use the state-of-the-art greedy algorithm, such as CELF [24] and
CELF++ [19], to guarantee a (1− 1/e)-approximation. It is easy to see that,

E[spreadA] =
∑
v∈V

E[τv] =

∫ T

t=0

E[σ(A, t)]dt

where σ(A, t) = |S|, S is the set of nodes activated from the seed set A at timestamp t, and σ(A, t) is the number
such nodes or the cardinality of set S. Therefore, we can prove monotonicity and submodularity of the expected
spread, by showing that these properties hold for E[σ(A, t)]. For this, we follow the proof guidelines in [22] to
construct a deterministic possible world from the random process that we are modeling. Let X be the set of all
possible worlds, and given x ∈ X, let pdf(x) denote the probability density function of x. Then,

E[σ(A, t)] =

∫
x∈X

pdf(x)× σx(A, t)dx

Thus, we only need to prove that σx(A, t) is monotone and submodular. Note, that we need to integrate over
the possible worlds, as opposed to a summation performed in [22], because the number of deterministic possible
worlds is uncountable in our setting.

9

Lemma 1. Additivity of spreads: Given two sets of seed nodes A,B, timestamp t, and a possible world x,

Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t)

where Sx(A, t) denotes the set of nodes activated by seed set A in possible world x at timestamp t.

Theorem 1. Given lemma 1, σx(A, t) = |Sx(A, t)| is monotone and submodular.

Proof. Assuming the additivity of spreads holds for sets A and B, then by definition, Sx(A ∪B, t) = Sx(A, t) ∪
Sx(B, t). On adding a set B to an initial set A, |Sx(A∪B, t)| = |Sx(A, t)∪Sx(B, t)| ≥ |Sx(A, t)| Hence, |Sx(A, t)|,
equivalently σx(A, t) is monotone.

For all sets A ⊆ B and all nodes v, we need to show that,

|Sx(A ∪ {v}, t)− Sx(A, t)| ≥ |Sx(B ∪ {v}, t)− Sx(B, t)|

By the additivity of spreads, Sx(A ∪ {v}, t) = Sx(A, t) ∪ Sx({v}, t). Then,

Sx(A ∪ {v}, t)− Sx(A, t) = Sx(A, t) ∪ Sx({v}, t)− Sx(A, t)

= Sx({v}, t)− Sx({v}, t) ∩ Sx(A, t)

Similarly, Sx(B ∪ {v}, t) − Sx(B, t) = Sx({v}, t) − Sx({v}, t) ∩ Sx(B, t). Since A ⊆ B, Sx(A, t) ⊆ Sx(B, t),
applying an intersection with Sx({v}, t) on both sides, then subtracting from Sx({v}, t), we get

Sx({v}, t)− Sx({v}, t) ∩ Sx(A, t) ⊇ Sx({v}, t)− Sx({v}, t) ∩ Sx(B, t)

Sx(A ∪ {v}, t)− Sx(A, t) ⊇ Sx(B ∪ {v}, t)− Sx(B, t)

|Sx(A ∪ {v}, t)− Sx(A, t)| ≥ |Sx(B ∪ {v}, t)− Sx(B, t)|

Hence submodularity.

−6 −5.5 −5 −4.5 −4 −3.50

500

1000

1500

2000

2500

3000

Deact rate (ln)

(a) Deactivation rate - Flixster

−12 −10 −8 −6 −4 −20

5000

10000

15000

Edge weight (ln)

(b) Activation rate - Flixster

−4.5 −4 −3.5 −30

0.5

1

1.5

2

2.5x 104

Deact rate (ln)

(c) Deactivation rate - Flickr

−15 −10 −5 00

5

10

15x 104

Edge weight (ln)

(d) Activation rate - Flickr

Figure 3: Model Parameters for Flixster and Flickr Datasets

7 Experimental Evaluation

In this section we first describe how the edge weights of our model can be learned from data, and the details of
our experimental setup. Next, we present the results of evaluating our model on real and synthetic datasets. We
compare the accuracy and running time of: traditional IC model, state-of-the-art continuous time progressive
model ConTinEst[11], DNP and CNP, for estimating the spread as defined in Section 6.1.

7.1 Learning model parameters

We divide each dataset into training and test sets. We use the training set to learn the different model parameters,
i.e., deactivation rates and edge weights. The first challenge we face is identifying deactivations in common
datasets. If we had access to logs associated with each activations and deactivations, for instance, timestamps for
service subscriptions and unsubscribe actions, this would be trivial. However, such service subscription datasets
are not publicly available.

10

7.1.1 Activation and Deactivation

Given a training set in the form of an action log with <user,action,timestamp> tuples, we would like to find
the timestamps for activations and deactivations. We use the following proxy for defining events: 1) when a
user performs an action we call it an activation event and mark the user active 2) at each activation we start
a timer, the event of the timer running out before another activation occurs, is called a deactivation, and the
user is said to be deactivated. The timer is set for a length equal to the deactivation time window. Similar
definitions of active users are used by social networking services as a metric of the popularity of these sites. For
instance, Facebook maintains statistics of its daily (and monthly) active users, where a day (resp., month) is the
deactivation time window.

Deactivation time window. To find the value of the deactivation time window from the action log, we first
get all the time gaps between two consecutive actions of each user in the training dataset. We ignore time
gaps of less than one day to avoid the bias of a user performing multiple actions in a single session. We set
the deactivation time window as the expected value (mean) of time gaps for all experiments. In addition, to
be rigorous with our analysis, we also evaluate our model over different deactivation time windows in the next
section.

Rate parameters. Using the above definition of activation and deactivation events, we now define the total
active time for a node u as the sum of time intervals for which node u is active in our training set. Then, the
deactivation rate parameter γ−,u for node u is

deactivation rate(u) =
number of deactivations(u)

total active time (u)

Finally, we define the rate parameters corresponding to edges which are responsible for activations. At each
activation, we find the set of active neighbors of that node at that timestamp. Say, the node has k active
neighbors when it activates. We assign a contribution score of 1/k to each of the k edges from an active neighbor.
Then, the activation rate parameter γ+,u,v for edge (u, v) is

activation rate(u, v) =

∑
contribution score(u, v)

total active time (u)

We use these methods to learn the parameters of the CNP model. As described in Section 4.3, we can cast
the rate parameters of CNP to probabilities for the DNP model, with the CDF of the exponential distribution.

IC model edge weights. The existing methods for IC model models are not scalable. Our approach is similar
to the PCB method in [17]. This is essentially a counting argument and a recent paper [26] uses PCB to learn
the edge weights for the IC model and report good accuracy w.r.t to the true edge weights, even better than the
likelihood method of Saito et al. [32].

Probability(u, v) =

∑
contribution score(u, v)

number of activations (u)

7.1.2 Global Influence

In real social networks, users may get influenced by external sources, such as the popular trends, news etc. We
model such influences by inserting a “global node” and that has a directed edge to all users. This global node is
always active, and influences all nodes equally. Technically, the influence from this global node is used to explain
activation of a node u that has no other active neighbors. Thus, we can compute its total contribution score
over all its outgoing edges, and define the global influence value as:

total contribution score

time horizon× number of nodes in the graph

7.2 Datasets

We evaluate our model on synthetically generated data and two real datasets: Flixster and Flickr, for which we
have a social network, and an action log which contains the timestamps of users’ actions.

Synthetic. We generate a random 500 node unweighted forest fire network. We artificially generate cascades
and deactivation events. For generating cascades, we pick a node at random and randomly generate a timestamp

11

IC ConTinEst DNP CNP0

50

100

150

200

Er
ro

r (
%

)

(a) Error in Spread estimation

ConTinEst DNP CNP0

500

1000

1500

Ti
m

e
(s

ec
)

(b) Running time

Figure 4: Spread estimation error and time comparison for progressive (IC, ConTinEst) and non-progressive
models (DNP, CNP) for Flixster dataset

Dataset Ground CNP DNP ConTinEst IC
Truth [11]

Flixster 964013 949750 991141 2477678 2833860
(1.5%) (2.8%) (157%) (194%)

Flickr 2435663 2432053 2409695 4423372 4922860
(0.148%) (1.07%) (81%) (102%)

Table 2: Spread estimated by progressive (IC, ConTinEst) and non-progressive models (DNP, CNP) and error
percentage w.r.t. ground truth

at which this node performs an action and hence becomes active. To avoid the dependence of cascade generation
on any underlying diffusion model, we randomly choose a neighbor and sample a random activation time for it.
We repeat this process recursively to generate the cascades. For the deactivation events too, we randomly select
a node and make it inactive at a random timestamp.

Flixster. Flixster is a movie rating service, where users form an explicit social network. Our dataset [21] has 1
million nodes (users) and 26.7 million edges (social connections). An activation event is the act of rating a movie
from a specific genre (horror in our experiments). We divide the action log into one year training and one year
test set. Using the expectation of intervals between consecutive actions as the deactivation time window, we find
it to be 38 days for our dataset. The distribution of rate parameters are shown in Figures 3(a) and 3(b), as
computed using the approach described above, and the global influence value for this dataset is 2.095× 10−5.

Flickr. Our second dataset comes from the photo sharing service of Flickr. The dataset [6] has 2.3 million
nodes and 33.1 million edges. An action corresponds to using the “favorite photo” feature, i.e., marking a photo
as favorite. The associated action log is over 138 days, of which we use the first 70 days as our training set
for learning parameters, and the next 68 days as our test set. The deactivation time window is 23 days and
the global influence value for our dataset is 1.415× 10−4. Figures 3(c) and 3(d) show the distribution of rate
parameters for Flickr.

7.3 Comparison Across Models

We start with presenting an overview of our results comparing different models: progressive vs. non-progressive
models, and discrete vs. continuous time models, across two axes: accuracy of spread estimation and running
time. Figure 4 illustrates this comparison for Flixster dataset. See detailed numbers for both datasets in Table 2.
We make the following key observations, and substantiate these with details through the remainder of this
section.

• Progressive models, here classical IC model and state-of-the-art ConTinEst, overestimate the spread and
result in an error of 80-194% compared with the ground truth.

• Non-progressive models, DNP and CNP, are highly accurate in estimating the spread with very small
errors of 0.1-3%. Notice that DNP is the non-progressive counterpart of the progressive IC model model
and improves the accuracy or error in estimating spread by a 100%.

• Continuous models ConTinEst and CNP are slightly better at estimating accuracy than the discrete models
IC and DNP.

12

0 1000 2000 3000 4000 50000

20

40

60

80

100

Number of deactivations

Er
ro

r (
%

)

ConTinEst
CNP

(a) Error in Spread estimation
for synthetic data

Flixster Flickr0

2000

4000

6000

8000

10000

Ti
m

e
(s

ec
)

ConTinEst
CNP

(b) Running time of ConTinEst
vs. CNP on real data

Figure 5: Accuracy comparison for progressive (IC, ConTinEst) and non-progressive models (DNP, CNP)

0 1000 2000 3000 4000 50000

20

40

60

80

100

Number of deactivations

Er
ro

r (
%

)

ConTinEst
CNP

(a) Varying # deactivations Syn-
thetic data

0 20 40 60 80 1000

50

100

150

200

Percentiles for default deact rate

Er
ro

r (
%

)

IC
DNP
CNP
ConTinEst

(b) Varying deactivation rate
Flixster

0 20 40 60 80 1000

20

40

60

80

100

Percentiles for default deact rate

Er
ro

r (
%

)

IC
DNP
CNP
ConTinEst

(c) Varying deactivation rate
Flickr

10 20 30 38 500

200

400

600

800

deact time window in days

pe
rc

en
ta

ge
 e

rro
r (

%
)

IC
ConTinEst
DNP
CNP

(d) Varying deactivation time
window Flixster

Figure 6: Accuracy comparison for progressive (IC, ConTinEst) and non-progressive models (DNP, CNP) with
varying deactivation parameters

• Our model CNP is not just more accurate but also an order of magnitude faster than the state-of-the-art
continuous time model ConTinEst (Figure 4(b)). These results are for running 100 Monte-Carlo simulations.

Evaluating Accuracy. We evaluate the accuracy of the estimation of spread of our model by simulating the
propagation, starting at the state of the network at the last timestamp in our training set, and evaluating
against the ground truth of spread achieved in the test set. In other words, the nodes active at the end of the
training set are treated as the seed set, and the propagation is run for the time horizon equal to the length
of the test set. The ground truth of spread is computed as the total active time of all nodes for the test set.
Table 2 shows the spread as estimated by our model compared with the ground truth. For our model, error in
spread estimation is just 1.5% and 0.1% over the Flixster and Flickr datasets resp. The difference between IC
model and non-progressive models is two orders of magnitude. This validates that deactivation occurs in real
datasets, and that modeling deactivation properly is critical for a reasonable estimation of influence spread in
non-progressive settings.

Next, we perform an experiment on synthetic data to show the impact of number of deactivations on the
spread estimates by a progressive model (ConTinEst [11]) and our CNP model. Figure 6(a) shows this the error
(%) in estimating the spread. As the deactivations increase, the gap in the accuracy of the two methods increase,
with CNP performing over 83% better than the competitor, establishing that in the presence of deactivations,
non-progressive phenomena are modeled accurately by CNP.

Evaluating Computational Cost. We compare the running time of ConTinEst with CNP for our two real
datasets Flickr and Flixster for running 100 Monte-Carlo simulations. As seen in Figure 7(a), our model is an
order of magnitude faster than its progressive competitor.

7.4 Varying Parameter Values

Effect of deactivation parameters on accuracy. For Flickr, we observe that 98% of the nodes perform no
action in our training set, and hence get a zero deactivation rate. This is an artifact of the short timespan of the
training data. Filtering those nodes would result in a disconnected graph. To overcome this shortcoming of
the data sample and to avoid overfitting, we assign a default deactivation rate to all such nodes. We use the
set of non-zero deactivation rates (as learned from the data) as a guideline, and test different percentiles of
this set as the default deactivation rate. Instead of fixing the value, we evaluate its impact on the accuracy

13

Flickr Flixster0

0.5

1

1.5

2

2.5x 104
ru

nn
in

g
tim

e
fo

r 1
00

 s
am

pl
es

 in
 s

ec

ConTinEst
CNP

(a) Running time of ConTinEst
vs. CNP

0 10 20 301

2

3

4

5

6x 104

Time horizon T (months)

R
un

ni
ng

 ti
m

e
(m

s)

DNP
CNP

(b) Increasing time horizon
Flickr

0 1 2 3 4 50

1

2

3

4

5x 104

Time horizon T (years)

R
un

ni
ng

 ti
m

e
(m

s)

DNP
CNP

(c) Increasing time horizon
Flixster

0 2 4 6 8 10
x 105

0

0.5

1

1.5

2

2.5

3
x 104

number of nodes in graph

ru
nn

in
g

tim
e

(m
s)

DNP
CNP

(d) Increasing graph size Flixster

Figure 7: Running time comparisons for non-progressive models: DNP and CNP

by varying it, as shown in Figure 6(b) for Flixster dataset. As seen in the figure, the default deactivation rate
does impact the accuracy slightly, still the estimates by CNP are orders of magnitude more accurate than IC
model and ConTinEst. Also notice that the estimated spread for DNP and CNP is very similar validating our
argument in Section 4.3 that DNP is an approximation of CNP. The plots for Flickr are skipped for brevity,
but the methodology adopted and results were similar. For the remainder of the experiments we set the default
deactivation rate for Flixster and Flickr to the best obtained, i.e., 50th and 1 percentile resp. of the unique
non-zero deactivation rates learned.

Next, we show using Figure 6(d) that changing the deactivation time window does not significantly impact
the accuracy of CNP model. Although the progressive models are unaffected by the deactivation window, the
ground truth computed is different across windows, and this change is reflected in the error percentage.

Effect of varying parameters on running time. First, we compare the running time of ConTinEst with
CNP, as seen in Figure 7(a), our model is an order of magnitude faster than its progressive competitor. Next,
comparing the non-progressive models. The two factors that affect the computational cost of simulating the
non-progressive models are: time horizon and graph size. We compare the computational cost for CNP and DNP
for increasing time horizon on the full graphs of the two datasets. As seen in Figure 7(c), the running time for
DNP increases linearly over increasing time horizon, while that for CNP changes only slightly. For instance, for
Flickr, the running time for CNP is 73% less than DNP at 27 month time horizon. Finally, we set time horizon
as 2 years for Flixster and show the running time with increasing graph size in Figure 7(d). Again, CNP scales
up very well. The results for Flickr were similar and skipped for brevity.

Progressive Setting. We ask the question, “What if the world is progressive, i.e., there are no deactivations,
how well would CNP perform?” To this end we perform an experiment of setting the deactivation time window
to the end of the time horizon, essentially saying no nodes deactivate. We then compare this model we call CP
for the continuous progressive version of our proposed model against ConTinEst and CNP. We observe that the
running time on Flixster for CP, CNP and ConTinEst are 60, 64 and 1041s resp. The running time results for
Flickr for the CP, CNP and ConTinEst were 498, 606 and 9605s resp. This illustrates that despite the data being
progressive in nature, our model is 17-20 times faster than the state-of-the-art progressive continuous model.

8 Conclusions

There are applications where the propagation phenomena are more accurately captured using non-progressive
models. In their seminal paper, Kempe et al. [22] proposed a non-progressive LT model and showed that over
any finite time horizon of interest, its behavior can be effectively simulated by a progressive model with the given
social graph replicated at every timestamp in the horizon. Inspired by this, we proposed a non-progressive model
and showed that its behavior over a time horizon can be simulated without any need for graph replication. The
resulting discrete time non-progressive model is still not scalable owing to the prohibitive number of samplings
necessary in order to monitor the state of nodes at every time. We proposed an alternative continuous time
non-progressive model and showed that it permits a highly efficient implementation. We developed an efficient
sampling strategy to further improve the efficiency of our continuous time model.In place of expected number of
active nodes, for our continuous time model, we motivated the expected total amount of time the nodes in the
network are active, as the right notion of spread, which a seed selection algorithm should optimize. We showed
that this objective function is monotone and submodular in the set of seed nodes. By extensive experiments on
two data sets, we show that our model significantly outperforms the state of the art progressive model ConTinEst

14

[11] both on accuracy of spread estimating and on running time. It would be interesting to study non-progressive
continuous time models in the competitive setting, where competitors may be adversarial.

Proof of Lemma 1. We now show that in the construction of possible worlds, lemma 1 holds for any
two spreads. Given a possible world x, a seed set A, the influence propagation is deterministic. That is, each
activation and deactivation event has a timestamp associated with it, and the propagation can be viewed as a
sequence of activations and deactivations. In this deterministic setting, we can use mathematical induction to
prove this lemma.

First, we consider the base case at time zero, Sx(A, 0) = A. Then, Sx(A∪B, 0) = A∪B = Sx(A, 0)∪Sx(B, 0).
Hence, the property holds for this base case.

Next, we find the next smallest number in all the schedules. Let t be the timestamp when the next event
happens. Say, Sx(A ∪ B, t− δ) = Sx(A, t− δ) ∪ Sx(B, t− δ) holds, where δ is a very small number. Then, at
timestamp t, an event happens. The event can either be an activation or a deactivation. We consider each of the
10 possible scenarios, the first 7 correspond to activations and the next 3 to deactivations. For any edge v → u ,
in the possible world x, we sampled an activation at timestamp t, then,

Case 1. when u is in both Sx(A, t− δ) and Sx(B, t− δ), there is no activation in the possible world x.

Case 2. when v is in both Sx(A, t− δ) and Sx(B, t− δ), i.e., v is in Sx(A∪B, t− δ), but u is in neither of them,
then after timestamp t, u is in Sx(A, t), Sx(B, t) and Sx(A∪B, t). Thus, Sx(A∪B, t) = Sx(A, t)∪Sx(B, t) after
the event.

Case 3. v is in both Sx(A, t− δ) and Sx(B, t− δ), however, u is in only one of them, without loss of generality,
say u is in Sx(A, t − δ). Since Sx(A ∪ B, t − δ) = Sx(A, t − δ) ∪ Sx(B, t − δ), v and u are in Sx(A ∪ B, t − δ).
After the event, u is in Sx(A, t), Sx(B, t) and Sx(A ∪B, t), therfore, Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t). Case 4.

when v is in one of Sx(A, t− δ) and Sx(B, t− δ), without loss of generality, say v is in Sx(A, t− δ) , however, u
is in neither of them. Now, v is in Sx(A ∪B, t− δ) and after the event, u is in Sx(A, t) and Sx(A ∪B, t). Then
after the event, Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t).

Case 5. when both v and u are in Sx(A, t − δ) but not in Sx(B, t − δ). Then, both v and u are also in
Sx(A ∪B, t− δ). The event does not result in any changes.

Case 6. when v is in Sx(A, t−δ) but not in Sx(B, t−δ), and u is in Sx(B, t−δ) but not in Sx(A, t−δ), i.e., u is in
Sx(A∪B, t−δ). After the event, u is in Sx(A, t), Sx(B, t) and Sx(A∪B, t), thus, Sx(A∪B, t) = Sx(A, t)∪Sx(B, t).
Case 7. when v is in neither of Sx(A, t − δ) and Sx(B, t − δ). No change happens after the event, and

Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t) holds.

Case 8. when v is in both Sx(A, t − δ) and Sx(B, t − δ). After the event, v is not in Sx(A, t), Sx(B, t) and
Sx(B ∪A, t), thus, Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t). Case 9. when v is in one of Sx(A, t− δ) or Sx(B, t− δ).
After the event, v is not in Sx(A, t), Sx(B, t) and Sx(B ∪A, t), hence, Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t). Case

10. when v is neither in Sx(A, t− δ) nor Sx(B, t− δ). No change happens after the event.
In each of the above cases, Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t) after the event. By mathematical induction,

Sx(A∪B, t) = Sx(A, t)∪Sx(B, t). Therefore, the objective function in our model is monotone and submodular.

References

[1] J. G. U. A. Ostfeld and E. Salomons. Battle of water sensor networks: A design challenge for engineers and
algorithms. In WSDA, 2006.

[2] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization in social networks. In WINE,
2007.

[3] G.-I. Bischi and U. Merlone. Global dynamics in adaptive models of collective choice with social influence.
In Mathematical modeling of collective behavior in socio-economic and life sciences, pages 223–244. Springer,
2010.

[4] L. Blume. The statistical mechanics of strategic interaction. Games and Economic behavior, 1993.

[5] C. Budak, D. Agrawal, and A. E. Abbadi. Limiting the spread of misinformation in social networks. In
WWW’11.

15

[6] M. Cha, A. Mislove, and P. K. Gummadi. A measurement-driven analysis of information propagation in the
flickr social network. In WWW, 2009.

[7] W. Chen, L. V. S. Lakshmanan, and C. Castillo. Information and Influence Propagation in Social Networks.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2013.

[8] W. Chen, Y. Wang, and S. Yang. Effcient influence maximization in social networks. In KDD, 2009.

[9] W. Chen, Y. Wang, and L. Zhang. Scalable influence maximization in social networks under linear threshold
model. In ICDM, 2010.

[10] P. Domingos and M. Richardson. Mining the network value of customers. In KDD, 2001.

[11] N. Du, L. Song, M. Gomez-rodriguez, and H. Zha. Scalable influence estimation in continuous-time diffusion
networks. In NIPS. 2013.

[12] G. Ellison. Learning, local interaction, and coordination. Econometrica, 1993.

[13] E. Even-Dar and A. Shapira. A note on maximizing the spread of influence in social networks. In Internet
and Network Economics, volume 4858. Springer Berlin Heidelberg, 2007.

[14] M. Fazli, M. Godsi, J. Habibi, P. J. Khalilabadi, V. Mirrokni, and S. S. Sadeghabad. On the non-progressive
spread of influence through social networks. In LATIN’12.

[15] A. Ganesh, L. Massoulié, and D. Towsley. The effect of network topology on the spread of epidemics. In
INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 2, pages 1455–1466. IEEE, 2005.

[16] M. Gomez-Rodriguez and B. Scholkopf. Influence maximization in continuous time diffusion networks. In
ICML, 2012.

[17] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in social networks. In WSDM,
2010.

[18] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social influence maximization.
Proc. VLDB Endow., 2011.

[19] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++:optimizing the greedy algorithm for influence maximization
in social networks. In WWW, 2011.

[20] M. Jackson and L. Yariv. Diffusion on soical networks. In Public Economy Theory Meeting, Marseille, 2005.

[21] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in
social networks. In RecSys, 2010.

[22] D. Kempe, J. Kleinbery, and E. Tardos. Maximizing the spread of influence through a social network. In
KDD, 2003.

[23] C. Kuhlman, V. Kumar, M. Marathe, S. Swarup, G. Tuli, S. Ravi, and D. Rosenkrantz. Inhibiting the
diffusion of contagions in bi-threshold systems: Analytical and experimental results. In Proceedings of the
AAAI Fall 2011 Symposium on Complex Adaptive Systems (CAS-AAAI 2011), pages 91–100, 2011.

[24] J. Leskovec, A. Kraus, C. Guestrin, C. Faloutsos, J. M. VanBriesen, and N. S. Glance. Cost-efficiective
outbreak detection in networks. In KDD, 2007.

[25] Y. Li, W. Chen, Y. Wang, and Z.-L. Zhang. Influence diffusion dynamics and influence maximization in
social networks with friend and foe relationships. In WSDM, 2013.

[26] S. Lin, F. Wang, Q. Hu, and P. S. Yu. Extracting social events for learning better information diffusion
models. In KDD, 2013.

[27] Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic generation of discrete random variates. In SODA, pages
361–370, 1993.

16

[28] M. F. B. Nan Du, Yingyu Liang and L. Song. Continuous-time influence maximization for multiple items.
CoRR, abs/1312.2164, 2013.

[29] A. Ostfeld and E. Salomons. Optimal layout of early warning detection stations for water distribution
systems security. In J. Water Resources Planning and Management, 2004.

[30] N. Pathak, A. Banerjee, and J. Srivastava. A generalized linear threshold model for multiple cascades. In
ICDM, 2010.

[31] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C. Faloutsos. Threshold conditions for
arbitrary cascade models on arbitrary networks. Knowledge and information systems, 33(3):549–575, 2012.

[32] K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion probabilities for independent
cascade model. In Knowledge-Based Intelligent Information and Engineering Systems. Springer, 2008.

[33] A. D. Sarma, S. Gollapudi, R. Panigrahy, and L. Zhang. Understanding cyclic trends in social choices. In
WSDM, pages 593–602, 2012.

[34] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira, and G. Weikum. Efficient
top-k querying over social-tagging networks. In SIGIR’08.

[35] T. Valente. Network models and methods for studying the diffusion of innovations. In Models and methods
in social network analysis. Cambridge Univ. Press, 2005.

17

