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ABSTRACT
Recent work on modeling influence propagation focus on
progressive models, i.e., once a node is influenced (active)
the node stays in that state and cannot become inactive.
However, this assumption in unrealistic in many settings
where nodes can transition between active and inactive states.
For instance, a user of a social network may stop using an
app and become inactive, but again activate when instigated
by a friend, or when the app adds a new feature or releases
a new version. In this work, we study such non-progressive
phenomena and propose an efficient model of influence prop-
agation. Specifically, we model influence propagation as a
continuous-time Markov process with 2 states: active and in-
active. Such a model is both highly scalable (we evaluated
on graphs with over 2 million nodes), 17-20 times faster,
and more accurate for estimating the spread of influence, as
compared with state-of-the-art progressive models for sev-
eral applications where nodes may switch states.

1. INTRODUCTION
Study of information and influence propagation over so-

cial networks has attracted significant research interest over
the past decade, driven by applications such as viral market-
ing [19, 10], social feed ranking [30], contamination detec-
tion [21, 26, 1], and spread of innovation [31] to name a few.
A prototypical problem that has received wide attention is
influence maximization: given a social network along with
pairwise influence probabilities between peers, and a num-
ber k, find k seed nodes such that activating them at start
will eventually lead to the largest number of activated nodes
in the network in the expected sense. Following the early
work of Domingos and Richardson [10] and Kempe et al.
[19], there has been a burst of activity in this area (e.g., see
[5, 8, 9, 16, 15, 11]). While the majority of previous stud-
ies employ propagation models with discrete time, in recent
work, continuous time models have been shown to be more
accurate at modeling influence propagation phenomena [11,
15, 25]. We refer the reader to the book [7] for a compre-
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hensive survey and a detailed discussion of recent advances
in influence maximization.

As discussed in [19], the propagation models can be clas-
sified into progressive and non-progressive (NP) models. In
progressive models, an inactive node can become active, but
once active, a node cannot become inactive. Non-progressive
models relax this restriction and allow nodes to repeatedly
transition between active and inactive states.

Indeed, an overwhelming majority of studies of informa-
tion propagation have confined themselves to progressive
models. For applications such as buying a product, the
progressive assumption makes perfect sense: buying a prod-
uct is not easily reversible in many cases. On the other hand,
there are real applications which are not naturally captured
by progressive models. For example, consider a user adopt-
ing a mobile app. Over time, its appeal may fade and her
usage of the app may decline over time. Her interest in the
app may be rejuvenated by a friend telling her about a new
cool feature being added to the app at which point, she de-
cides to try the app again and may continue using it once
again. Alternatively, whenever a new version of the app is
released, the user feels tempted to try it again and may,
with some probability, decide to continue using it again. As
a second example, it is well known that fashion follows cy-
cles. Choices that are in fashion at the moment may fall out
of fashion and may again become fashionable in the future,
as it has been recognized that social choices follow cyclic
trends [29]. As a third example, there are many applica-
tions where users may become active and stay in that state
for a period of time before deactivating, such as, adopting
a feature on a content sharing site where the feature may
be the “like” or “favorite” button for a post, filters (sepia,
sketch, outline) for photo editing, or “check-in” to a loca-
tion or a show. Finally, in epidemiology, it is well known
that an infected person may recover from a disease but not
necessarily acquire lifelong immunity from the disease, thus
being susceptible to the disease. In all the above examples,
the phenomena in question are subject to spreading via influ-
ence. As we will show with experiments on real datasets in
this paper, the use of progressive models for capturing such
phenomena leads to considerable error. There is a clear need
for a non-progressive model for studying these phenomena.

In their seminal paper, Kempe et al. [19] propose a non-
progressive model and show that it can be reduced to a pro-
gressive model by replicating each node for every timestamp
in the time horizon under consideration, and connecting each
node to its neighbors in the previous timestamp. They show
that this reduction preserves equivalence, which implies all



techniques developed for progressive models can in principle
be applied to non-progressive models. However, replicating
a large network for each timestamp over a large time horizon
will clearly make this approach impractical for large social
networks containing millions of nodes. Thus, this approach
is largely of theoretical interest.

Another related area is competitive influence maximiza-
tion, where competing parties choose seed nodes in order to
maximize the adoption of their product or opinion [7]. Non-
progressiveness arises naturally from the perspective of any
one party involved in the competition. Our focus in this
paper is not competition. As illustrated above, there are
several example applications where propagation of informa-
tion or influence happens in a non-progressive manner and
it is our goal to model and study them in this paper.

Influence maximization is known to be a computation-
ally hard problem, even over the relatively simpler progres-
sive models. We don’t expect influence maximization to be
easier over non-progressive models. We face the challenge,
whether we can design approximation algorithms for influ-
ence maximization over non-progressive models that scale
to large data sets. To this end, we first propose a discrete
time non-progressive model called DNP. It will turn out that
DNP, while accurate at modeling non-progressive phenom-
ena, does not lead to a scalable solution for estimating influ-
ence spread. To mitigate this, we propose a continuous time
non-progressive model (CNP), which models the underlying
influence propagation as a Markov process. This model can
also capture progressive phenomena by appropriately set-
ting the deactivation parameter of the model. We call this
variant CNP-Progressive (CP for short). It is interesting to
investigate how CP compares with the state-of-the-art pro-
gressive continuous time models such as [11, 15].

A second challenge centers on the question, what should
the objective be when selecting seeds with respect to non-
progressive models. As opposed to maximizing the number
of active nodes at some time, as done in progressive mod-
els, we argue that it is more appropriate to maximize the
expected time during which nodes may have been active.

Finally, while example applications demonstrating the value
of and need for non-progressive models exist, to date, no em-
pirical studies have compared non-progressive models with
their progressive counterparts with an aim of calibrating
their accuracy for explaining propagation phenomena over
real data sets. This is partly exacerbated by the fact that
real non-progressive data sets are relatively difficult to ob-
tain. Can we establish the value of non-progressive models
using any publicly available data sets?

In this paper, we address all the above challenges. Specif-
ically, we make the following contributions.

• We propose a discrete time non-progressive model and
implement it without graph replication (Section 3).

• We propose an efficient continuous time non-progressive
model (Section 4).

• We define the objective of influence maximization as
choosing seeds so as to maximize the total expected
activation time of nodes. We show that the objective
function of total expected activation time is both mono-
tone and submodular. This implies the classic greedy
seed selection algorithm, combined with our direct ap-
proach for computing expected total activation time,

provides a (1 − 1/e)-approximation to the optimal so-
lution (Section 5).

• Through experiments on synthetic and real datasets, we
show that the accuracy of our non-progressive model
for estimating expected total activation time is much
higher than its progressive counterparts, including the
recently proposed continuous time model [11]. Further,
we show that our method is more than one order of
magnitude faster than an efficient implementation of
the DNP model, whose accuracy is comparable to that
of CNP. We also show that on progressive data sets,
our method using CP is 17-20 times faster than the
continuous time progressive model of [11] (Section 6).

We start by presenting related work in Section 2, and
conclude with a summary of the paper and a discussion
on future work in Section 7. We consciously omit experi-
ments on influence maximization per se, since the outcome
of comparisons between the competing methods is obvious.
The major bottleneck in scaling influence maximization is
in estimating the spread (in our case, expected active time).
Our CNP model significantly outperforms the competition
on this step and it’s trivial to see this advantage will carry
over to influence maximization.

2. RELATED WORK
Bharathi et al. [2] use exponential distribution to model

the information propagation delay between nodes, and use
this to avoid tie-breaking for simultaneous activation at-
tempts by multiple neighbors. We share with them the use
of exponential distribution to model activation delays in our
CNP model. However, their main goal is designing response
strategies to competing cascades rather than maximizing the
spread. Considerable work on non-progressive models has
been done by the economics community [4]. But they do
not focus on computational issues, especially in relation to
influence spread computation and maximization.

Kempe et al. [19] proposed several propagation models,
including non-progressive ones, but all based on discrete
time. Indeed, the DNP model we describe is fashioned after
the non-progressive LT model they describe. As we show,
our continuous time model CNP significantly outperforms
DNP in terms of scalability. Our model and contributions
are orthogonal to theirs. In particular, our efficient sam-
pling strategy enables a scalable implementation of influ-
ence maximization. Recently, non-progressive models have
received attention from the research community [13, 12, 22,
27]. As observed in [13], progressive models are not accurate
and there is scalability issue with non-progressive models.
Their model is a simplistic model based on strict majority.
While theoretically appealing, it’s easy to show it’s not sub-
modular and no scalable influence maximization algorithm
is provided. Furthermore, they focus on finding a perfect
target set, one that ends up activating every node, not a
realistic goal. Maximizing the overall activation times of
nodes is more realistic goal for a business, which is what we
study. Other works such as [28, 14, 20, 3] study related prob-
lems where nodes have active and inactive states. However,
these are significantly different from influence maximization.
See [23] for a details.

Finally, a continuous-time Markov chains based progres-
sive model was proposed by Rodriguez et al. [15], and more
recently improved upon by Du et al. [11]. However, their



methods do not scale well as the time complexity of their so-
lution can be exponentially large for“dense networks”, which
the authors define as networks with average node degree >
2.5. By that definition, most social networks are dense. Al-
though the authors propose speed-ups that provide approx-
imate solutions or sparsify the networks, their experiments
are run on small graphs of at most 1000 edges. In compari-
son, we evaluate our model on graphs with nearly 30 million
edges. Furthermore, it is not easy to directly extend their
model to the non-progressive setting. In our experiments,
we show that both CNP and its progressive variant CP run
17-20 times faster than [11].

3. DISCRETE TIME NP MODEL
There are two popular influence propagation models: in-

dependent cascade (IC) and linear threshold (LT) proposed
by Kempe et al. in [19]. They also described an intuitive
non-progressive extension of the discrete time LT model.
Fundamentally, the models we propose in the next sections
are close to the IC model. To set the proper context, in this
section, we describe a discrete time non-progressive model
that is inspired by the framework given in [19], but closer to
the framework we will follow for our CNP model.

Let G = (V,E, P ) be a weighted, directed graph repre-
senting a social network, with nodes (users) V and edges
(social ties) E, with the function P : E → [0, 1] represent-
ing the probability of influence along edges: P (u, v) := Pu,v
on edge (u, v) ∈ E is the probability that node v will be
activated at time t+ 1 given that u is active at time t. Ad-
ditionally, the function q : V → [0, 1] associates each node
u ∈ V with a deactivation probability: q(u) := qu represents
the probability that u will deactivate at time t+1 given that
it’s active at t. These are the key ingredients of our discrete
time non-progressive model. Given the social network graph
and a seed set of nodes S that are active at the start of the
propagation process, time unfolds in discrete steps. At time
t = 0, nodes in S are active. At any time t > 0, each of
the currently active nodes u makes one attempt at activat-
ing each of its neighbors v and succeeds with probability
Pu,v. At any time, an active node u can deactivate with
probability qu. We refer to this model as the discrete-time
non-progressive (DNP) model.

In non-progressive models, nodes can get activated and
deactivated for infinitely often, so the influence propagation
process can continue indefinitely. Thus, we need to con-
sider an arbitrary but fixed time horizon as the time period
within which we would like to study the propagation pro-
cess. Kempe et al. [19] showed that their non-progressive
(LT) model’s behavior over a given time horizon T can be
simulated using a progressive model. The key is to replicate
the social network graph for each timestamp. However, a
näıve implementation with replicated graphs is not practi-
cal. We describe a space efficient implementation that avoids
graph replication in our tech report [23]. We show that the
DNP model still suffers from a serious inefficiency that each
time step, each nodes needs to make the decision of whether
or not it changes its state. Thus, at each time step, n nodes
need to sample a uniform distribution to determine their
state at the next time step. Several nodes may stay in their
current state for long periods of time. Hence, sampling at
each time step at each node is extremely inefficient. We
therefore move to the continuous-time regime for efficiently
modeling the non-progressive phenomena.

4. CONTINUOUS-TIME NP MODEL

4.1 Model description
We model influence propagation as a continuous-time

Markov process with nodes being in one of two states: ac-
tive and inactive. As in classical propagation models, in our
model, events trigger state changes and happen probabilisti-
cally. We start with a seed set of active nodes. At any time,
there are two events that may happen at an active node:
the node may activate its neighbor, or may deactivate itself.
Similarly, for any inactive node, the node may get activated
by one of its active neighbors, or stay inactive. We refer
to an event that activates an inactive node as an activation
event and one that deactivates an already active node as a
deactivation event. It is these deactivation events that allow
the model to be non-progressive.

More specifically, there are two parameters, one for activa-
tion and the other for deactivation, both being exponentially
distributed random variables. Each edge (u, v) ∈ E has an
associated activation rate parameter γ+,u,v, and each node
u has a deactivation rate parameter γ−,u. We start with a
seed set of nodes that are, by definition, active at time 0.
For each node u that is activated at time t, (a) a time τ
sampled according to rate parameter γ+,u,v has the seman-
tic that v will be activated no later than t + τ , and (b) a
time τ ′ sampled according to rate parameter γ−,u, has the
semantic that node u will deactivate at time t + τ ′. No-
tice that another neighbor of v may activate it sooner. In
particular, an inactive node v that is reachable from one or
more active nodes activates at a time equal to the shortest
path from those active nodes, that is shortest in terms of the
sum of sampled propagation times of the edges forming the
path. However, each activation or deactivation with its as-
sociated rate parameter is one local event. That is, only the
ego-centric network of a node is involved in any event. This
observation is key to the scalability of our proposed in terms
of implementation. In particular, unlike the recently contin-
uous time (but progressive) models [11, 15], we don’t need to
compute or even estimate the shortest path length directly.
In Section ?? we show how these parameters can be learned
from data. Notice that unlike the discrete time counterpart,
the model parameters govern the times at which events hap-
pen as opposed to whether the events will happen. This is
a direct consequence of moving to continuous time.

4.2 Semantics of the propagation
During an influence propagation cascade, there are mul-

tiple activation and deactivation events that may happen.
In order to model the cascade, we need to find the one that
happens first and update the activation status of the cor-
responding node. For instance, if u is active, it deactivates
with some rate parameter, however, it is also trying to acti-
vate its inactive neighbor v with some rate parameter. If u
deactivates before activating v, then v may not have a chance
to activate (assuming it has only one neighbor) unless u ac-
tivates again. Further, if there are multiple neighbors trying
to activate a node v, it will get activated by the local event
that happens first, i.e., by the neighbor that first activates
it. Therefore, it is important to understand and model the
order of events. We crucially make use of two key properties
of exponential distributions for modeling the time and order
of events.



Property 1. For n different events with rate parameters
γ1, γ2 . . . γn, the probability that the ith event will happen
first is γi∑n

i=1 γi
.

Property 2. For different events with rate parameters
γ1, γ2 . . . γn, the time of the first event is exponentially dis-
tributed with rate parameter:

∑n
i=1 γi.

We keep track of the current time, tcur during a propaga-
tion process. At each iteration, the categorical distribution
in Property 1 is sampled to determine the event that hap-
pens first (or next). Then, the exponential distribution with
rate parameter

∑n
i=1 γi is sampled (Property 2) to obtain

the time elapsed τ between last event and this event. The
current time is then updated as tcur = tcur + τ , and we pro-
ceed to the next iteration if tcur < T , where T is the time
horizon, and stop otherwise. In other words, even though
the model is continuous time, it has a clear interpretation
in terms of discrete steps, namely the occurrence of events.

Another way to understand the model semantics is in
terms of possible worlds. A deterministic possible world
for our model can be constructed as follows: For each edge
(u, v) ∈ E we sample an array of timestamps and sort it.
A timestamp in the array indicates that if u is active at
that time, it will activate node v. We call this array the
schedule of activations. Similarly, for each node u ∈ V , we
sample an array of deactivation times. If u is active at those
timestamps, it will get deactivated. We refer to this array
as the schedule of deactivations. The set of possible worlds
for a given instance of our CNP model is the set of all such
edge activation schedules and node deactivation schedules,
for every edge and node in the given social graph. Such
a construction of possible world aptly covers all possibili-
ties in our random process. We will use these semantics to
prove monotonicity and submodularity of the spread under
the CNP model in Section 5.

4.3 Advantages of CNP over DNP
If we correctly map the rate parameters in CNP model

to the probabilities in DNP model, the simulation results of
two models will be similar. We note that the models are
not equivalent, but have similar accuracy in terms of the ex-
pected spread, when the following mapping holds. In CNP,
for any edge (u, v) where u is active but v is not, the prob-
ability that u activates v within the next time unit is equal
to the CDF(1, γ), where CDF is the cumulative distribution
function of the exponential distribution, γ is the rate pa-
rameter associated with (u, v), and 1 is the time unit. The
corresponding edge probabilities in the DNP model would
be CDF(1, γ). Similarly, we map the deactivation rates in
CNP to deactivation probabilities in DNP. Then, the result-
ing DNP model will be a discrete-time approximation of the
CNP model. Therefore, we expect the accuracy of CNP and
DNP to be similar.

We now compare the two models in terms of the compu-
tational cost incurred at each activation and deactivation.
In the discrete time case, for each active node, we need to
sample from a uniform distribution once at each timestamp
to determine whether or not the node deactivates. In the
continuous-time setting, however, we first need to randomly
choose the event that occurs with probability governed by
Property 1, then we need to sample the exponential distri-
bution to get the time at which it occurs, using Property
2. Therefore, for nodes that do not deactivate in the time

window, their cost of (attempted) deactivation is zero in the
continuous-time setting, again, a significant saving from the
discrete-time regime.

5. INFLUENCE MAXIMIZATION
Next, we discuss influence maximization, i.e., the process

of seed selection to maximize the spread of influence under
the CNP model. The influence maximization problem for
non-progressive models is similar to that described in [19].
However, since nodes can deactivate, the spread, tradition-
ally defined as the expected number of active nodes, changes
with time. Thus, maximizing the expected number of active
nodes at a given timestamp, or at the time horizon may not
be ideal from the point of view of company initiating a viral
marketing campaign. We start by proposing an intuitive ob-
jective function for spread under a non-progressive model.
Importantly, we show that our proposed spread function is
monotone and submodular, hence the greedy approach to
maximize the function can be applied.

Objective Function. In a non-progressive world, an intu-
itive objective from the point of view of a marketeer is to
maximize the “active time” of its customers in a given social
network. That is, maximize the total amount of time that
nodes in the network are active, in expectation. Given a
seed set A,

spreadA =
∑
v∈V

τv

where τv is the sum of time intervals for which node v is
active. Then, the influence maximization problem [19] is
defined as: select a seed set of nodes A ⊆ V to be acti-
vated such that the expected spreadA is maximized over a
chosen time horizon T , given the non-progressive influence
propagation model.

Monotonicity and Submodularity. As an important
step towards solving the influence maximization problem, we
show that the expected spread is monotone and submodu-
lar. Then, we can use the state-of-the-art greedy algorithm,
such as CELF [21] and CELF++ [17], to guarantee a 1−1/ε
approximation. It is easy to see that,

E[spreadA] =
∑
v∈V

E[τv] =

∫ T

t=0

E[σ(A, t)]dt

where σ(A, t) = |S|, S is the set of nodes activated from the
seed set A at timestamp t, and σ(A, t) is the number such
nodes or the cardinality of set S. Therefore, we can prove
monotonicity and submodularity of the expected spread, by
showing that these properties hold for E[σ(A, t)]. For this,
we follow the proof guidelines in [19] to construct a deter-
ministic possible world from the random process that we are
modeling. Let X be the set of all possible worlds, and given
x ∈ X, let pdf(x) denote the probability density function of
x. Then,

E[σ(A, t)] =

∫
x∈X

pdf(x)× σx(A, t)dx

Thus, we only need to prove that σx(A, t) is monotone and
submodular. Note, that we need to integrate over the pos-
sible worlds, as opposed to a summation performed in [19],
because the number of deterministic possible worlds is un-
countable in our setting.



Lemma 1. Additivity of spreads: Given two sets of seed
nodes A,B, timestamp t, and a possible world x,

Sx(A ∪B, t) = Sx(A, t) ∪ Sx(B, t)

where Sx(A, t) denotes the set of nodes activated by seed set
A in possible world x at timestamp t.

Theorem 1. Given lemma 1, σx(A, t) = |Sx(A, t)| is
monotone and submodular.

See proofs in our tech report [23].

6. EXPERIMENTAL EVALUATION
In this section we compare the accuracy and running time

of: traditional IC model, state-of-the-art continuous time
progressive model ConTinEst[11], DNP and CNP, for esti-
mating the spread as defined in Section 5. We evaluate our
model on synthetically generated data and two real datasets:
Flixster and Flickr, for which we have a social network, and
an action log which contains the timestamps of users’ ac-
tions. The synthetically generated dataset consists of a 500
node graph, and randomly generated cascades and deacti-
vation events. The Flixster dataset [18] has 1 million nodes
(users) and 26.7 million edges (social connections). An ac-
tivation event is the act of rating a movie from a specific
genre. Finally, the Flickr dataset [6] has 2.3 million nodes
and 33.1 million edges. An action corresponds to using the
“favorite photo” feature. We provide a detailed description
of how our model parameters can be learned from data, and
our experimental setup in our tech report [23]. For imple-
menting the sampling without replacement procedure for a
categorical distribution, see methods described in [24].

6.1 Comparison Across Models
We start with presenting an overview of our results com-

paring different models: progressive vs. non-progressive
models, and discrete vs. continuous time models, across two
axes: accuracy of spread estimation and running time. Fig-
ure 1 illustrates this comparison for Flixster dataset. See
detailed numbers for both datasets in Table 1. We make
the following key observations, and substantiate these with
details through the remainder of this section.

• Progressive models, here classical IC model and state-
of-the-art ConTinEst, overestimate the spread and re-
sult in an error of 80-194% compared with the ground
truth.

• Non-progressive models, DNP and CNP, are highly
accurate in estimating the spread with very small er-
rors of 0.1-3%. Notice that DNP is the non-progressive
counterpart of the progressive IC model model and im-
proves the accuracy or error in estimating spread by a
100%.

• Continuous models ConTinEst and CNP are slightly
better at estimating accuracy than the discrete models
IC and DNP.

• Our model CNP is not just more accurate but also an
order of magnitude faster than the state-of-the-art con-
tinuous time model ConTinEst (Figure 1(b)). These
results are for running 100 Monte-Carlo simulations.
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Figure 1: Spread estimation error and time com-
parison for progressive (IC, ConTinEst) and non-
progressive models (DNP, CNP) for Flixster dataset

Dataset Ground CNP DNP ConTinEst IC
Truth [11]

Flixster 964013 949750 991141 2477678 2833860
(1.5%) (2.8%) (157%) (194%)

Flickr 2435663 2432053 2409695 4423372 4922860
(0.148%) (1.07%) (81%) (102%)

Table 1: Spread estimated by progressive (IC, Con-
TinEst) and non-progressive models (DNP, CNP)
and error percentage w.r.t. ground truth

Evaluating Accuracy. We evaluate the accuracy of the
estimation of spread of our model by simulating the propa-
gation, starting at the state of the network at the last times-
tamp in our training set, and evaluating against the ground
truth of spread achieved in the test set. In other words, the
nodes active at the end of the training set are treated as
the seed set, and the propagation is run for the time horizon
equal to the length of the test set. The ground truth of spread
is computed as the total active time of all nodes for the test
set. Table 1 shows the spread as estimated by our model
compared with the ground truth. For our model, error in
spread estimation is just 1.5% and 0.1% over the Flixster
and Flickr datasets resp. The difference between IC model
and non-progressive models is two orders of magnitude. This
validates that deactivation occurs in real datasets, and that
modeling deactivation properly is critical for a reasonable
estimation of influence spread in non-progressive settings.

Next, we perform an experiment on synthetic data to show
the impact of number of deactivations on the spread esti-
mates by a progressive model (ConTinEst [11]) and our CNP
model. Figure 2(a) shows this the error (%) in estimating
the spread. As the deactivations increase, the gap in the
accuracy of the two methods increase, with CNP perform-
ing over 83% better than the competitor, establishing that
in the presence of deactivations, non-progressive phenomena
are modeled accurately by CNP.

Evaluating Computational Cost. We compare the run-
ning time of ConTinEst with CNP for our two real datasets
Flickr and Flixster for running 100 Monte-Carlo simulations.
As seen in Figure 2(b), our model is an order of magnitude
faster than its progressive competitor.

6.2 Varying Parameter Values
Effect of deactivation parameters on accuracy. For
Flickr, we observe that 98% of the nodes perform no action
in our training set, and hence get a zero deactivation rate.
This is an artifact of the short timespan of the training data.
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Figure 3: Accuracy comparison for progressive
(IC, ConTinEst) and non-progressive models (DNP,
CNP) with varying deactivation parameters

Filtering those nodes would result in a disconnected graph.
To overcome this shortcoming of the data sample and to
avoid overfitting, we assign a default deactivation rate to all
such nodes. We use the set of non-zero deactivation rates (as
learned from the data) as a guideline, and test different per-
centiles of this set as the default deactivation rate. Instead
of fixing the value, we evaluate its impact on the accuracy
by varying it, as shown in Figure 3(a) for Flixster dataset.
As seen in the figure, the default deactivation rate does im-
pact the accuracy slightly, still the estimates by CNP are
orders of magnitude more accurate than IC model and Con-
TinEst. Also notice that the estimated spread for DNP and
CNP is very similar validating our argument in Section 4.3
that DNP is an approximation of CNP. The plots for Flickr
are skipped for brevity, but the methodology adopted and
results were similar. For the remainder of the experiments
we set the default deactivation rate for Flixster and Flickr
to the best obtained, i.e., 50th and 1 percentile resp. of the
unique non-zero deactivation rates learned.

Next, we show using Figure 3(b) that changing the de-
activation time window does not significantly impact the
accuracy of CNP model. Although the progressive models
are unaffected by the deactivation window, the ground truth
computed is different across windows, and this change is re-
flected in the error percentage.

Effect of varying parameters on running time. The
two factors that affect the computational cost of simulat-
ing the non-progressive models are: time horizon and graph
size. We compare the computational cost for CNP and DNP
for increasing time horizon on the full graphs of the two
datasets. As seen in Figure 4(a), the running time for DNP
increases linearly over increasing time horizon, while that
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Figure 4: Running time comparisons on Flixster
dataset for non-progressive models: DNP and CNP

for CNP changes only slightly. For instance, for Flickr, the
running time for CNP is 73% less than DNP at 27 month
time horizon. Finally, we set time horizon as 2 years for
Flixster and show the running time with increasing graph
size in Figure 4(b). Again, CNP scales up very well. The
results for Flickr were similar and skipped for brevity.

Progressive Setting. We ask the question, “What if the
world is progressive, i.e., there are no deactivations, how well
would CNP perform?” To this end we perform an experi-
ment of setting the deactivation time window to the end of
the time horizon, essentially saying no nodes deactivate. We
then compare this model we call CP for the continuous pro-
gressive version of our proposed model against ConTinEst
and CNP. We observe that the running time on Flixster for
CP, CNP and ConTinEst are 60, 64 and 1041s resp. The
running time results for Flickr for the CP, CNP and Con-
TinEst were 498, 606 and 9605s resp. This illustrates that
despite the data being progressive in nature, our model is
17-20 times faster than the state-of-the-art progressive con-
tinuous model.

7. CONCLUSIONS
There are applications where the propagation phenomena

are more accurately captured using non-progressive mod-
els. In their seminal paper, Kempe et al. [19] proposed a
non-progressive LT model and showed that over any finite
time horizon of interest, its behavior can be effectively sim-
ulated by a progressive model with the given social graph
replicated at every timestamp in the horizon. Inspired by
this, we proposed a non-progressive model and showed that
its behavior over a time horizon can be simulated without
any need for graph replication. The resulting discrete time
non-progressive model is still not scalable owing to the pro-
hibitive number of samplings necessary in order to monitor
the state of nodes at every time. We proposed an alter-
native continuous time non-progressive model and showed
that it permits a highly efficient implementation. In place
of expected number of active nodes, for our continuous time
model, we motivated the expected total amount of time
the nodes in the network are active, as the right notion of
spread, which a seed selection algorithm should optimize.
We showed that this objective function is monotone and
submodular in the set of seed nodes. By extensive experi-
ments on two data sets, we show that our model significantly
outperforms the progressive state of the art, ConTinEst [11]
both on accuracy of spread estimating and on running time.
It would be interesting to study non-progressive continuous
time models in the competitive setting, where advertisers
may be adversarial towards competitors.
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