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Abstract

Stochastic heavy ball momentum (SHB) is commonly used to train machine learning models,
and often provides empirical improvements over stochastic gradient descent. By primarily
focusing on strongly-convex quadratics, we aim to better understand the theoretical advantage
of SHB and subsequently improve the method. For strongly-convex quadratics, Kidambi et al.
[2018] show that SHB (with a mini-batch of size 1) cannot attain accelerated convergence,
and hence has no theoretical benefit over SGD. They conjecture that the practical gain of
SHB is a by-product of using larger mini-batches. We first substantiate this claim by showing
that SHB can attain an accelerated rate when the mini-batch size is larger than a threshold b∗

that depends on the condition number κ. Specifically, we prove that with the same step-size
and momentum parameters as in the deterministic setting, SHB with a sufficiently large
mini-batch size results in an O (exp(−T/

√
κ) + σ) convergence, where T is the number of

iterations and σ2 is the variance in the stochastic gradients. We prove a lower-bound which
demonstrates that a κ dependence in b∗ is necessary. To ensure convergence to the minimizer,
we design a noise-adaptive multi-stage algorithm that results in an O

(
exp (−T/

√
κ) + σ

T

)
rate. We also consider the general smooth, strongly-convex setting and propose the first
noise-adaptive SHB variant that converges to the minimizer at an O(exp(−T/κ) + σ2

T ) rate.
We empirically demonstrate the effectiveness of the proposed algorithms.

Keywords: optimization; stochastic heavy-ball momentum; noise-adaptivity; acceleration;
convex
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Chapter 1

Introduction

To solve a machine learning problem, we typically develop a model and define an objective
function based on the problem. Our goal is to evaluate the model and optimize its parameters
to minimize the objective function. A fundamental optimization algorithm for this task is
Gradient Descent (GD), which iteratively updates the model parameters in the direction of
the negative gradient of the objective function. Despite its simplicity, GD and its variants
are widely used in training machine learning models and form the basis for more advanced
optimization techniques, including momentum-based methods.

Heavy ball (HB) or Polyak momentum [Polyak, 1964] is one of the momentum-based
extensions of GD. It has been extensively studied for minimizing smooth, strongly-convex
quadratics in the deterministic setting. In this setting, HB converges to the minimizer at an
accelerated linear rate [Polyak, 1964, Wang et al., 2021] meaning that for a problem with
condition number κ (see definition in Chapter 2), T iterations of HB results in the optimal
O (exp(−T/

√
κ)) convergence. For general smooth, strongly-convex functions, Ghadimi et al.

[2015] prove that HB converges to the minimizer at a linear but non-accelerated rate. In this
setting, Wang et al. [2022] prove an accelerated linear rate for HB, but under very restrictive
assumptions (e.g. one-dimensional problems or problems with a diagonal hessian). Recently,
Goujaud et al. [2023] showed that HB (with any fixed step-size or momentum parameter)
cannot achieve accelerated convergence on general (non-quadratic) strongly-convex problems,
and consequently has no theoretical benefit over gradient descent (GD).

While there is a good theoretical understanding of HB in the deterministic setting, the
current understanding of stochastic heavy ball momentum (SHB) is rather unsatisfactory.
SHB is commonly used to train machine learning models and often provides empirical
improvements over stochastic gradient descent (SGD). Furthermore, it forms the basis
of modern adaptive gradient methods such as Adam [Kingma and Ba, 2014]. As such, it
is important to better understand the theoretical advantage of SHB over SGD. Previous
works [Defazio, 2020, You et al., 2019] have conjectured that the use of momentum for
non-convex minimization can help reduce the variance resulting in faster convergence.
Recently, Wang et al. [2023] analyze stochastic momentum in the regime where the gradient
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noise dominates, and demonstrate that in this regime, momentum has limited benefits with
respect to both optimization and generalization. However, it is unclear whether momentum
can provably help improve the convergence in other settings. In this thesis, we primarily
focus on the simple setting of minimizing strongly-convex quadratics, with the aim of better
understanding the theoretical benefit of SHB and subsequently improving the method.

1.1 Non-accelerated convergence of SHB

We first consider the general smooth, strongly-convex setting and aim to design an SHB
variant that matches the theoretical convergence of SGD. In this setting, Sebbouh et al. [2020],
Liu et al. [2020] use SHB with a constant step-size and momentum parameter, obtaining
linear convergence to the neighborhood of the minimizer. In order to attain convergence
to the solution, Sebbouh et al. [2020] use a sequence of constant-then-decreasing step-sizes
to achieve an O (κ2/T 2 + σ2/T) rate, where σ2 is the variance in the stochastic gradients. In
contrast, in the same setting, SGD can attain an O (exp (−T/κ) + σ2/T) convergence to the
minimizer. To the best of our knowledge, in this setting, there is no variant of SHB that can
converge to the minimizer at a rate matching SGD.

In Chapter 3, we propose an SHB method that combines the averaging interpretation
of SHB [Sebbouh et al., 2020] and the exponentially decreasing step-sizes [Li et al., 2021,
Vaswani et al., 2022] to achieve an O (exp (−T/κ) + σ2/T) convergence rate that matches
the SGD rate. Importantly, the proposed algorithm is noise-adaptive meaning that it does
not require the knowledge of σ2, but recovers the non-accelerated linear convergence rate
(matching Ghadimi et al. [2015]) when σ = 0. Moreover, the algorithm provides an adaptive
way to set the momentum parameter, alleviating the need to tune this additional hyper-
parameter.

Setting the algorithm parameters for SHB requires the knowledge of problem-dependent
constants such as the smoothness and strong-convexity. Since these constants are typically
estimated in practice, in Chapter C, we study the effect of their misestimation on the
theoretical convergence of SHB. Our results demonstrate that using exponentially decreasing
step-sizes makes SHB robust to misestimation – the resulting algorithm still converges to the
minimizer, albeit at a slower rate and the slowdown depends on the degree of misspecification.

1.2 Accelerated convergence of SHB

Next, we focus on minimizing strongly-convex quadratics, and aim to analyze the conditions
under which SHB is provably better than SGD. A number of works [Kidambi et al., 2018,
Paquette and Paquette, 2021, Loizou and Richtárik, 2020, Bollapragada et al., 2022, Lee et al.,
2022] have studied SHB for minimizing quadratics. In this setting, Kidambi et al. [2018] show
that SHB (with batch-size 1 and any choice of step-size and momentum parameters) cannot
attain an accelerated rate. They conjecture that the practical gain of SHB is a by-product
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of using larger mini-batches. Similarly, Paquette and Paquette [2021] demonstrate that SHB
with small batch-sizes cannot obtain a faster rate than SGD. While Loizou and Richtárik
[2020] prove an accelerated rate for SHB (for any batch-size) in the “L1 sense”, this does not
imply acceleration according to the standard sub-optimality metrics. Recently, Bollapragada
et al. [2022], Lee et al. [2022] use results from random matrix theory to prove that SHB with
a constant step-size and momentum can achieve an accelerated rate when the mini-batch size
is sufficiently large. Compared to these works, we use the non-asymptotic analysis standard
in the optimization literature, and prove stronger worst-case results.

Accelerated convergence to the neighbourhood for quadratics. Our result
in Section 4.1 substantiates the claim by Kidambi et al. [2018]. Specifically, for strongly-
convex quadratics, we prove that SHB with a mini-batch size larger than a certain threshold
b∗ (that depends on κ) and constant step-size and momentum parameters can achieve an
O (exp(−T/

√
κ) + σ) non-asymptotic convergence up to a neighborhood of the solution. For

problems such as non-parametric regression [Belkin et al., 2019, Liang and Rakhlin, 2020] or
feasible linear systems, where the interpolation property [Ma et al., 2018, Vaswani et al.,
2019] is satisfied, σ = 0 and SHB with a large batch-size results in accelerated convergence
to the minimizer.

Lower Bound for SHB. Our result in Section 4.2 shows that there exist quadratics for
which SHB (with a constant step-size and momentum) diverges when the mini-batch size is
below a certain threshold. Moreover, the lower-bound demonstrates that a κ dependence in
b∗ is necessary.

The result in Section 4.1 only demonstrates convergence to the neighbourhood of the
solution. Next, we aim to design an SHB algorithm that can achieve accelerated convergence
to the minimizer.

Noise-adaptive, accelerated convergence to the minimizer for quadratics.
In Section 4.3, we design a multi-stage SHB method (Algorithm 1) and prove that for
strongly-convex quadratics, Algorithm 1 (with a sufficiently large batch-size) converges to
the minimizer at an accelerated O (exp (−T/

√
κ) + σ/T) rate. Algorithm 1 is noise-adaptive

and has a similar structure as the algorithm proposed for incorporating Nesterov acceleration
in the stochastic setting [Aybat et al., 2019]. In comparison, both Bollapragada et al. [2022],
Lee et al. [2022] only consider accelerated convergence to a neighbourhood of the minimizer.
In concurrent work, Pan et al. [2023] make a stronger bounded variance assumption in
order to analyze SHB for minimizing strongly-convex quadratics. They propose a similar
multi-stage algorithm and under the bounded variance assumption, prove that it can converge
to the minimizer at an accelerated rate for any mini-batch size. In Section 4.3, we argue
that the bounded variance assumption is problematic even for simple quadratics and the
algorithm in Pan et al. [2023] can diverge for small mini-batches (see Fig. 4.1).
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1.3 Two-phase SHB

In settings where T ≫ n, the batch-size required by the multi-stage approach in Algorithm 1
can be quite large, affecting the practicality of the algorithm. In order to alleviate this
issue, we design a two phase algorithm that combines the algorithmic ideas in Section 4.1
and Chapter 3.

Partially accelerated convergence to the minimizer for quadratics. In Section 4.4,
we propose a two-phase algorithm (Algorithm 2) that uses a constant step-size and momentum
in Phase 1, followed by an exponentially decreasing step-size and corresponding momentum in
Phase 2. By adjusting the relative length of the two phases, we demonstrate that Algorithm 2
(with a sufficiently large batch-size) can obtain a partially accelerated rate. In the interpolation
setting when σ = 0, the two-phase algorithm (without any knowledge of σ) can only attain
a partially accelerated rate. Consequently, in Chapter H, we design a noise-adaptive hybrid
algorithm that combines the advantages of Algorithms 1 and 2 and can get an accelerated
rate in most scenarios.

1.4 Experiments

In Chapter 5, we empirically validate the effectiveness of the proposed algorithms on synthetic
benchmarks. In particular, for strongly-convex quadratics, we demonstrate that SHB and its
variants can attain an accelerated rate when the mini-batch size is larger than a threshold.
While SHB with a constant step-size and momentum converges to a neighbourhood of
the solution, Algorithms 1 and 2 are able to counteract the noise resulting in smaller
sub-optimality.
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Chapter 2

Problem Formulation

We consider the unconstrained minimization of a finite-sum objective f : Rd → R, f(w) :=
1
n

∑n
i=1 fi(w). For supervised learning, n represents the number of training examples and

fi is the loss of example i. Throughout, we assume that f and each fi are differentiable
and lower-bounded by f∗ and f∗

i , respectively. We also assume that each function fi is
Li-smooth, implying that f is L-smooth with L := maxi Li. Furthermore, f is considered to
be µ-strongly convex while each fi is convex1. We define κ := L

µ as the condition number
of the problem, and denote w∗ to be the unique minimizer of the above problem. We
primarily focus on strongly-convex quadratic objectives where fi(w) := 1

2w
TAiw − ⟨di, w⟩

and f(w) = 1
n

∑n
1 fi(w) = wTAw − ⟨d,w⟩, where Ai are symmetric positive semi-definite

matrices. Here, L = λmax[A] and µ = λmin[A] > 0, where λmax and λmin refer to the
maximum and minimum eigenvalues.

In each iteration k ∈ [T ] := {0, 1, .., T}, SHB samples a mini-batch Bk (b := |Bk|) of
examples and uses it to compute the stochastic gradient of the loss function. The mini-
batch is formed by sampling without replacement. We denote ∇fik(wk) to be the average
stochastic gradient for the mini-batch Bk, meaning that ∇fik(wk) := 1

b

∑
i∈Bk

∇fi(wk) and
E[∇fik(wk)|wk] = ∇f(wk). At iteration k, SHB takes a descent step in the direction of
∇fik(wk) together with a momentum term computed using the previous iterate. Specifically,
the SHB update is given as:

wk+1 = wk − αk∇fik(wk) + βk (wk − wk−1) (2.1)

where wk+1, wk, and wk−1 are the SHB iterates and w−1 = w0; {αk}T −1
k=0 and {βk}T −1

k=0 is
the sequence of step-sizes and momentum parameters respectively. In the next section, we
analyze the convergence of SHB for general smooth, strongly-convex functions.

1We include definitions of these properties in Chapter A.
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Chapter 3

Non-accelerated linear convergence
for strongly-convex functions

We first consider the non-accelerated convergence of SHB in the general smooth, strongly-
convex setting. Following Loizou et al. [2021], Vaswani et al. [2022], we define σ2 := Ei[f∗−f∗

i ]
as the measure of stochasticity. This notion of noise is related to the typical notion of the
gradient noise at the optimum χ2 := Ei ∥∇fi(w∗)∥2. Specifically, if each fi is L-smooth and
µ-strongly convex, then 1

2Lχ
2 ≤ σ2 ≤ 1

2µχ
2. We develop an SHB method that (i) converges

to the minimizer at the O (exp (−T/κ) + σ2/T) rate, (ii) is noise-adaptive in that it does not
require the knowledge of σ2 and (iii) does not require manual tuning of the momentum
parameter. In order to do so, we use an alternative form of the update [Sebbouh et al., 2020]
that interprets SHB as a moving average of the iterates zk computed by stochastic gradient
descent. Specifically, for z0 = w0,

wk+1 = λk+1
λk+1 + 1wk + 1

λk+1 + 1zk ; zk := zk−1 − ηk∇fik(wk) , (3.1)

where {ηk, λk} are parameters to be determined theoretically. For any {ηk, λk} sequence, if
αk = ηk

1+λk+1
, βk = λk

1+λk+1
, then the update in Eq. (3.1) is equivalent to the SHB update

in Eq. (2.1) [Sebbouh et al., 2020, Theorem 2.1]. The proposed SHB method combines the
above averaging interpretation of SHB and exponentially decreasing step-sizes [Li et al.,
2021, Vaswani et al., 2022] to achieve a noise-adaptive non-accelerated convergence rate.
Specifically, following Li et al. [2021], Vaswani et al. [2022], we set ηk = υ γk, where υ is
the problem-dependent scaling term that captures the smoothness of the function and γk is
the problem-independent term that controls the decay of the step-size. By setting {ηk, γk}
appropriately, the following theorem (proved in Chapter B) shows that the proposed method
converges to the minimizer at an O (exp (−T/κ) + σ2/T) rate. In contrast, Sebbouh et al.
[2020] use constant-then-decaying step-sizes to obtain a sub-optimal O (κ2/T 2 + σ2/T) rate.
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Theorem 1. For L-smooth, µ strongly-convex functions, SHB (Eq. (3.1)) with τ ≥ 1,
υ = 1

4L , γ =
(

τ
T

)1/T , γk = γk+1, ηk = υ γk, and λk := 1−2ηL
ηkµ

(
1 − (1 − ηkµ)k

)
converges as:

E ∥wT −1 − w∗∥2 ≤ c2
cL

∥w0 − w∗∥2 exp
(

− T

4κ
γ

ln(T/τ)

)
+ 64Lσ2c2ζ

2κ3

e2 cL

(ln(T/τ))2

γ2T

where ζ =
√

n−b
(n−1) b , , c2 := exp

(
1

2κ
2τ

ln(T/τ)

)
and cL := 4(1−γ)

µ2
[
1 − exp

(
−µ γ

2L

)]

Figure 3.1: Variation in αk and βk for
T = 100, L = 10, µ = 1

This rate matches that of SGD with an ex-
ponentially decreasing step-size [Li et al., 2021,
Vaswani et al., 2022]. In the deterministic setting,
when b = n, then by Lemma 7, ζ = 0, and SHB
matches the non-accelerated linear rate of GD
and HB [Ghadimi et al., 2015]. Non-parametric
regression [Belkin et al., 2019, Liang and Rakhlin,
2020] or feasible linear systems [Loizou and
Richtárik, 2020] satisfy the interpolation [Ma
et al., 2018, Vaswani et al., 2019] property. For
these problems, the model is able to completely
interpolate the data and the gradient for each
point converges to zero at the optimum, meaning that ∇fi(w∗) = 0. Hence, the noise at
the optimum vanishes and χ = σ = 0. For this case, SHB matches the convergence rate of
constant step-size SGD [Vaswani et al., 2019]. For general strongly-convex functions, Goujaud
et al. [2023] prove that HB (with any step-size or momentum parameter) cannot achieve an
accelerated convergence rate on general (non-quadratic and with dimension greater than 1)
smooth, strongly-convex problems. Furthermore, we know that the variance term (depending
on σ2) cannot be decreased at a faster rate than Ω(1/T) [Nguyen et al., 2019]. Hence, the
above rate is the best-achievable for SHB in the general strongly-convex setting.

We reiterate that the method does not require knowledge of σ2 and is hence noise-
adaptive. Furthermore, all algorithm parameters are completely determined by the µ, L
and γk sequence. Hence, the resulting algorithm does not require manual tuning of the
momentum. In Fig. 3.1, we show the variation of the (αk, βk) parameters, and observe
that the method results in a more aggressive decrease in the step-size (compared to the
standard O(1/k) rate). This compensates for the increasing momentum parameter. The above
theorem requires knowledge of L and µ which can be difficult to obtain in practice. Hence in
Chapter C, we consider the effect of misestimating L and µ on the convergence rate of SHB.
These are the first results that consider the effect of parameter misspecification for SHB.

Next, we focus on strongly-convex quadratics where SHB can obtain an accelerated
convergence rate.
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Chapter 4

Accelerated linear convergence for
strongly-convex quadratics

In this section, we focus on strongly-convex quadratics and in Section 4.1, we prove that SHB
with a large batch-size attains accelerated linear convergence to a neighbourhood determined
by the noise. In Section 4.2, we prove a corresponding lower-bound that demonstrates the
necessity of a large batch-size to attain acceleration. Next, in Section 4.3, we design a
multi-stage SHB algorithm that achieves accelerated convergence to the minimizer. Finally,
in Section 4.4, we design a two-phase SHB algorithm that has a simpler implementation,
but can only attain partially accelerated rates.

4.1 Upper Bound for SHB

In the following theorem (proved in Chapter D), we show that for strongly-convex quadratics,
SHB with a batch-size b larger than a certain problem-dependent threshold b∗, constant
step-size and momentum parameter converges to a neighbourhood of the solution at an
accelerated linear rate.

Theorem 2. For L-smooth, µ strongly-convex quadratics, SHB (Eq. (2.1)) with αk = α = a
L

for a ≤ 1, βk = β =
(
1 − 1

2
√
αµ
)2

, batch-size b s.t. b ≥ b∗ := n max
{

1
1+ n−1

C κ2
, 1

1+ (n−1) a
3

}
converges as:

E[∆T ] ≤ 6
√

2
√
κ√

a
exp

(
−

√
a T

2
√
κ

max
{3

4 , 1 − 2
√
κ
√
ζ

})
∆0 + 12

√
aχ

µ
min

{
1, ζ√

a

}

where ∆k := ∥wk − w∗∥, χ :=
√
E ∥∇fi(w∗)∥2, ζ =

√
3 n−b

(n−1) b and C := 3526.

The first term in the convergence rate represents the bias. Since 1 − 2
√
κ

√
ζ > 3

4 when
b ≥ b∗, the initial sub-optimality ∆0 is forgotten at an accelerated linear rate proportional to
exp(−T/

√
κ). Moreover, since the bias term depends on ζ, using a larger batch-size (above

b∗) leads to a smaller ζ resulting in faster convergence. In the deterministic case, when
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b = n and ζ = 0, we recover the non-asymptotic accelerated convergence for HB [Wang
et al., 2021]. Similar to the deterministic case, the accelerated convergence requires a
“warmup” number of iterations meaning that T needs to be sufficiently large to ensure that
exp

(
− T√

κ

√
a

2 max
{

3
4 , 1 − 2

√
κ

√
ζ
})

≤ 6
√

2κ√
a

. The second term represents the variance, and
determines the size of the neighbourhood. The above theorem uses χ2 = E ∥∇fi(w∗)∥2 as
the measure of stochasticity, where χ2 ≤ 2Lσ2 because of the L-smoothness of the problem.
Compared to constant step-size SGD that achieves an O(exp(−T/κ) + χ), SHB with a
sufficiently large batch-size results in an accelerated O(exp(−T/

√
κ) + χ) rate. We observe

that if κ is large, a larger batch-size is required to attain acceleration. Likewise, using a
smaller step-size requires a proportionally larger batch-fraction to guarantee an accelerated
rate. On the other hand, as n increases, the relative batch-fraction (equal to b/n) required
for acceleration is smaller. The proof of the above theorem relies on the non-asymptotic
result for HB in the deterministic setting [Wang et al., 2021], coupled with an inductive
argument over the iterations.

The above result substantiates the claim that the practical gain of SHB is a by-product of
using larger mini-batches. In comparison to the above result, Loizou and Richtárik [2020] also
prove an accelerated rate for SHB, but measure the sub-optimality in terms of ∥E[wT − w∗]∥
which does not effectively model the problem’s stochasticity. In contrast to Bollapragada et al.
[2022, Theorem 3.1] which results in an O (T exp(−T/

√
κ) + σ log(d)) rate where d is the

problem dimension, we obtain a faster convergence rate without an additional T dependence
in the bias term, nor an additional log(d) dependence in the variance term. In order to
achieve an accelerated rate, our threshold b∗ scales as O

(
1

1/n+1/κ2

)
. When n >> O(κ2), our

result implies that SHB with a nearly constant (independent of n) mini-batch size can attain
accelerated convergence to a neighbourhood of the minimizer. In contrast, [Bollapragada
et al., 2022, Theorem 3.1] require a batch-size of Ω(d κ3/2) to attain an accelerated rate
in the worst-case. This condition is vacuous in the over-parameterized regime when d > n.
Hence, compared to our result, Bollapragada et al. [2022] require a more stringent condition
on the batch-size when d >

√
κ. On the other hand, Lee et al. [2022] provide an average-case

analysis of SHB as d, n → ∞, and prove an accelerated rate when b ≥ n κ̄√
κ

where κ̄ is the
average condition number. In the worst-case (for example, when all data points are the same
and κ̄ = κ = 1), Lee et al. [2022] require b = n in order to attain an accelerated rate.

In the interpolation setting described in Chapter 3, the noise at the optimum vanishes and
σ = 0 implying that χ = 0. In this setting, we prove the following Corollary 1 in Chapter D.
Hence, under interpolation, SHB with a sufficiently large batch-size results in accelerated
convergence to the minimizer, matching the corresponding result for SGD with Nesterov
acceleration [Vaswani et al., 2022, Theorem 6] and ASGD [Jain et al., 2018].
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Corollary 1. For L-smooth, µ strongly-convex quadratics, under interpolation, SHB
(Eq. (2.1)) with the same parameters as in Theorem 2 and batch-size b s.t. b ≥ b∗ := n 1

1+ n−1
C κ2

(where C is defined in Theorem 2) converges as:

E ∥wT − w∗∥ ≤ 6
√

2√
a

√
κ exp

(
− T√

κ

√
a

2 max
{3

4 , 1 − 2
√
κ
√
ζ

})
∥w0 − w∗∥

When the noise χ ̸= 0 but is assumed to be known, Corollary 4 (proved in Chapter D)
shows that the step-size and momentum parameter of SHB can be adjusted to achieve an ϵ
sub-optimality (for some desired ϵ > 0) at an accelerated linear rate. In the above results,
the batch-size threshold depends on κ. In the following section, we prove a lower-bound
showing that a dependence on κ is necessary.

4.2 Lower Bound for SHB

For SHB with the same step-size and momentum as Corollary 1, we show that there exists
quadratics for which SHB with a batch-size lower than a certain threshold diverges.

Theorem 3. For a L̄-smooth, µ̄ strongly-convex quadratic problem f(w) := 1
n

∑n
i=1

1
2w

TAiw

with n samples and dimension d = n = 100 such that w∗ = 0 and each Ai is an n-by-n
matrix of all zeros except at the (i, i) position, we run SHB (2.1) with αk = α = 1

L̄
,

βk = β =
(
1 − 1

2
√
αµ̄
)2

. If b < 1
1+ n−1

e3.3κ0.6
n and ∆k :=

(
wk

wk−1

)
, for a c > 1, after 6T

iterations, we have that:

E
[
∥∆6T ∥2

]
> cT ∥∆0∥2 .

The above lower-bound demonstrates that the dependence on κ is necessary in the
threshold b∗ for the batch-size. We note that the designed problem with n = d corresponds
to a feasible linear system and therefore satisfies interpolation. Intuitively, Theorem 3 shows
that in order to attain an accelerated rate for SHB, it is necessary to have a large batch-size to
effectively control the error between the empirical Hessian 1

b

∑
i∈Bk

Ai at iteration k and the
true Hessian. When the batch-size is not large enough, the aggressive updates for accelerated
SHB increase this error resulting in divergence. Importantly, the above lower-bound also holds
for the step-size and momentum parameters used in Bollapragada et al. [2022]. We note that
our lower-bound result still leaves open the possibility that there are other (less aggressive)
choices of the step-size and momentum that can result in an (accelerated) convergence rate
with a smaller batch-size. The proof of the above theorem in Chapter E takes advantage
of symbolic mathematics programming [Meurer et al., 2017], and maybe of independent
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interest. In contrast to the above result, the lower bound in Kidambi et al. [2018] shows that
there exist strongly-convex quadratics where SHB with a batch-size of 1 and any choice of
step-size and momentum cannot result in an accelerated rate.

We have shown that for strongly-convex quadratics (not necessarily satisfying interpola-
tion), SHB (with large batch-size) can result in accelerated convergence to the neighbourhood
of the solution. Next, we design a multi-stage algorithm that ensures accelerated convergence
to the minimizer.

4.3 Multi-stage SHB

We propose a multi-stage SHB algorithm (Algorithm 1) and analyze its convergence rate.
The structure of our multi-stage algorithm is similar to Aybat et al. [2019] who studied
Nesterov acceleration in the stochastic setting. For a fixed iteration budget T , Algorithm 1
allocates T/2 iterations to stage zero and divides the remaining T/2 iterations into I stages.
The length for each of these I stages increases exponentially, while the step-size used in
each stage decreases exponentially. This decrease in the step-size helps counter the variance
and ensures convergence to the minimizer. Theorem 4 (proved in in Chapter F) shows
that Algorithm 1 converges to the minimizer at an accelerated linear rate.

Theorem 4. For L-smooth, µ strongly-convex quadratics with κ > 1, for T ≥ T̄ :=
3·28√

κ
ln(2) max

{
4κ, e2}, Algorithm 1 with b ≥ b∗ := n max

{
1

1+ n−1
C κ2

, 1
1+ (n−1) aI

3

}
converges as:

E ∥wT − w∗∥ ≤ 6
√

2
√
C1
C3
κ

1/4 exp
(

− T

8
√
κ

)
∥w0 − w∗∥ + 24κ

√
C1

µ(κ− 1)
χ√
T
.

where C1 :=
29 3

√
κ

(
1+2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2) , C3 := 3·28 max{4κ,e2}

ln(2) and C := 3526.

From Theorem 4, we see that Algorithm 1 achieves a convergence rate ofO
(
exp

(
− T√

κ

)
+ χ√

T

)
to the minimizer. It is important to note that in comparison to Theorem 1, the sub-optimality
above is in terms of E ∥wT − w∗∥ (instead of E ∥wT − w∗∥2). Hence, the above rate is optimal
for strongly-convex quadratics since the bias term decreases at an accelerated linear rate
while the variance term goes down as 1/

√
T . Unlike in Corollary 4, Algorithm 1 does not

require the knowledge of χ and is hence noise-adaptive. When χ = 0, Algorithm 1 matches
the rate of SHB in Corollary 1.
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Algorithm 1: Multi-stage SHB
Input: T (iteration budget), b (batch-size)
Initialization: w0, w−1 = w0, k = 0
I =

⌊
1

ln(
√

2) W
(

T ln(
√

2)
384

√
κ

)⌋
(W(.) is the Lambert W

function1)

T0 = T
2

∀i ∈ [1, I],

Ti =
⌈

4 2i/2√
κ

(2−
√

2) ((i/2 + 5) ln(2) + ln(
√
κ))
⌉

for i = 0; i < I + 1; i = i+ 1 do
Set ai = 2−i, αi = ai

L , βi =
(
1 − 1

2
√
αiµ

)2

x0 = wi

for k = 0; k < Ti; k = k + 1 do
Sample batch Bk and calculate
∇fik(xk)
xk+1 = xk −αi∇fik(xk)+βi (xk − xk−1)

end
wi+1 = xTi

end
return wI+1

Algorithm 2: Two-phase
SHB

Input: T (iteration budget), b
(batch-size), c ∈ (0, 1)
(relative phase lengths)

Initialization: w0, w−1 = w0,
k = 0

Set T0 = c T

for k = 0; k ≤ T0; k = k + 1
do

Set α, β according to
Theorem 2 Use Update 2.1

end
for k = T0 + 1; k ≤ T ;
k = k + 1 do

Set ηk, λk according
to Theorem 1

Use Update 3.1
end
return wT

In concurrent work, Pan et al. [2023] design a similar multi-stage SHB algorithm. However,
the algorithm’s analysis requires a bounded variance assumption which implies that for all
k ∈ [T ], there exists a σ̃ < ∞ such that E ∥∇f(wk) − ∇fik(wk)∥2 ≤ σ̃2. For strongly-convex
quadratics, this assumption implies that the algorithm iterates lie in a compact set [Jain
et al., 2018]. Note that this assumption is much stronger than that in Theorem 4 which
only requires that the variance at the optimum be bounded. With this bounded variance
assumption, Pan et al. [2023] prove that their multi-stage SHB algorithm converges to
the minimizer at an accelerated rate without any condition on the mini-batch size. This
is in contrast with our result in Theorem 4 which requires the mini-batch size to be large
enough. This discrepancy is because of the different assumptions on the noise. In Fig. 4.1a,
we use the same feasible linear system as in Theorem 3 and demonstrate that with a
batch-size 1, the algorithm in Pan et al. [2023] can diverge. This is because the iterates do
not lie on a compact set and σ̃ can grow in an unbounded fashion for O(T ) iterations (see
Fig. 4.1b), demonstrating that the bounded variance assumption is problematic even for
simple examples.

1The Lambert W function is defined as: for x, y ∈ R, y = W(x) =⇒ y exp(y) = x.
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(a) Multi-stage SHB [Pan et al., 2023] with b = 1
diverges exponentially fast in the first few thou-
sands iterations.

(b) The variance σ̃2 is increasing.

Figure 4.1: Divergence of Multi-stage SHB [Pan et al., 2023] with b = 1 on the synthetic
example in Theorem 3 with κ = 5000. We set w0 = 1⃗00 and run the algorithm in [Pan
et al., 2023] with C = 2. We consider 5 independent runs, and plot the average gradient
norm ∥∇f(wk)∥ against the number of iterations. In Fig. 4.1b, we plot the (log) variance
log

(
E ∥∇f(wk) − ∇fik(wk)∥2

)
against the number of iterations. We observe that multi-stage

SHB diverges and the variance σ̃2 increases, showing that the bounded variance assumption
in Pan et al. [2023] is problematic.

With this assumption, Pan et al. [2023] prove that their multi-stage algorithm con-
verges at a rate of Õ

(
Tκ exp(−T/

√
κ) + dσ̃√

T

)
(for a similar definition of suboptimality as

in Theorem 4). The above upper-bound implies that their algorithm can only achieve
a sublinear rate even when solving feasible linear systems with a large batch-size [Jain
et al., 2018]. In comparison, Algorithm 1 with a large batch-size can achieve an acceler-
ated linear rate when solving feasible linear systems. From a theoretical perspective, the
Õ
(
κ1/4 exp(−T/

√
κ) + χ√

T

)
bound in Theorem 4 is better in the bias term (by a factor of T )

and hence requires fewer “warmup” iterations. It is also better in the variance term in that
it does not incur a dimension dependence. Hence, compared to Pan et al. [2023], we have
better convergence guarantees with a simpler analysis under more realistic assumptions.

In Theorem 4, we observe that the batch-size threshold b∗ depends on aI = 2−I = O(1/T).
In order to understand the implications of this requirement, consider the case when T = ψn

(for some ψ > 0). In this case, b∗ = n max
{

1
1+ n−1

C κ2
, 1

1+ 1
4ψ

}
. For practical problems, n

is of the order of millions compared to T which is in the thousands and hence ψ << 1.
Furthermore, when n >> O(κ2), b∗ is predominantly determined by the condition number,
making the multi-stage algorithm quite practical. An alternative way to reason is to consider
a fixed batch-size b as input. In this case, the following corollary presents the accelerated
convergence of multi-stage SHB but only for a range of feasible T .
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Corollary 2. For L-smooth, µ strongly-convex quadratics with κ > 1, Algorithm 1 with
batch-size b such that b ≥ b∗ := n 1

1+ n−1
C κ2

attains the same rate as in Theorem 4 for

T ∈
[

3·28√
κ

ln(2) max
{
4κ, e2} , C1

√
(n−1)b
3(n−b)

]
, where C,C1 are defined in Theorem 4.

We have seen that a complicated algorithm can result in the optimal accelerated rate
for a range of T . Next, we design a simple-to-implement algorithm that attains partially
accelerated rates for all T .

4.4 Two-phase SHB

We design a two-phase SHB algorithm (Algorithm 2) that has a convergence guarantee for
all T , but can only obtain a partially accelerated rate with a dependence on κq for q ∈ [1

2 , 1].
Here q = 1

2 corresponds to the accelerated rate of Section 4.1, while q = 1 corresponds
to the non-accelerated rate of Chapter 3. Algorithm 2 consists of two phases – in phase
1 consisting of T0 iterations, it uses Eq. (2.1) with a constant step-size and momentum
parameter (according to Theorem 2); in phase 2 consisting of T1 := T − T0 iterations, it
uses Eq. (3.1) with an exponentially decreasing ηk sequence and corresponding λk (according
to Theorem 1). The relative length of the two phases is governed by c := T0/T . In Chapter G,
we analyze the convergence of Algorithm 2 with general c and prove Theorem 10. For a
specific setting when c = 1

2 , we prove the following corollary.

Corollary 3. For L-smooth, µ strongly-convex quadratics with κ > 4, Algorithm 2 with
batch-size b such that b ≥ b∗ = n 1

1+ n−1
C κ2

and c = 1
2 results in a rate of O

(
exp

(
− T

κ0.7

)
+ σ√

T

)
for all T .

We observe that Algorithm 2, with a sub-optimal convergence rate ofO (exp (−T/κ0.7) + σ/
√

T),
is faster than SGD and the non-accelerated SHB algorithm in Chapter 3. Compared to
the accelerated SHB in Section 4.1, the two-phase algorithm converges to the minimizer
(instead of the neighbourhood). However, even in the interpolation setting when σ = 0, the
two-phase algorithm (without any knowledge of σ) can only attain a partially accelerated
rate. Consequently, in Chapter H, we design a noise-adaptive hybrid algorithm that combines
the advantages of Algorithms 1 and 2 and can get an accelerated rate in most scenarios.
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Chapter 5

Experimental Evaluation

(a) κ = 1000 and r = 10−2 (b) κ = 500 and r = 10−2 (c) κ = 200 and r = 10−2

(d) κ = 1000 and r = 10−4 (e) κ = 500 and r = 10−4 (f) κ = 200 and r = 10−4

(g) κ = 1000 and r = 10−6 (h) κ = 500 and r = 10−6 (i) κ = 200 and r = 10−6

Figure 5.1: Comparing SHB, Multi-SHB, Multi-SHB-CNST, 2P-SHB, SGD, Nesterov-EXP, for
the squared loss on synthetic datasets with different κ and noise r. Both SGD and SHB converge
to the neighborhood, but SHB attains an accelerated rate. Multi-SHB, Multi-SHB-CNST and
2P-SHB result in smaller gradient norms and have similar convergence as Nesterov-EXP.

For our experimental evaluation, we consider minimizing strongly-convex quadratics.
In particular, we generate random synthetic regression datasets with n = 10000 and
d = 20. For this, we generate a random w∗ vector and a random feature matrix X ∈ Rn×d.
We control the maximum and minimum eigenvalues of the resulting XTX matrix, thus
controlling the L-smoothness and µ-strong-convexity of the resulting quadratic problem. The
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measurements y ∈ Rn are generated according to the model: y = Xw∗+s where s ∼ N (0, rIn)
corresponds to Gaussian noise. We vary κ ∈ {1000, 500, 200} and the magnitude of the noise
r ∈ {10−2, 10−4, 10−6}. These choices are motivated by Aybat et al. [2019]. By controlling r,
we can control the variance in the stochastic gradients. Using these synthetic datasets, we
consider minimizing the unregularized linear regression loss: f(w) = 1

2 ∥Xw − y∥2. In this
case, A = XTX, d = 2yTX and Ai = XT

i Xi, di = 2yT
i Xi. 1

We compare the following methods: SHB with a constant step-size and momentum (set
according to Theorem 2) with a = 1 (SHB), Multi-stage SHB (Algorithm 1) (Multi-SHB),
Two-phase SHB (Algorithm 2) with c = 0.5 (2P-SHB), and use the following baselines – SGD
(SGD), SGD with Nesterov acceleration and exponentially decreasing step-sizes [Vaswani
et al., 2022] (Nesterov-EXP). Additionally, we consider a heuristic we refer to as Multi-
stage SHB with constant momentum parameter (Multi-SHB-CNST). The heuristic has the
same structure as Algorithm 1, but the momentum parameter in each stage is fixed i.e.
βi = (1 − 1/2

√
κ)2. We will see that this heuristic can result in better convergence than

Multi-SHB. However, analyzing it theoretically is nontrivial. For each compared method,
we use a mini-batch size b = 0.9n to ensure that it is sufficiently large for SHB to achieve
an accelerated rate for our choices of κ. We note that using b = 0.9n on a noisy regression
problem has enough stochasticity to meaningfully compare optimization methods. We fix
the total number of iterations T = 7000 and initialization w0 = 0. For each experiment, we
consider 3 independent runs, and plot the average result. We will use the full gradient norm
as the sub-optimality measure and plot it against the number of iterations.

From Fig. 5.1, we observe that: (i) both SGD and SHB converge to the neighborhood
of the minimizer which depends on the noise r. However, SHB attains an accelerated rate,
thus converging to the neighborhood faster. (ii) Multi-SHB, Multi-SHB-CNST and 2P-SHB

can better counteract the noise, and result in smaller gradient norm after reaching the
neighborhood at an accelerated rate. (iii) The Multi-SHB-CNST heuristic results in slightly
better empirical performance than Multi-SHB when κ is relatively small. (iv) 2P-SHB results
in consistently better performance compared to Multi-SHB. (v) Across problems, the SHB
variants have similar convergence as Nesterov-EXP.

Next, we consider solving synthetic feasible linear systems with different values of κ, and
examine the convergence of SHB with different batch-sizes. The data generation procedure
is similar as above, however, there is no Gaussian noise (s = 0) and hence interpolation is
satisfied. In particular, the measurements y ∈ Rn are now generated according to the model:
y = Xw∗. We vary κ ∈ {8, 16, 32, 64, 128, 256, 512, 1024, 2048} and batch-size b = ξn for
ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We fix the total number of iterations T = 2000.
For each experiment, we consider 5 independent runs, and plot the average result. We will
use the full gradient norm as the performance measure and plot it against the number of

1The code is available here
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iterations. We compare the following methods: accelerated SHB with a constant step-size
and momentum (set according to Theorem 2) with a = 1 and varying batch-size ξ (SHB-ξ),
non-accelerated SHB with a constant step-size and momentum (set according to Theorem 1)
and a fixed batch-size b = 0.3n (NON-ACC-SHB), SGD with a constant step-size and a fixed
batch-size b = 0.3n (SGD).

(a) κ = 2048 (b) κ = 1024 (c) κ = 512

(d) κ = 256 (e) κ = 128 (f) κ = 64

(g) κ = 32 (h) κ = 16 (i) κ = 8

Figure 5.2: Comparison of SHB-ξ, NON-ACC-SHB, SGD for the squared loss on synthetic datasets
with different κ. For large κ, SHB can converge in an accelerated rate if the batch-size is
larger than the threshold b∗. The performances of SGD and NON-ACC-SHB are similar and
significantly slower than SHB when κ is large.

From Fig. 5.2, we observe that (i) when κ is large, using SHB with smaller batch-sizes
can result in divergence, (ii) SHB can only attain acceleration when the batch-size is larger
than some κ-dependent threshold, and the extent of acceleration depends on the batch-size,
(iii) across problems, the performance of SGD and NON-ACC-SHB is similar and slower than
SHB when κ is large. This verifies our theoretical results in Sections 4.1 and 4.2.

Finally, in Section I.2, we consider the algorithm proposed in Pan et al. [2023]. We observe
that with a sufficiently large batch-size, the method converges and has similar performance
to the proposed SHB variants.
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Chapter 6

Conclusion

For the general smooth, strongly-convex setting, we developed a novel variant of SHB
that uses exponentially decreasing step-sizes and achieves noise-adaptive non-accelerated
linear convergence for any mini-batch size. This rate matches that of SGD and is the best
achievable rate for SHB in this setting (given the negative results in Goujaud et al. [2023]).
For strongly-convex quadratics, we demonstrated that SHB can achieve accelerated linear
convergence if its mini-batch size is above a certain problem-dependent threshold. Our results
imply that for strongly-convex quadratics where n >> O(κ2), SHB (and its multi-stage
and two-phase variants) with a nearly constant (independent of n) mini-batch size can be
provably better than SGD, thus quantifying the theoretical benefit of SHB. In the future, we
aim to close the gap between the upper and lower-bounds on the mini-batch size required
for SHB to attain an accelerated rate. Furthermore, we aim to improve our lower-bound and
characterize the behaviour of SHB with any step-size and momentum parameter. On the
more practical side, we hope to develop SHB variants that can attain an accelerated rate
when the batch-size is large, and automatically default to non-accelerated rates for smaller
batch-sizes.
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Appendix A

Definitions

Our main assumptions are that each individual function fi is differentiable, has a finite
minimum f∗

i , and is L-smooth, meaning that for all v and w,

fi(v) ≤ fi(w) + ⟨∇fi(w), v − w⟩ + L

2 ∥v − w∥2 , (Individual Smoothness)

which also implies that f is L-smooth. A consequence of smoothness is the following bound
on the norm of the stochastic gradients,

∥∇fi(w)∥2 ≤ 2L(fi(w) − f∗
i ).

We also assume that each fi is convex, meaning that for all v and w,

fi(v) ≥ fi(w) − ⟨∇fi(w), w − v⟩. (Convexity)

We will also assume that f is µ strongly-convex, meaning that for all v and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩ + µ

2 ∥v − w∥2 . (Strong Convexity)
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Appendix B

Proofs for non-accelerated rates

We will require [Sebbouh et al., 2020, Theorem H.1]. We include its proof for completeness.

Theorem 5. For L-smooth, µ strongly-convex functions, suppose (ηk)k is a decreasing
sequence such that η0 = η and 0 < ηk <

1
2L . Define λk := 1−2ηL

ηkµ

(
1 − (1 − ηkµ)k

)
, Ak :=

∥wk − w∗ + λk(wk − wk−1)∥2, Ek := Ak + 2ηkλk(f(wk−1) − f(w∗)), αk := ηk
1+λk+1

, βk :=
λk

1−ηkµ
1+λk+1

, σ2 := Ei[fi(w∗) − f∗
i ] ≥ 0. Then SHB Eq. (2.1) converges as

E[Ek+1] ≤ (1 − ηkµ)E[Ek] + 2Lκζ2η2
kσ

2 (B.1)

where ζ =
√

n−b
(n−1)b .

Proof. We will first expand and bound the term Ak+1,

Ak+1 = ∥wk+1 − w∗ + λk+1(wk+1 − wk)∥2

= ∥wk − w∗ − αk∇fik(wk) + βk(wk − wk−1) + λk+1 [−αk∇fik(wk) + βk(wk − wk−1)]∥2

(SHB step)
= ∥wk − w∗ − αk(1 + λk+1)∇fik(wk) + βk(1 + λk+1)(wk − wk−1)∥2

= ∥wk − w∗ − ηk∇fik(wk) + λk(1 − ηkµ)(wk − wk−1)∥2

(definition of αk and βk)
= ∥wk − w∗ + λk(wk − wk−1) − ηk [µλk(wk − wk−1) + ∇fik(wk)]∥2

=Ak + η2
k ∥µλk(wk − wk−1) + ∇fik(wk)∥2

− 2ηk⟨wk − w∗ + λk(wk − wk−1), µλk(wk − wk−1) + ∇fik(wk)⟩
=Ak + η2

k ∥∇fik(wk)∥2 + η2
kµ

2︸ ︷︷ ︸
≤ ηkµ

λ2
k ∥wk − wk−1∥2

+ 2η2
kµλk⟨wk − wk−1,∇fik(wk)⟩ − 2ηkµλk⟨wk − w∗, wk − wk−1⟩

− 2ηk⟨wk − w∗,∇fik(wk)⟩ − 2ηkλk⟨wk − wk−1,∇fik(wk)⟩ − 2ηkµλ
2
k ∥wk − wk−1∥2

≤Ak − ηkµ
(
λ2

k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩
)

− 2ηk⟨wk − w∗,∇fik(wk)⟩
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+ η2
k ∥∇fik(wk)∥2︸ ︷︷ ︸

≤ 2Lη2
k

[fik(wk)−f∗
ik

]

+2η2
kµλk⟨wk − wk−1,∇fik(wk)⟩ − 2ηkλk⟨wk − wk−1,∇fik(wk)⟩.

(by L-smoothness of fik)

Add Bk+1 = 2ηk+1λk+1 (f(wk) − f∗) on both sides,

Ak+1 +Bk+1 ≤Ak − ηkµ
(
λ2

k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩
)

− 2ηk⟨wk − w∗,∇fik(wk)⟩

+ 2Lη2
k[fik(wk) − f∗

ik] + 2η2
kµλk⟨wk − wk−1,∇fik(wk)⟩

− 2ηkλk⟨wk − wk−1,∇fik(wk)⟩ + 2ηk+1λk+1 (f(wk) − f∗)

≤Ak − ηkµ
(
λ2

k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩
)

− 2ηk⟨wk − w∗,∇fik(wk)⟩

+ 2Lη2
k[fik(wk) − f∗

ik] − 2ηkλk(1 − ηkµ)⟨wk − wk−1,∇fik(wk)⟩
+ 2ηk+1λk+1[f(wk) − f∗].

Taking expectation w.r.t ik, fik(wk) − f∗
ik = [fik(wk) − fik(w∗)] + [fik(w∗) − f∗

ik] then

E[Ak+1 +Bk+1] ≤E[Ak] − E
[
ηkµ

(
λ2

k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩
)]

− 2ηkE[⟨wk − w∗,∇f(wk)⟩] + 2Lκζ2η2
kσ

2 + 2Lη2
kE[f(wk) − f∗]

− 2ηkλk(1 − ηkµ)E[⟨wk − wk−1,∇f(wk)⟩] + 2ηk+1λk+1E[f(wk) − f∗].
(Using Lemma 2)

Since f is strongly-convex, −2ηk⟨wk − w∗,∇f(wk)⟩ ≤ −ηkµ ∥wk − w∗∥2 − 2ηk[f(wk) − f∗],
then

E[Ek+1] ≤E[Ak] − ηkµE[∥wk − w∗∥2 + λ2
k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩︸ ︷︷ ︸

Ak

]

+ 2Lκζ2η2
kσ

2 + 2Lη2
kE[f(wk) − f∗] − 2ηkλk(1 − ηkµ)E [⟨wk − wk−1,∇f(wk)⟩]

− 2ηkE[f(wk) − f∗] + 2ηk+1λk+1E[f(wk) − f∗]
≤ (1 − ηkµ)E[Ak] + 2Lκζ2η2

kσ
2 + 2Lη2

kE[f(wk) − f∗]
− 2ηkλk(1 − ηkµ)E [⟨wk − wk−1,∇f(wk)⟩]
− 2ηkE[f(wk) − f∗] + 2ηk+1λk+1E[f(wk) − f∗].

By convexity, −⟨∇f(wk), wk − wk−1⟩ ≤ f(wk−1) − f(wk) = [f(wk−1) − f∗] − [f(wk) − f∗],
then

E[Ek+1] ≤ (1 − ηkµ)E[Ak] + 2Lκζ2η2
kσ

2 + 2Lη2
kE[f(wk) − f∗]︸ ︷︷ ︸

≤ 4Lη2
k
E[f(wk)−f∗]

+2ηkλk(1 − ηkµ)E[f(wk−1) − f∗]

− 2ηkλk(1 − ηkµ)E[f(wk) − f∗] − 2ηkE[f(wk) − f∗] + 2ηk+1λk+1E[f(wk) − f∗]
≤ (1 − ηkµ)E[Ak + 2ηkλk[f(wk−1) − f∗]︸ ︷︷ ︸

Bk

] + 2Lκζ2η2
kσ

2 + 4Lη2
kE[f(wk) − f∗]

− 2ηkλk(1 − ηkµ)E[f(wk) − f∗] − 2ηkE[f(wk) − f∗] + 2ηk+1λk+1E[f(wk) − f∗]
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≤ (1 − ηkµ)E[Ek] + 2Lκζ2η2
kσ

2

+ 2E[f(wk) − f∗]
(
2Lη2

k − ηkλk(1 − ηkµ) − ηk + ηk+1λk+1
)
.

(Theorem 5 first part)

We want to show that 2Lη2
k − ηkλk(1 − ηkµ) − ηk + ηk+1λk+1 ≤ 0 which is equivalent to

ηk+1λk+1 ≤ ηk (1 − 2Lηk + λk(1 − ηkµ)).

RHS = ηk (1 − 2Lηk + λk(1 − ηkµ))
= ηk(1 − 2Lηk) + ηkλk(1 − ηkµ)

= ηk(1 − 2Lηk) + 1 − 2ηL
µ

(
1 − (1 − ηkµ)k

)
(1 − ηkµ) (definition of λk)

= ηk(1 − 2Lηk) − 1 − 2ηL
µ

ηkµ+ 1 − 2ηL
µ

(
1 − (1 − ηkµ)k+1

)
= 1 − 2ηL

µ

(
1 − (1 − ηkµ)k+1

)
+ 2Lηk(η − ηk︸ ︷︷ ︸

≥0

) (since η ≥ ηk)

≥ 1 − 2ηL
µ

(
1 − (1 − ηkµ)k+1

)
≥ 1 − 2ηL

µ

(
1 − (1 − ηk+1µ)k+1

)
(since ηk ≥ ηk+1)

= ηk+1λk+1 = LHS.

Hence,
E[Ek+1] ≤ (1 − ηkµ)E[Ek] + 2Lκζ2η2

kσ
2
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Theorem 1. For L-smooth, µ strongly-convex functions, SHB (Eq. (3.1)) with τ ≥ 1,
υ = 1

4L , γ =
(

τ
T

)1/T , γk = γk+1, ηk = υ γk, and λk := 1−2ηL
ηkµ

(
1 − (1 − ηkµ)k

)
converges as:

E ∥wT −1 − w∗∥2 ≤ c2
cL

∥w0 − w∗∥2 exp
(

− T

4κ
γ

ln(T/τ)

)
+ 64Lσ2c2ζ

2κ3

e2 cL

(ln(T/τ))2

γ2T

where ζ =
√

n−b
(n−1) b , , c2 := exp

(
1

2κ
2τ

ln(T/τ)

)
and cL := 4(1−γ)

µ2
[
1 − exp

(
−µ γ

2L

)]

Proof. From the result of Theorem 5 we have

E[Ek] ≤ (1 − ηkµ)E[Ek−1] + 2Lκζ2η2
kσ

2

Unrolling the recursion starting from w0 and using the exponential step-sizes γk

E[ET ] ≤E[E0]
T∏

k=1

(
1 − µγk

4L

)
+ 2Lκζ2σ2

T∑
k=1

 T∏
i=k+1

γ2k

(
1 − µγi

4L

)

≤ ∥w0 − w∗∥2 exp

−µ
4L

T∑
k=1

γk

︸ ︷︷ ︸
:=C

+ 2Lκζ2σ2
T∑

k=1
γ2k exp

− µ

4L

T∑
i=k+1

γi


︸ ︷︷ ︸

:=D

(λ0 = 0 and 1 − x < exp(−x))

Using Lemma 3 to lower-bound C then the first term can be bounded as

∥w0 − w∗∥2 exp
(−µ

4L C
)

≤ ∥w0 − w∗∥2 c2 exp
(

− T

4κ
γ

ln(T/τ)

)

where κ = L
µ and c2 = exp

(
1

2κ
2τ

ln(T/τ)

)
. Using Lemma 4 to upper-bound D, we have

D ≤ 32κ2c2(ln(T/τ))2

e2γ2T
then the second term can be bounded as

2Lκζ2σ2D ≤ 64Lσ2c2ζ
2κ3

e2
(ln(T/τ))2

γ2T

Hence

E[ET ] ≤ ∥w0 − w∗∥2 c2 exp
(

− T

4κ
γ

ln(T/τ)

)
+ 64Lσ2c2ζ

2κ3

e2
(ln(T/τ))2

γ2T

By Lemma 1, then

E ∥wT −1 − w∗∥2 ≤ c2
cL

∥w0 − w∗∥2 exp
(

− T

4κ
γ

ln(T/τ)

)
+ 64Lσ2c2ζ

2κ3

e2 cL

(ln(T/τ))2

γ2T
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B.1 Helper Lemmas

Lemma 1. For ET := ∥wT − w∗ + λT (wT − wT −1)∥2 + 2ηTλT (f(wt−1) − f(w∗)), ET ≥
cL ∥wT −1 − w∗∥2 where cL = 4(1−γ)

µ2
[
1 − exp

(
−µ γ

2L

)]
Proof.

E[ET ] = E[AT ] + E[BT ] ≥ E[BT ] = 2λT ηT E[f(wT −1) − f∗]

Hence, we want to lower-bound λT ηT and we do this next

λT ηT = 1 − γ

µ

1 −
(

1 − µγT +1

2L

)T
 (Using the definition of ηk and λk)

≥ 1 − γ

µ

[
1 − exp

(
−T γT µγ

2L

)]
(Since 1 − x ≤ exp(−x))

= 1 − γ

µ

[
1 − exp

(
−µγ

2L

)]
(Since γ =

(
1
T

)1/T
)

Putting everything together, and using strong-convexity of f

E[ET ] ≥ 4(1 − γ)
µ2

[
1 − exp

(
−µγ

2L

)]
︸ ︷︷ ︸

:=cL

E ∥wT −1 − w∗∥2

We restate [Vaswani et al., 2022, Lemma 2, Lemma 5, and Lemma 6] that we used in our
proof.
Lemma 2. If

σ2 := E[fi(w∗) − f∗
i ],

and each function fi is µ strongly-convex and L-smooth, then

σ2
B := EB[fB(w∗) − f∗

B] ≤ κ
n− b

(n− 1)b︸ ︷︷ ︸
:=ζ2

σ2.

Lemma 3.

A :=
T∑

t=1
γt ≥ γT

ln(T/τ) − 2τ
ln(T/τ)

Lemma 4. For γ =
(

τ
T

)1/T and any κ > 0, with c2 = exp
(

1
κ

2τ
ln(T/τ)

)
,

T∑
k=1

γ2k exp

− 1
κ

T∑
i=k+1

γi

 ≤ 4κ2c2(ln(T/τ))2

e2γ2T
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Appendix C

Proofs for non-accelerated rates
with misestimation

A practical advantage of using Eq. (3.1) with exponential step-sizes is its robustness to
misspecification of L and µ. Specifically, in Section C.1, we analyze the convergence of
SHB (Eq. (3.1)) when using an estimate L̂ (rather than the true smoothness constant).
In Section C.2, we analyze the convergence of SHB when using an estimate µ̂ for the
strong-convexity parameter.

C.1 L misestimation

Without loss of generality, we assume that the estimate L̂ is off by a multiplicative factor ν i.e.
L̂ = L

νL
for some νL > 0. Here νL quantifies the estimation error with νL = 1 corresponding

to an exact estimation of L. In practice, it is typically possible to obtain lower-bounds on
the smoothness constant. Hence, the νL > 1 regime is of practical interest.

Similar to the dependence of SGD on smoothness mis-estimation obtained by Vaswani
et al. [2022], Theorem 6 shows that with any mis-estimation on L we can still recover
the convergence rate of O

(
exp

(
−T
κ

)
+ σ2

T

)
to the minimizer w∗. Specifically, Theorem 6

demonstrates a convergence rate of O
(

exp
(
−min{νL,1}T

κ

)
+ max{ν2

l ,1}(σ2+∆f max{ln(νL),0})
T

)
.

The first two terms in Theorem 6 are similar to those in Theorem 1. For νL ≤ 1, the third
term is zero and the rate matches that in Theorem 1 upto a constant that depends on νL.
For νL > 1, SHB initially diverges for k0 iterations, but the exponential step-size decay
ensures that the algorithm eventually converges to the minimizer. The initial divergence
and the resulting slowdown in the rate is proportional to νL. Finally, we note that Vaswani
et al. [2022] demonstrate similar robustness for SGD with exponential step-sizes, while also
proving the necessity of the slowdown in the convergence.
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Theorem 6. Under the same settings as Theorem 1, SHB (Eq. (3.1)) with the estimated
L̂ = L

νL
results in the following convergence,

E ∥wT −1 − w∗∥2

≤ ∥w0 − w∗∥2 c2
cL

exp
(

−min{νL, 1}T
2κ

γ

ln(T/τ)

)
+ c2
cL

32Lκ3ζ2 ln(T/τ)
e2γ2T

×
[(

max
{

1, ν
2
L

4L

}
ln(T/τ)σ2

)

+
(

max{0, ln(νL)}
(
σ2 + 2∆f

νL − 1
νLκ

))]

where c2 = exp
(

1
2κ

2τ
ln(T/τ)

)
, k0 = T ln(νL)

ln(T/τ) , and ∆f = maxi∈[k0] E[f(wi) − f∗] and
cL = 4(1−γ)

µ2
[
1 − exp

(
−µ γ

2L

)]

Proof. Suppose we estimate L to be L̂. Now redefine

ηk = 1
2L̂
γk

λ̂k = 1 − 2ηL̂
ηkµ

(
1 − (1 − ηkµ)k

)
Âk =

∥∥∥wk − w∗ + λ̂k(wk − wk−1)
∥∥∥2

B̂k = 2ηkλ̂k(f(wk−1) − f(w∗))
Êk = Âk + B̂k

Follow the proof of Theorem 5 until Theorem 5 first part step with the new definition,

E[Êk+1] ≤ (1 − ηkµ)E[Êk] + 2Lκζ2η2
kσ

2 + 2E[f(wk) − f∗]
(
2Lη2

k − ηkλ̂k(1 − ηkµ) − ηk + ηk+1λ̂k+1
)

︸ ︷︷ ︸
G

(C.1)

G can be bound as

G = 2Lη2
k − ηkλ̂k(1 − ηkµ) − ηk + ηk+1λ̂k+1

= ηk(2Lηk − 1) − ηkλ̂k(1 − ηkµ) + ηk+1λ̂k+1

= ηk(2Lηk − 1) + ηk(1 − 2L̂η) − 1 − 2ηL̂
µ

(
1 − (1 − ηkµ)k+1

)
+ ηk+1λ̂k+1

(definition of λ̂k)

≤ 2ηk(Lηk − L̂η) − 1 − 2ηL̂
µ

(
1 − (1 − ηk+1µ)k+1

)
+ ηk+1λ̂k+1 (ηk+1 ≤ ηk)

= 2ηk(Lηk − L̂η) − ηk+1λ̂k+1 + ηk+1λ̂k+1

= 2ηk(Lηk − L̂η)
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Hence Eq. (C.1) can be written as

E[Êk+1] ≤ (1 − ηkµ)E[Êk] + 2Lκζ2η2
kσ

2 + 4E[f(wk) − f∗]ηk(Lηk − L̂η)

First case if νL ≤ 1 then Lηk − L̂η ≤ 0 and we will recover the proof of Theorem 1 with a
slight difference including νL.

E[Êk] ≤ ∥w0 − w∗∥2 c2 exp
(

−νLT

2κ
γ

ln(T/τ)

)
+ 32Lκζ2σ2c2κ

2

e2
(ln(T/τ))2

γ2T

Second case if νL > 1
Let k0 = T ln(νL)

ln(T/τ) then for k < k0 regime, Lηk − L̂η > 0

E[Êk+1] ≤ (1 − ηkµ)E[Êk] + 2Lκζ2η2
kσ

2 + 4E[f(wk) − f∗]ηk(Lηk − L̂η)

Let ∆f = maxi∈[k0] E[f(wi) − f∗] and observe that Lηk − L̂η ≤ Lηk
νL−1

νL
then

E[Êk+1] ≤ (1 − ηkµ)E[Êk] + 2Lκζ2η2
kσ

2 + 4Lη2
k∆f

νL − 1
νL

= (1 − µνL

2L γk)E[Êk] + 2L(κζ2σ2 + 2∆f
νL − 1
νL

)︸ ︷︷ ︸
c5

η2
k

Since νL > 1

E[Êk+1] ≤ (1 − µ

2Lγ
k)E[Êk+1] + c5η

2
k

Unrolling the recursion for the first k0 iterations we get

E[Êk0 ] ≤E[Ê0]
k0−1∏
k=1

(
1 − µ

2Lγ
k
)

+ c5

k0−1∑
k=1

γ2
k

k0−1∏
i=k+1

(
1 − µ

2Lγi

)

Bounding the first term using Lemma 3,

k0−1∏
k=1

(
1 − µ

2Lγ
k
)

≤ exp
(

− µ

2L
γ − γk0

1 − γ

)

Bounding the second term using Lemma 4 similar to [Vaswani et al., 2022, Section C3]

k0−1∑
k=1

γ2
k

k0−1∏
i=k+1

(
1 − µ

2Lγi

)
≤ exp

(
γk0

2κ(1 − γ)

)
16κ2

e2γ2
k0 ln(T/τ)2

T 2

Put everything together,

E[Êk0 ] ≤ ∥w0 − w∗∥2 exp
(

− µ

2L
γ − γk0

1 − γ

)
+ c5 exp

(
γk0

2κ(1 − γ)

)
16κ2

e2γ2
k0 ln(T/τ)2

T 2
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Now consider the regime k ≥ k0 where Lηk − L̂η ≤ 0

E[Êk+1] ≤ (1 − µ

2Lγ
k)E[Êk] + 2Lκζ2σ2 ν

2
L

4Lγ
2
k

≤ (1 − µ

2Lγ
k)E[Êk] + ν2

Lσ
2

2L γ2
k

Unrolling the recursion from k = k0 to T

E[ÊT ] ≤E[Êk0 ]
T∏

k=k0

(1 − µ

2Lγk) + ν2
Lκζ

2σ2

2L

T∑
k=k0

γ2
k

T∏
i=k+1

(1 − µ

L
γi)

Bounding the first term using Lemma 3,

T∏
k=k0

(
1 − µ

2Lγ
k
)

≤ exp
(

− µ

2L
γk0 − γT +1

1 − γ

)

Bounding the second term using Lemma 4 similar to [Vaswani et al., 2022, Section C3]

T∑
k=k0

γ2
k

T∏
i=k+1

(
1 − µ

2Lγi

)
≤ exp

(
γT +1

2κ(1 − γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

Hence, put everything together

E[ÊT ] ≤E[Êk0 ] exp
(

− µ

2L
γk0 − γT +1

1 − γ

)
+ ν2

Lκζ
2σ2

2L exp
(

γT +1

2κ(1 − γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

Combining the bounds for two regimes

E[ÊT ] ≤ exp
(

− µ

2L
γk0 − γT +1

1 − γ

)(
∥w0 − w∗∥2 exp

(
− µ

2L
γ − γk0

1 − γ

)
+ c5 exp

(
γk0

2κ(1 − γ)

)
16κ2

e2γ2
k0 ln(T/τ)2

T 2

)

+ ν2
Lκζ

2σ2

2L exp
(

γT +1

2κ(1 − γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

= ∥w0 − w∗∥2 exp
(

− µ

2L
γ − γT +1

1 − γ

)
+ c5 exp

(
γT +1

2κ(1 − γ)

)
16κ2

e2γ2
k0 ln(T/τ)2

T 2

+ ν2
Lκζ

2σ2

2L exp
(

γT +1

2κ(1 − γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

Using Lemma 3 to bound the first term and noting that γT+1

1−γ ≤ 2τ
ln(T/τ) , let c2 = exp

(
1

2κ
2τ

ln(T/τ)

)

E[ÊT ] ≤ ∥w0 − w∗∥2 exp
(

− T

2κ
γ

ln(T/τ)

)
+ c5

16c2κ
2

e2γ2
k0 ln(T/τ)2

T 2 + ν2
Lκζ

2σ2

2L
16c2κ

2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2
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Substitute the value of c5 and k0 we have

E[ÊT ] ≤ ∥w0 − w∗∥2 exp
(

− T

2κ
γ

ln(T/τ)

)
+ ν2

Lκζ
2σ2

LT

8c2κ
2 ln(T/τ)2

e2γ2

+ 32
(
κζ2σ2 + 2∆f

νL − 1
νL

)
L

T

c2κ
2 ln(νL) ln(T/τ)

e2γ2

Combining the statements from νL ≤ 1 and νL > 1 gives us

E[ÊT ] ≤ ∥w0 − w∗∥2 c2 exp
(

−min{νL, 1}T
2κ

γ

ln(T/τ)

)
+ 32Lc2κ

2 ln(T/τ)
e2γ2T

(
max

{
1, ν

2
L

4L

}
ln(T/τ)κζ2σ2 + max{0, ln(νL)}

(
κζ2σ2 + 2∆f

νL − 1
νL

))

The next step is to remove the L̂ from the LHS, and obtain a better measure of sub-optimality.
By Lemma 1,

E[ÊT ] ≥ 4(1 − γ)
µ2

[
1 − exp

(
−µγ

2L

)]
︸ ︷︷ ︸

:=cL

∥wT −1 − w∗∥2

Note that cL > 0 is constant w.r.t T . Hence,

E ∥wT −1 − w∗∥2 ≤ ∥w0 − w∗∥2 c2
cL

exp
(

−min{νL, 1}T
2κ

γ

ln(T/τ)

)
+ c2
cL

32Lκ2 ln(T/τ)
e2γ2T

(
max

{
1, ν

2
L

4L

}
ln(T/τ)κζ2σ2 + max{0, ln(νL)}

(
κζ2σ2 + 2∆f

νL − 1
νL

))

C.2 µ misestimation

Next, we analyze the effect of misspecifying µ, the strong-convexity parameter. We assume
we have access to an estimate µ̂ = µ νµ where νµ is the degree of misspecification. We only
consider the case where we underestimate µ, and hence νµ ≤ 1. This is the typical case
in practice – for example, while optimizing regularized convex loss functions in supervised
learning, µ̂ is set to the regularization strength, and thus underestimates the true strong-
convexity parameter.

Theorem 7 below demonstrates an O

(
exp

(
−νµT

κ

)
+ 1

ν2
µT

)
convergence to the minimizer.

Hence, SHB with an underestimate of the strong-convexity results in slower convergence
to the minimizer, with the slowdown again depending on the amount of misspecification.
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Theorem 7. Under the same settings as Theorem 1, SHB (Eq. (3.1)) with the estimated
µ̂ = νµµ for νµ ≤ 1, results in the following convergence,

E ∥wT −1 − w∗∥2 ≤ ∥w0 − w∗∥2 c2
cµ

exp
(

−νµT

2κ
γ

ln(T/τ)

)
+ 32Lζ2c2κ

3

ν2
µe

2γ2cµ

(ln(T/τ))2

T
σ2

where c2 = exp
(

1
2κ

2τ
ln(T/τ)

)
and cµ = 4(1−γ)

ν2
µµ2

[
1 − exp

(
−νµµ γ

2L

)]

Proof. Suppose we estimate µ to be µ̂. Now redefine

λ̂k = 1 − 2ηL
ηkµ̂

(
1 − (1 − ηkµ̂)k

)
; Âk =

∥∥∥wk − w∗ + λ̂k(wk − wk−1)
∥∥∥2

B̂k = 2ηkλ̂k(f(wk−1) − f(w∗)) ; Êk = Âk + B̂k

Follow Theorem 5 first part steps with the new definition, the only difference was at the
step where we use strongly-convex on f for −2ηk⟨wk − w∗,∇f(wk)⟩ ≤ −ηkµ ∥wk − w∗∥2 −
2ηk[f(wk) − f∗].

E[Êk+1] ≤ (1 − ηkµ̂)E[Êk] + 2Lκζ2η2
kσ

2 + ηk(µ̂− µ) ∥wk − w∗∥2

= (1 − ηkνµµ)E[Êk] + 2Lκζ2η2
kσ

2 + ηk(µ̂− µ) ∥wk − w∗∥2

≤ (1 − ηkνµµ)E[Êk] + 2Lκζ2η2
kσ

2 + ηkµ(νµ − 1) 2
µ

[f(wk) − f∗]

(since f is strongly-convex)
= (1 − ηkνµµ)E[Êk] + 2Lκζ2η2

kσ
2 + 2ηk(νµ − 1)[f(wk) − f∗]

Since νµ ≤ 1 then 2ηk(νµ − 1)[f(wk) − f∗] ≤ 0 so

E[Êk+1] ≤ (1 − ηkνµµ)E[Êk] + 2Lκζ2η2
kσ

2

Hence, following the same proof as Theorem 1

E[ÊT ] ≤ ∥w0 − w∗∥2 c2 exp
(

−νµT

2κ
γ

ln(T/τ)

)
+ 32Lζ2σ2c2κ

3

ν2
µe

2
(ln(T/τ))2

γ2T

By Lemma 1,

E[ÊT ] ≥ 4(1 − γ)
ν2

µµ
2

[
1 − exp

(
−νµµγ

2L

)]
︸ ︷︷ ︸

:=cµ

∥wT −1 − w∗∥2

Note that cµ > 0 is constant w.r.t T . Hence,

∥wT −1 − w∗∥2 ≤ ∥w0 − w∗∥2 c2
cµ

exp
(

−νµT

2κ
γ

ln(T/τ)

)
+ 32Lζ2c2κ

3

ν2
µe

2γ2cµ

(ln(T/τ))2

T
σ2
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Appendix D

Proofs for upper bound SHB

Lemma 5. For L-smooth and µ strongly-convex quadratics, SHB (Eq. (2.1)) with αk = α = a
L

and a ≤ 1, βk = β =
(
1 − 1

2
√
αµ
)2

, batch-size b satisfies the following recurrence relation,

E[∥∆T ∥] ≤ C0 ρ
T ∥∆0∥ + 2aC0 ζ(b)

[
T −1∑
k=0

ρT −1−k E ∥∆k∥
]

+ aC0 χ ζ(b)
L

[
T −1∑
k=0

ρT −1−k

]
,

where ∆k :=
[
wk − w∗

wk−1 − w∗

]
, C0 ≤ 3

√
κ
a , ζ(b) =

√
3 n−b

(n−1)b and ρ = 1 −
√

a
2
√

κ

Proof. With the definition of SHB (2.1), if ∇fik(w) is the mini-batch gradient at iteration
k, then, for quadratics,[

wk+1 − w∗

wk − w∗

]
︸ ︷︷ ︸

∆k+1

=
[
(1 + β)Id − αA −βId

Id 0

]
︸ ︷︷ ︸

H

[
wk − w∗

wk−1 − w∗

]
︸ ︷︷ ︸

∆k

+α
[
∇f(wk) − ∇fik(wk)

0

]
︸ ︷︷ ︸

δk

∆k+1 = H∆k + αδk

Recursing from k = 0 to T − 1, taking norm and expectation w.r.t to the randomness in all
iterations.

E[∥∆T ∥] ≤
∥∥∥HT ∆0

∥∥∥+ αE
[∥∥∥∥∥

T −1∑
k=0

HT −1−kδk

∥∥∥∥∥
]

Using Theorem 8 and Corollary 6, for any vector v,
∥∥∥Hkv

∥∥∥ ≤ C0 ρ
k ∥v∥ where ρ =

√
β.

Hence,

E[∥∆T ∥] ≤ C0 ρ
T ∥∆0∥ + C0 a

L

[
T −1∑
k=0

ρT −1−k E ∥δk∥
]

(α = a
L)
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In order to simplify δk, we will use the result from Lemma 7 and Lohr [2021],

Ek[∥δk∥2] = Ek[∥∇f(wk) − ∇fik(wk)∥2] = n− b

(n− 1) b Ei ∥∇f(wk) − ∇fi(wk)∥2

(Sampling with replacement where b is the batch-size and n is the total number of examples)

= n− b

(n− 1) b Ei ∥∇f(wk) − ∇f(w∗) − ∇fi(wk) + ∇fi(w∗) − ∇fi(w∗)∥2

(∇f(w∗) = 0)

≤ 3 n− b

(n− 1) b
[
Ei ∥∇f(wk) − ∇f(w∗)∥2 + Ei ∥∇fi(wk) − ∇fi(w∗)∥2 + Ei ∥∇fi(w∗)∥2

]
( (a+ b+ c)2 ≤ 3[a2 + b2 + c2])

≤ 3 n− b

(n− 1) b
[
L2 Ei ∥wk − w∗∥2 + L2 Ei ∥wk − w∗∥2 + Ei ∥∇fi(w∗)∥2

]
(Using the L smoothness of f and fi)

≤ 3 n− b

(n− 1) b
[
2L2 ∥wk − w∗∥2 + χ2

]
(wk is independent of the randomness and by definition χ2 = Ei ∥∇fi(w∗)∥2)

≤ 3 n− b

(n− 1) b
[
2L2[∥wk − w∗∥2 + ∥wk−1 − w∗∥2] + χ2

]
(∥wk−1 − w∗∥2 ≥ 0)

=⇒ Ek[∥∆k∥2] ≤ 3 n− b

(n− 1) b
[
2L2 ∥∆k∥2 + χ2

]
(Definition of ∆k)

=⇒ Ek[∥∆k∥] ≤
√

3 n− b

(n− 1) b︸ ︷︷ ︸
:=ζ(b)

[√
2L2 ∥∆k∥ + χ

]

(Taking square-roots, using Jensen’s inequality on the LHS and
√
a+ b ≤

√
a+

√
b on the RHS)

=⇒ Ek[∥δk∥] ≤
√

2Lζ(b) ∥∆k∥ + ζ(b)χ

Putting everything together,

E[∥∆T ∥] ≤ C0 ρ
T ∥∆0∥ +

√
2aC0 ζ(b)E

[
T −1∑
k=0

ρT −1−k ∥∆k∥
]

+ aC0 χ ζ(b)
L

[
T −1∑
k=0

ρT −1−k

]
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Theorem 2. For L-smooth, µ strongly-convex quadratics, SHB (Eq. (2.1)) with αk = α = a
L

for a ≤ 1, βk = β =
(
1 − 1

2
√
αµ
)2

, batch-size b s.t. b ≥ b∗ := n max
{

1
1+ n−1

C κ2
, 1

1+ (n−1) a
3

}
converges as:

E[∆T ] ≤ 6
√

2
√
κ√

a
exp

(
−

√
a T

2
√
κ

max
{3

4 , 1 − 2
√
κ
√
ζ

})
∆0 + 12

√
aχ

µ
min

{
1, ζ√

a

}

where ∆k := ∥wk − w∗∥, χ :=
√
E ∥∇fi(w∗)∥2, ζ =

√
3 n−b

(n−1) b and C := 3526.

Proof. Using Lemma 5, we have that,

E ∥∆T ∥ ≤ C0 ρ
T ∥∆0∥ +

√
2aC0 ζ

[
T −1∑
k=0

ρT −1−kE ∥∆k∥
]

+ aC0 ζ χ

L

[
T −1∑
k=0

ρT −1−k

]

We use induction to prove that for all T ≥ 1,

E ∥∆T ∥ ≤ 2C0
[
ρ+

√
ζ
√
a
]T

∥∆0∥ + 2C0 ζ a χ

L(1 − ρ)

where ρ+
√
ζ
√
a < 1.

Base case: By Theorem 8, C0 ≥ 1 hence ∥∆0∥ ≤ 2C0 ∥∆0∥ + 2C0 aζ χ
L(1−ρ)

Inductive hypothesis: For all k ∈ {0, 1, . . . , T − 1}, ∥∆k∥ ≤ 2C0
[
ρ+

√
ζ
√
a
]k ∥∆0∥ +

2C0 aζ χ
L(1−ρ) .

Inductive step: Using the above inequality,

E ∥∆T ∥ ≤C0 ρ
T ∥∆0∥ +

√
2aC0 ζ

[
T −1∑
k=0

ρT −1−kE ∥∆k∥
]

+ aC0 ζ χ

L

[
T −1∑
k=0

ρT −1−k

]

≤C0 [ρ+
√
ζ

√
a]T ∥∆0∥ +

√
2aC0 ζ

[
T −1∑
k=0

ρT −1−kE ∥∆k∥
]

+ aC0 ζ χ

L

[
T −1∑
k=0

ρk

]
(Since ζ, a > 0)

≤C0 [ρ+
√
ζ

√
a]T ∥∆0∥ +

√
2aC0 ζ

ρ
ρT

[
T −1∑
k=0

ρ−k
(

2C0
[
ρ+

√
ζ
√
a
]k

∥∆0∥ + 2C0 aζ χ

L(1 − ρ)

)]

+ aC0 ζ χ

L

1 − ρT

1 − ρ
(Sum of geometric series and using the inductive hypothesis)

=C0 [ρ+
√
ζ

√
a]T ∥∆0∥ + 2

√
2 aC2

0 ζ

ρ
ρT

T −1∑
k=0

(
ρ+

√
ζ
√
a

ρ

)k
 ∥∆0∥

+ 2
√

2 a2C2
0 ζ

2χ

ρL(1 − ρ) ρT

[
T −1∑
k=0

(1
ρ

)k
]

+ aC0 ζ χ

L

1 − ρT

1 − ρ
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First, we need to prove that 2
√

2 aC2
0 ζ

ρ ρT

[∑T −1
k=0

(
ρ+

√
ζ
√

a

ρ

)k
]

∥∆0∥ ≤ C0
[
ρ+

√
ζ
√
a
]T ∥∆0∥.

2
√

2 aC2
0 ζ

ρ
ρT

T −1∑
k=0

(
ρ+

√
ζ
√
a

ρ

)k
 ∥∆0∥ = 2

√
2 aC2

0 ζ

ρ
ρT

(
ρ+

√
ζ
√

a

ρ

)T

− 1(
ρ+

√
ζ
√

a

ρ

)
− 1

∥∆0∥

(Sum of geometric series)

≤ 2
√

2
√
aC2

0
√
ζ
(
ρ+

√
ζ
√
a
)T

∥∆0∥

Hence, we require that,

2
√

2
√
aC2

0
√
ζ ≤ C0 =⇒ ζ ≤ 1

8C2
0

1
a

Hence it suffices to choose ζ s.t.

=⇒ ζ ≤ a

3223κ

1
a

(Since C0 ≤ 3
√

κ
a )

=⇒ ζ ≤ 1
3223κ

=⇒ n− b

(n− 1) b ≤ 1
3526 κ2 =⇒ b

n
≥ 1

1 + n−1
3526 κ2

(Using the definition of ζ)

Since the batch-size b satisfies the condition that: b
n ≥ 1

1+ n−1
C κ2

for C := 15552 = 3526, the

above requirement is satisfied, and ζ ≤ 1
3223κ

.

Next, we need to show D := 2
√

2a2C2
0 ζ2χ

ρL(1−ρ) ρT

[∑T −1
k=0

(
1
ρ

)k
]

+ aC0 ζ χ
L

1−ρT

1−ρ ≤ 2C0 aζ χ
L(1−ρ)

D = 2
√

2 a2C2
0 ζ

2χ

ρL(1 − ρ) ρT

[
T −1∑
k=0

(1
ρ

)k
]

+ aC0 ζ χ

L

1 − ρT

1 − ρ

= 2
√

2 a2C2
0 ζ

2χ

ρL(1 − ρ) ρT

(
1
ρ

)T
− 1(

1
ρ

)
− 1

+ aC0 ζ χ

L

1 − ρT

1 − ρ

(Sum of geometric series)

<
2
√

2 a2C2
0 ζ

2χ

ρL(1 − ρ) ρT 1 − ρT

1 − ρ

ρ

ρT
+ aC0 ζ χ

L(1 − ρ)

<
2
√

2 a2C2
0 ζ

2χ

L(1 − ρ)2 + aC0 ζ χ

L(1 − ρ)

Since we want D ≤ 2aC0 ζ χ
L(1−ρ) , we require that

2
√

2 a2C2
0 ζ

2χ

L(1 − ρ)2 ≤ aC0 ζ χ

L(1 − ρ)
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=⇒ 2
√

2C0a ζ

1 − ρ
≤ 1

Ensuring this imposes an additional constraint on ζ. We require ζ such that,

ζ ≤ 1 − ρ

2
√

2C0 a
=⇒ ζ ≤ 1

4
√

2
√
a

√
κ

1
C0

(Since ρ = 1 −
√

a
2
√

κ
)

Hence it suffices to choose ζ such that,

ζ ≤ 1
12

√
2κ

(Since C0 ≤ 3
√

κ
a )

Since the condition on the batch-size ensures that ζ ≤ 1
3223κ

, this condition is satisfied.
Hence,

E ∥∆T ∥ ≤ 2C0
[
ρ+

√
ζ
√
a
]T

∥∆0∥ + 2C0 a ζ χ

L(1 − ρ)

This completes the induction.

In order to bound the noise term as 12
√

aχ
µ min

{
1, ζ√

a

}
, we will require an additional

constraint on the batch-size that ensures ζ ≤
√
a. Using the definition of ζ, we require that,√

3 n− b

(n− 1)b ≤
√
a

=⇒ b

n
≥ 1

1 + (n−1)a
3

,

which is satisfied by the condition on the batch-size. From the result of the induction,

E ∥∆T ∥ ≤ 2C0
[
ρ+

√
ζ
√
a
]T

∥∆0∥ + 2C0 a ζ χ

L(1 − ρ)

= 2C0

[
1 −

√
a

2
√
κ

+
√
ζ
√
a

]T

∥∆0∥ + 2C0 a ζ χ

L

2
√
κ√
a

(ρ = 1 −
√

a
2
√

κ
)

= 2C0

[
1 −

√
a

2
√
κ

(
1 − 2

√
κ
√
ζ
)]T

∥∆0∥ + 2C0 a ζ χ

L

2
√
κ√
a

(1 − 1
3
√

2 ≤
(
1 − 2

√
κ

√
ζ
)

≤ 1 because of the constraint on batch-size)

≤ 6
√
κ

a

[
1 −

√
a

2
√
κ

max
{3

4 , 1 − 2
√
κ
√
ζ

}]T

∥∆0∥ + 2a ζ χ
L

3
√
κ

a

2
√
κ√
a

(C0 ≤ 3
√

κ
a )

≤ 6√
a

√
κ

[
1 −

√
a

2
√
κ

max
{3

4 , 1 − 2
√
κ
√
ζ

}]T

∥∆0∥ + 12
√
aχ

µ
min

{
1, ζ√

a

}
(ζ ≤

√
a)
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=⇒ E ∥wT − w∗∥ ≤ 6
√

2√
a

√
κ exp

(
− T√

κ

√
a

2 max
{3

4 , 1 − 2
√
κ
√
ζ

})
∥w0 − w∗∥ + 12

√
aχ

µ
min

{
1, ζ√

a

}
(for all x, 1 − x ≤ exp(−x))

Corollary 1. For L-smooth, µ strongly-convex quadratics, under interpolation, SHB
(Eq. (2.1)) with the same parameters as in Theorem 2 and batch-size b s.t. b ≥ b∗ := n 1

1+ n−1
C κ2

(where C is defined in Theorem 2) converges as:

E ∥wT − w∗∥ ≤ 6
√

2√
a

√
κ exp

(
− T√

κ

√
a

2 max
{3

4 , 1 − 2
√
κ
√
ζ

})
∥w0 − w∗∥

Proof. Under interpolation χ = 0. This removes the additional constraint on b∗ that depends
on the constant a, finishing the proof.

Corollary 4. Under the same conditions of Theorem 2, for a target error ϵ > 0, setting a :=
min

{
1, ( µ

24 χ)2ϵ
}

and T ≥ 2
√

κ
√

a
(

1−2
√

κ
√

ζ
) log

(
12

√
2

√
κ ∥w0−w∗∥√

aϵ

)
ensures that ∥wT − w∗∥ ≤

√
ϵ.

Proof. Using Theorem 2, we have that,

E ∥wT − w∗∥ ≤ 6
√

2√
a

√
κ exp

(
−

√
a
(
1 − 2

√
κ

√
ζ
)

2
T√
κ

)
∥w0 − w∗∥ + 12

√
aχ

µ
min

{
1, ζ√

a

}

Using the step-size similar to that for SGD in [Gower et al., 2019, Theorem 3.1], we see that
to get

√
ϵ accuracy first we consider 12

√
aχ

µ ≤
√

ϵ
2 that implies a ≤ ( µ

24 χ)2ϵ.

We also need 6
√

2√
a

√
κ exp

(
−

√
a
(

1−2
√

κ
√

ζ
)

2
T√
κ

)
∥w0 − w∗∥ ≤

√
ϵ

2 . Taking log on both sides,

(
−

√
a
(
1 − 2

√
κ

√
ζ
)

2
T√
κ

)
≤ log

(√
ϵ

2

√
a

6
√

2
√
κ

1
∥w0 − w∗∥

)

=⇒ T ≥ 2
√
κ√

a
(
1 − 2

√
κ

√
ζ
) log

(
12

√
2

√
κ ∥w0 − w∗∥√
aϵ

)
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D.1 Helper Lemmas

We restate [Wang et al., 2021, Theorem 5] that we used in our proof.

Theorem 8. Let H :=
[
(1 + β)Id − αA βId

Id 0

]
∈ R2d×2dwhere A ∈ Rdn×d is a positive

definite matrix. Fix a vector v0 ∈ Rd. If β is chosen to satisfy
1 ≥ β ≥ max

{(
1 −

√
αλmin(A)

)2
,
(
1 −

√
αλmax(A)

)2
}

then

∥∥∥Hkv0
∥∥∥ ≤

(√
β
)k
C0 ∥v0∥

where the constant

C0 :=
√

2(β + 1)√
min {h (β, αλmin(A)) , h (β, αλmax(A))}

≥ 1

and h (β, z) := −
(
β − (1 −

√
z)2) (β − (1 +

√
z)2).

Lemma 6. For a positive definite matrix A, denote κ := λmax(A)
λmin(A) = L

µ . Set α = a
λmax(A) = a

L
for a ≤ 1 and
β =

(
1 − 1

2
√
αλmin(A)

)2
=
(
1 −

√
a

2
√

κ

)2
. Then, C0 :=

√
2(β+1)√

min{h(β,αλmin(A)),h(β,αλmax(A))}
≤

3
√

κ
a and h (β, z) := −

(
β − (1 −

√
z)2) (β − (1 +

√
z)2).

Proof. Using the definition of h (β, z) with the above setting for β and simplifying,

h(β, αµ) = 3αµ
(

1 − 1
2

√
αµ− 3

16αµ
)

= 3a
κ

(
1 −

√
a

2
√
κ

− 3a
16κ

)
(α = a

L)

≥ 3a
κ

(
1 − 1

2
√
κ

− 3
16κ

)
(a ≤ 1)

≥ 3a
κ

(
1 − 1

2 − 3
16

)
= 15

16
a

κ
(κ ≥ 1)

=⇒
√

2(1 + β)√
h(β, αµ)

≤ 2
√

2√
15
16

a
κ

= 8
√

2
√
κ√

15a
≤ 3

√
κ

a
(β ≤ 1)

Now we need to bound
√

2(1+β)√
h(β,αL)

. Using the definition of h (β, z) and simplifying,

h(β, αL) = (2
√
αL− √

αµ− αL+ 1
4αµ)(√αµ+ 2

√
αL+ αL− 1

4αµ)

= 4a− a

κ
− 2a

3/2
√
κ

+ 1
2
a3/2

κ3/2 − a2
[
1 − 1

2κ + 1
16κ2

]
(setting α = a/L and expanding above)
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= a

[
4 − 1

κ
− 2a

1/2
√
κ

+ 1
2
a1/2

κ3/2 − a

(
1 − 1

2κ + 1
16κ2

)]

= a

[
4 − 1

κ
−

√
a

( 2√
κ

− 1
2κ3/2

)
− a

(
1 − 1

2κ + 1
16κ2

)]

Since κ ≥ 1, 2√
κ

− 1
2κ3/2 > 0 and 1 − 1

2κ + 1
16κ2 > 0, hence

h(β, αL) ≥ a

[
4 − 1

κ
−
( 2√

κ
− 1

2κ3/2

)
−
(

1 − 1
2κ + 1

16κ2

)]
(a ≤

√
a ≤ 1)

= a

[
4 −

( 2√
κ

− 1
2κ3/2

)
−
(

1 + 1
2κ + 1

16κ2

)]
Both 2√

κ
− 1

2κ3/2 and 1 + 1
2κ + 1

16κ2 are decreasing functions of κ for κ ≥ 1.

Hence, RHS(κ) :=
[
4 −

(
2√
κ

− 1
2κ3/2

)
−
(
1 + 1

2κ + 1
16κ2

)]
is an increasing function of κ. Since,

h(β, αL) ≥ RHS(κ) ≥ RHS(1) for all κ ≥ 1,

h(β, αL) ≥ a

[
4 − 2 + 1

2 − 1 − 1
2 − 1

16

]
= 15a

16 (β ≤ 1)

Using the above lower-bound for
√

2(1+β)√
h(β,αL)

we have

√
2(1 + β)√
h(β, αL)

≤ 8
√

2√
15a

≤ 3√
a

Putting everything together we get,

C0 ≤ max
{

3
√
κ

a
,

3√
a

}
=⇒ C0 ≤ 3

√
κ

a

Lemma 7. For batch sampling method where each batch is sampling without replacement
from the dataset.

E
[
∥∇fb(wk) − ∇f(wk)∥2

]
= n− b

(n− 1)bE
[
∥∇fi(wk) − ∇f(wk)∥2

]
where ∇fb(wk) = 1

b

∑
i∈B ∇fi(wk)

Proof. First, E[∇fb(wk)] = E
[

1
b

∑
i∈B ∇fi(wk)

]
= 1

b

∑
i∈B E[∇fi(wk)] = 1

b

∑
i∈B ∇f(wk) =

∇f(wk). Then we will calculate the variance of ∇fb(wk),

Var (∇fb(wk)) = Var
(

1
b

∑
i∈B

∇fi(wk)
)

= 1
b2 Var

(∑
i∈B

∇fi(wk)
)
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= 1
b2 Var

(
n∑

i=1
∇fi(wk)Xi

)

where Xi is an indicator if sample i is in the batch B

=⇒ Var (∇fb(wk)) = 1
b2

 n∑
i=1

Var [∇fi(wk)Xi] + 2
j,k∈N∑

j ̸=k

Cov [∇fj(wk)Xj ,∇fk(wk)Xk]


Denote ∇fi(wk) = ∇i and ∇fb(wk) = ∇b for simplification, hence

Var [∇iXi] = ∇2
i Var [Xi] = ∇2

i

b

n

n− b

n
(a sample is in the batch with probability b

n)

Cov [∇jXj ,∇kXk] = E[∇jXj∇kXk] − E[∇jXj ]E[∇kXk]
= ∇j∇k (E[XjXk] − E[Xj ]E[Xk])

Since E[XjXk] = Pr[both samples i, j are in the batch] =
(
n− 2
b− 2

)
/

(
n
b

)
and E[Xj ] =

E[Xk] = b
n ,

=⇒ Cov [∇jXj ,∇kXk] = ∇j∇k

(
b(b− 1)
n(n− 1) − b2

n2

)

= ∇j∇k
b(b− n)
n2(n− 1)

Plug back to Var (∇b) then,

Var (∇b) = 1
b2

b(n− b)
n2

[
n∑

i=1
∇2

i

]
+ 2 b(b− n)

n2(n− 1)

j,k∈N∑
j ̸=k

∇j∇k


= n− b

(n− 1)b

n− 1
n2

[
n∑

i=1
∇2

i

]
− 2
n2

∑
j ̸=k

∇j∇k


= n− b

(n− 1)b

[ 1
n

n∑
i=1

∇2
i

]
− 1
n2

 n∑
i=1

∇2
i + 2

∑
j ̸=k

∇j∇k


= n− b

(n− 1)b

(
E[∇2

i ] −
(
E[∇2

i ]
)2
)

= n− b

(n− 1)bVar (∇i)

=⇒ E
[
∥∇fb(wk) − ∇f(wk)∥2

]
= n− b

(n− 1)bE
[
∥∇fi(wk) − ∇f(wk)∥2

]
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Appendix E

Proofs for lower bound SHB

Before looking at the general lower-bound for n samples, it is instructive to consider the
lower-bound arguments for a 2-sample example. The arguments for the general n-sample
example are similar.
Theorem 9. For a L̄-smooth, µ̄ strong-convex quadratics problem f(w) := 1

2
∑2

i=1
1
2w

TAiw
with 2 samples and dimension d = n = 2 such that w∗ = 0 and each Ai is a 2-by-2
matrix of all zeros except at the (i, i) position, we run SHB (2.1) with αk = α = 1

L̄
,

βk = β =
(
1 − 1

2
√
αµ̄
)2

. With a batch-size 1, when κ > 6, after 3T iterations, we have the

following: if ∆k :=
(
wk

wk−1

)
, for a c = 1.1 > 1,

E[∥∆3T ∥2] > cT ∥∆0∥2

Proof. By definition, the 2 samples are: A1 =
(
µ 0
0 0

)
A2 =

(
0 0
0 L

)
, and hence A =

1
2

(
µ 0
0 L

)
. Calculating the smoothness and strong-convexity of the resulting problem,

L̄ = L
2 , µ̄ = µ

2 , κ = L
µ . By the definition of SHB (2.1), we have that,[

wk+1 − w∗

wk − w∗

]
=
[
(1 + β)Id − αAk −βId

Id 0

] [
wk − w∗

wk−1 − w∗

]

Let w(1)
k , w

(2)
k be the first and second coordinate of wk respectively, A(i,j)

k is the element in
(i, j)-position of A. Since w∗ = 0, the above update can be written as:


w

(1)
k+1

w
(2)
k+1
w

(1)
k

w
(2)
k

 =


1 + β − αA

(1,1)
k 0 −β 0

0 1 + β − αA
(2,2)
k 0 −β

1 0 0 0
0 1 0 0



w

(1)
k

w
(2)
k

w
(1)
k−1

w
(2)
k−1
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Hence, we can separate the two coordinates and interpret the update as SHB in 1 dimension
for each coordinate.

Subsequently, we only focus on the second coordinate which corresponds to L (A(2,2)
k ) in

matrix A.

wk+1 =wk − αA22
k wk + β(wk − wk−1)

=⇒
(
wk+1
wk

)
=
(

1 + β − 2A22
k

L −β
1 0

)(
wk

wk−1

)
(α = 1/L̄ = 2/L)

Denoting ∆k :=
(
wk

wk−1

)
, the above update is

∆k+1 =Hk∆k

where Hk is either H1 :=
(

1 + β −β
1 0

)
(corresponding to A22

1 = 0) or H2 :=
(

−1 + β −β
1 0

)
(corresponding to A22

2 = L) with probability 0.5.

In order to prove divergence, we will analyze three iterations of the update in expecta-
tion. We enumerate across 8 possible sequences (depending on which sample is chosen):
(1, 1, 1), (1, 1, 2) . . . (2, 2, 2). For example, if the sequence is (1, 1, 2), the corresponding update
(across 3 iterations) is:

∆k+3 = H(1,1,2) ∆k where H(1,1,2) := H2H1H1

We denote Hi to be the matrix corresponding to the i-th permutation. For example, H1 :=
H(1,1,1). Next, we analyze the suboptimality ∥∆k∥2 in expectation.

E[∥∆k+3∥2] = 1
8

8∑
i=1

∥Hi∆k∥2 (probability for each of the 8 sequences is 1/8)

Representing ∆k in polar coordinates, for a θk ∈ [0, 2π], ∆k := rkϕk where rk ∈ R+ and

ϕk =
(

sin(θk)
cos(θk)

)
,

E[∥∆k+3∥2] = 1
8

8∑
i=1

∥Hirkϕk∥2

= r2
k

8

8∑
i=1

∥Hiϕk∥2
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In order to analyze the divergence of SHB, we define the norm square increase factor
Ψ := E[∥∆k+3∥2]

∥∆k∥2 ,

Ψ = E[∥∆k+3∥2]
∥∆k∥2

=
r2
k
8
∑8

i=1 ∥Hiϕk∥2

r2
k ∥ϕk∥2 (∥∆k∥2 = ∥rkϕk∥2 = r2

k ∥ϕk∥2)

= 1
8

∑8
i=1 ∥Hiϕk∥2

∥ϕk∥2

= 1
8

8∑
i=1

∥Hiϕk∥2 (∥ϕk∥2 = 1)

Ψ depends on ϕk and hence it is a function of θk. Using symbolic mathematics program-
ming [Meurer et al., 2017], we can calculate Ψ as an expression of β, θ,

Ψ =1
8

8∑
i=1

∥∥∥∥∥Hi

(
sin(θ)
cos(θ)

)∥∥∥∥∥
2

= − β6 sin(2θ) + β6 + 3β5 sin(2θ) + β5 cos(2θ) − 3β5

− 5β4 sin(2θ) − 2β4 cos(2θ) + 6β4

+ 2β3 sin(2θ) + 3β3 cos(2θ) − 3β3

− 2β2 sin(2θ) − 3β2 cos(2θ) + 5β2 − cos(2θ) + 1

We first verify that Ψ(β, θ) is monotonically increasing w.r.t β ∈ [0, 1] by taking derivative
of Ψ(β, θ) w.r.t β. We plot the derivative for β ∈ [0, 1] and θ ∈ [0, 2π]. From Fig. E.1a, we
can see that the derivative of Ψ(β, θ) is positive for β ∈ [0, 1] and θ ∈ [0, 2π].
Choosing β = 0.63 (corresponding to κ = 6), we plot Ψ against θ in Fig. E.1b and minimize
Ψ w.r.t θ, finding the minimum to be 1.1. Since min(Ψ) = 1.1 > 1, the sub-optimality is
increasing in expectation for any ∆k when β = 0.63. Hence, since Ψ(β, θ) is monotonically
increasing with respect to β (Fig. E.1a), when κ > 6 (correspond to β > 0.63), for an
arbitrary ∆k,

E[∥∆k+3∥2] > cE[∥∆k∥2]

where c ≥ 1.1 for all κ > 6. Unrolling the recursion starting from 0 to 3T ,

E[∥∆3T ∥2] > cT ∥∆0∥2

Since c ≥ 1.1 > 1, the second coordinate will diverge and SHB will diverge consequently
(Fig. E.1c).
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(a) 3D plot of derivative of
Ψ(β, θ) with respect to β for
β ∈ [0, 1] and θ ∈ [0, 2π]. The
whole plane is above 0 hence
Ψ(β, θ) is monotonically increas-
ing for β ∈ [0, 1] for any θ.

(b) Plot of Ψ against θ for β =
0.63

(c) Plot of SHB vs SGD for the
2-sample case with b = 1, κ = 6.
SHB diverges while SGD con-
verges

Figure E.1: Figures for 2-sample SHB lower bound proofs

Theorem 3. For a L̄-smooth, µ̄ strongly-convex quadratic problem f(w) := 1
n

∑n
i=1

1
2w

TAiw
with n samples and dimension d = n = 100 such that w∗ = 0 and each Ai is an n-by-n
matrix of all zeros except at the (i, i) position, we run SHB (2.1) with αk = α = 1

L̄
,

βk = β =
(
1 − 1

2
√
αµ̄
)2

. If b < 1
1+ n−1

e3.3κ0.6
n and ∆k :=

(
wk

wk−1

)
, for a c > 1, after 6T

iterations, we have that:

E
[
∥∆6T ∥2

]
> cT ∥∆0∥2 .

Proof. Denote L = maxi∈nA
(i,i)
i and µ = mini∈nA

(i,i)
i . For the strongly-convex quadratic

objective function f(w) := 1
n

∑n
i=1

1
2w

TAiw, w∗ = 0⃗.

Since each Ai is diagonal, similar to Theorem 9, we can separate the coordinates and consider
SHB in 1 dimension for each of the coordinates. Subsequently, we only focus on coordinate u
that corresponds to the largest A(i,i)

i i.e. u = arg maxi∈nA
(i,i)
i . The update for this coordinate

is given by:

wk+1 =wk − α∇fik(wk) + β(wk − wk−1) ,

where ∇fik(wk) = 1
b

∑
i∈Bk

∇fi(wk) = 1
b

(∑
i∈Bk

A
(u,u)
i

)
wk. Hence,

wk+1 =wk − α
1
b

(∑
b

A
(u,u)
ik

)
wk + β(wk − wk−1)
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Similar to Theorem 9, we calculate the smoothness of f(w) as L̄ = λmax
(
∇2f(w)

)
=

λmax
(

1
n

∑n
i=1Ai

)
= L

n . Hence α = 1
L̄

= n
L and the full update can be written as:

wk+1 =wk − n

bL

∑
i∈Bk

A
(u,u)
i

wk + β(wk − wk−1)

=⇒
(
wk+1
wk

)
=

1 + β − n
b

∑
i∈Bk

A
(u,u)
i

L −β
1 0

( wk

wk−1

)

In each iteration, we randomly sample (without replacement) b examples. Hence, the
probability that Au is in the batch is b

n . When Au is in the batch,
∑

i∈Bk
A

(u,u)
i = L. On the

other hand, when Au is not in the batch,
∑

i∈Bk
A

(u,u)
i = 0. Similar to Theorem 9, we define

∆k :=
(
wk

wk−1

)
. Hence, the update can be rewritten as:

∆k+1 =Hk∆k

where Hk is either H1 :=
(

1 + β −β
1 0

)
w.p ρ1 := n−b

n (corresponding to when Au is not in

the batch) or H2 :=
(

1 − n
b + β −β
1 0

)
w.p ρ2 := 1 − ρ1 = b

n (corresponding to when Au is

in the batch).

We will use the same technique as in Theorem 9 and analyze six iterations of the update in ex-
pectation using symbolic mathematics programming [Meurer et al., 2017]. For this, we denote
Hi to be the matrix corresponding to the i-th permutation of 26 possible sequences and ρ̄i to
be the probability of that sequence. Therefore, ρ̄i is a product of ρ1, ρ2 corresponding to ma-
trices H1, H2 in the i-th sequence. For example, when H1 = H(1,1,1,1,1,1) = H1H1H1H1H1H1,
ρ̄1 = ρ6

1. Writing the suboptimality ∥∆k∥2 in expectation,

E ∥∆k+6∥2 =
26∑

i=1
ρ̄i ∥Hi∆k∥2

Representing ∆k in polar coordinates, for a θk ∈ [0, 2π], ∆k := rkϕk where rk ∈ R+ and

ϕk =
(

sin(θk)
cos(θk)

)
. The norm square increase factor Ψ := E[∥∆k+6∥2]

E[∥∆k∥2] is given by:

Ψ =E ∥∆k+6∥2

∥∆k∥2

=r2
k

∑26
i=1 ρ̄i ∥Hiϕk∥2

r2
k ∥ϕk∥2

=
26∑

i=1
ρ̄i ∥Hiϕk∥2
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Figure E.2: Ψ as a function of b, β, θ

Using symbolic mathematics programming, we write Ψ as a function of b, β, θ (see Fig. E.2
for the complete expression) and analyze Ψ(b, β, θ). Similar to Theorem 9, we first show that
Ψ(b, β, θ) is monotonically increasing w.r.t β. Using the expression of Ψ′

β(b, β, θ) = ∂Ψ(b,β,θ)
∂β ,

for each b ∈ [n− 1], we plot Ψ′
β(b, β, θ) for β ∈ [0.25, 1), θ ∈ [0, 2π] and observe that Ψ′

β is
positive. In Fig. E.3a, we show an example plot of Ψ′

β(b, β, θ) when b = 70. Furthermore, we
discretize β and θ to numerically verify that for any b ∈ [n− 1], Ψ′

β(b, β, θ) is greater than 0.
In Table E.1, we show an example for values of Ψ′

β(b, β, θ) when b = 70. Hence for every
b ∈ [n− 1], Ψ(b, β, θ) is a monotonically increasing function in β.

Next, for each batch-size b ∈ [n− 1], we minimize Ψ(b, β, θ) and find β∗(b) as the smallest β
such that Ψ(b, β, θ) > 1. In Fig. E.3b, when b = 70, we plot minimum of Ψ(b, β, θ) w.r.t θ
and show the corresponding β∗(b). Since Ψ(b, β, θ) is monotonically increasing w.r.t β, we
conclude that for a fixed batch-size b ∈ [n− 1], ∀θ ∈ [0, 2π], ∀β ∈ (β∗(b), 1), Ψ(b, β, θ) > 1.

From the definition of β, we can calculate the corresponding κ for any β ∈ [0.25, 1) as

κ =
(

1
2(1−

√
β)

)2
. Hence, for a fixed batch-size b, the coordinate u (and hence SHB) will

diverge if κ > κ∗(b) (corresponding to β∗(b)).

From Theorem 2, we see that the batch factor equal to n−b
(n−1)b must be sufficiently small

to ensure convergence of SHB. In particular, SHB converges at an accelerated rate if
n−b

(n−1)b ≤ 1
Cκ2 . Hence, in order to derive the lower-bound, we plot log

(
n−b

(n−1)b

)
against

log(κ∗(b)) in Fig. E.3c. We observe that for larger κ∗(b), the batch factor is smaller. In other
words, when κ is large, SHB requires a larger batch-size to avoid divergence.

In order to quantify the relationship between κ∗(b) and b, we calculate the best-fit line for
our plot in Fig. E.3c using linear regression. The slope corresponding to the best fit line is
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−0.6 and the y-intercept is −3.8. Hence, we can conclude that,

log
(

n− b

(n− 1)b

)
< −0.6 log(κ∗(b)) − 3.3

=⇒ n− b

(n− 1)b <
e−3.3

(κ∗(b))0.6

=⇒ (κ∗(b))0.6 >
(n− 1)b

(n− b)e3.3

Previously, we have shown that Ψ(b, κ, θ) > 1 for all κ > κ∗(b). Hence, Ψ(b, κ, θ) > 1 when

κ0.6 > (κ∗(b))0.6

=⇒ κ0.6 >
(n− 1)b
(n− b)e4

=⇒ n− b

(n− 1)b >
1

e3.3κ0.6

=⇒ b

n
<

1
1 + n−1

e3.3κ0.6

=⇒ b <
1

1 + n−1
e3.3κ0.6

n

Therefore, when the batch-size b < 1
1+ n−1

e3.3(κ)0.6
n = Ω(κ0.6), the norm square increase factor

Ψ(b, κ, θ) will be greater than 1 which leads to divergence. For an arbitrary ∆k,

E ∥∆k+6∥2 > cE ∥∆k∥2

=⇒ E ∥∆6T ∥2 > cT ∥∆0∥2

Since c > 1, SHB will consequently diverge. In Fig. E.3d, we plot the gradient norm of SHB
for κ = 10 and observe that when b = 10 < 1

1+ n−1
e3.3(κ)0.6

n, SHB diverges empirically verifying

our lower-bound.
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(a) 3D plot of derivative of Ψ(b, β, θ) with re-
spect to β for a sample b = 70, β ∈ [0.25, 1)
and θ ∈ [0, 2π]. The whole plane is above 0
hence Ψ(70, β, θ) is monotonically increasing for
β ∈ [0, 1] for any θ.

(b) Plot of minimum Ψ(b, β, θ) with respect to θ
for a sample b = 70, β ∈ [0.25, 1) and θ ∈ [0, 2π].
β∗(b) is smallest β such that Ψ > 1.

(c) Plot of log batch factor log
(

n−b
(n−1)b

)
against

log(κ∗). Using linear regression, the slope of the
best fit line is −0.6 and the y-intercept is −3.8

(d) Plot of SHB vs SGD for the n-sample case
with κ = 10, n = 100, b = 10 < 1

1+ n−1
e3.3(κ)0.6

n.

SHB diverges while SGD converges

Figure E.3: Figures for n-sample SHB lower bound proofs
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θ β

0.250 0.333 0.416 0.500 0.583 0.666 0.749 0.833 0.915 0.999

0 0.120 0.299 0.667 1.364 2.608 4.719 8.168 13.643 22.137 35.083
0.2π 0.203 0.387 0.701 1.216 2.037 3.311 5.238 8.102 12.283 18.281
0.4π 0.490 0.891 1.532 2.515 3.970 6.055 8.962 12.911 18.151 24.968
0.6π 0.584 1.114 2.012 3.466 5.734 9.160 14.193 21.423 31.632 45.902
0.8π 0.354 0.748 1.477 2.754 4.892 8.333 13.703 21.875 34.094 52.153
1.0π 0.120 0.299 0.667 1.364 2.608 4.719 8.168 13.643 22.137 35.082
1.2π 0.203 0.387 0.701 1.216 2.037 3.311 5.238 8.102 12.283 18.281
1.4π 0.490 0.891 1.532 2.515 3.970 6.055 8.962 12.911 18.151 24.968
1.6π 0.584 1.114 2.012 3.466 5.734 9.160 14.193 21.423 31.632 45.902
1.8π 0.354 0.748 1.477 2.754 4.892 8.333 13.703 21.875 34.094 52.153
2π 0.120 0.299 0.667 1.364 2.608 4.719 8.168 13.643 22.137 35.083

Table E.1: Values of Ψ′
β(b, β, θ) when b = 70 for different β ∈ [0.25, 1) and θ ∈ [0, 2π]
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Appendix F

Proofs for multi-stage SHB

Theorem 4. For L-smooth, µ strongly-convex quadratics with κ > 1, for T ≥ T̄ :=
3·28√

κ
ln(2) max

{
4κ, e2}, Algorithm 1 with b ≥ b∗ := n max

{
1

1+ n−1
C κ2

, 1
1+ (n−1) aI

3

}
converges as:

E ∥wT − w∗∥ ≤ 6
√

2
√
C1
C3
κ

1/4 exp
(

− T

8
√
κ

)
∥w0 − w∗∥ + 24κ

√
C1

µ(κ− 1)
χ√
T
.

where C1 :=
29 3

√
κ

(
1+2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2) , C3 := 3·28 max{4κ,e2}

ln(2) and C := 3526.

Proof. Stage zero consists of T0 = T
2 iterations with α = 1

L and β =
(
1 − 1

2
√

κ

)2
. Let Ti

be the last iteration in stage i, TI = T . Using the result of Theorem 2 with a = 1 for T0
iterations in stage zero and defining ∆t := wt − w∗,

E ∥wT − w∗∥ ≤ 6
√

2√
a

√
κ exp

(
−

√
a

4
T√
κ

)
∥w0 − w∗∥ + 12

√
aχ

µ
min

{
1, ζ√

a

}
E ∥∆T0∥ ≤ 6

√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥ + 12χ

µ
min

{
1, ζ√

a

}
≤ 6

√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥ + 12χ

µ

We split the remaining T
2 iterations into I stages. For stage i ∈ [1, I], we set αi = ai

L and
choose ai = 2−i. Using Theorem 2 for stage i,

E ∥∆Ti∥ ≤ 6
√

2
√
κ

ai
exp

(
−

√
ai

4
Ti√
κ

)
E ∥∆Ti−1∥ +

12√
aiχ

µ
min

{
1, ζ

√
ai

}

≤ 6
√

2 2i/2√
κ exp

(
− 1

4 2i/2
Ti√
κ

)
E ∥∆Ti−1∥ + 12χ

µ 2i/2

≤ exp
(

(i/2 + 5) ln(2) + ln(
√
κ) − Ti

2i/24
√
κ

)
E
∥∥∆Ti−1

∥∥+ 12χ
µ 2i/2
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Now we want to find Ti such that (i/2 + 5) ln(2) + ln(
√
κ) − Ti

2i/24
√

κ
≤ − Ti

2(i+1)/24
√

κ
.

=⇒ Ti ≥ 4
(2 −

√
2)

2i/2√
κ((i/2 + 5) ln(2) + ln(

√
κ))

=⇒ Ti =
⌈

4
(2 −

√
2)

2i/2√
κ((i/2 + 5) ln(2) + ln(

√
κ))
⌉

=⇒ Ti

2(i+1)/24
√
κ

≥ 1√
2 − 1

((i/2 + 5) ln(2) + ln(
√
κ)) ≥ 2 ln(2)(i/2 + 5) + 2 ln(

√
κ) ≥ (i/2 + 5) + ln(κ)

=⇒ exp
(

− Ti

2(i+1)/24
√
κ

)
≤ 1
κ

exp(−(i/2 + 5))

Define ρi := 1
κ exp(−(i/2 + 5)). If we unroll the above for I stages we have:

E[∥∆TI∥] ≤
I∏

i=1
ρiE ∥∆T0∥ + 12χ

µ

I∑
i=1

2−i/2
I∏

j=i+1
ρj

= exp
(

−
I∑

i=1
(i/2 + 5) − I ln κ)

)
E ∥∆T0∥ + 12χ

µ

I∑
i=1

2−i/2 exp

−
I∑

j=i+1
(j/2 + 5) − i ln κ


≤ exp

(
−I2/4 − I ln κ

)
E ∥∆T0∥ + 12χ

µ

I∑
i=1

2−i/2 exp

−
I∑

j=i+1
(j/2) − i ln κ


≤ exp

(
−I2/4 − I ln κ

)
E ∥∆T0∥ + 12χ

µ

I∑
i=1

2−i/2 exp
(

−(I − i)(I + i+ 1)
4 − i ln κ

)

≤ exp
(
−I2/4 − I ln κ

)
E ∥∆T0∥ + 12χ

µ

I∑
i=1

2−i/2 2
(

− (I2−i2+I−i)
4

)
exp (−i ln κ)

(since 2 ≤ e)

= exp
(
−I2/4 − I ln κ

)
E ∥∆T0∥ + 12χ

µ

I∑
i=1

2(− I
4 ) exp (−i ln κ) (since I2 ≥ i2)

≤ exp
(
−I2/4 − I ln κ

)
E ∥∆T0∥ + 12χκ

µ(κ− 1)
1

2( I4 ) (Simplifying
∑ 1

κi
)

≤ exp
(
−I2/4

)
E ∥∆T0∥ + 12χκ

µ(κ− 1)
1

2( I4 )

Putting together the convergence from stage 0 and stages [1, I],

E[∥∆T ∥] ≤ exp
(
−I2/4

) (
6
√

2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥ + 12χ

µ

)
+ 12χκ
µ(κ− 1)

1
2( I4 )

≤ 1
2( I4 )

(
6
√

2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥ + 12χ

µ

)
+ 12χκ
µ(κ− 1)

1
2( I4 )

≤ 1
2( I4 )

(
6
√

2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥

)
+ 24χκ
µ(κ− 1)

1
2( I4 ) (F.1)
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Now we need to bound the number of iterations in
∑I

i=1 Ti.

I∑
i=1

Ti ≤
I∑

i=1

[
4

(2 −
√

2)
2i/2√

κ((i/2 + 5) ln(2) + ln(
√
κ)) + 1

]

≤ 8
I∑

i=1
2i/2√

κ((i/2 + 5) ln(2) + ln(
√
κ)) + I

≤ 8
√
κ

I∑
i=1

2i/2
{

4i+ ln(
√
κ)
}

+ I (For i ≥ 1)

≤ 8
√
κ

{
4I + ln(

√
κ)
} I∑

i=1
2i/2 + I

≤ 8
√
κ

{
4I + ln(

√
κ)
}2(I+1)/2

√
2 − 1

+ I

≤ 16
√
κ [5I + ln(

√
κ)] 2(I+1)/2

Assume that I ≥ ln(
√
κ). In this case,

I∑
i=1

Ti ≤ 192
√
κ I 2(I/2) (F.2)

We need to set I s.t. the upper-bound on the total number of iterations in the I stages is
smaller than the available budget on the iterations which is equal to T/2. Hence,

T

2 ≥ 192
ln(

√
2)

√
κ exp

(
ln(

√
2) I

) (
I ln(

√
2)
)

=⇒ exp
(
ln(

√
2) I

) (
I ln(

√
2)
)

≤ T ln(
√

2)
384

√
κ

=⇒ I ln(
√

2) ≤ W
(
T ln(

√
2)

384
√
κ

)
(where W is the Lambert function)

Hence, it suffices to set I =
⌊

1
ln(

√
2) W

(
T ln(

√
2)

384
√

κ

)⌋
. We know that,

I

2 ≥
1

ln(
√

2) W
(

T ln(
√

2)
384

√
κ

)
− 1

2

=⇒ exp
(
I

2

)
≥
√

1/e
(

exp
(

W
(
T ln(

√
2)

384
√
κ

)))1/(2 ln(
√

2))

=
√

1/e

 T ln(
√

2)
384

√
κ

W
(

T ln(
√

2)
384

√
κ

)


1/(2 ln(
√

2))

(since exp(W(x)) = x
W(x))

For x ≥ e2, W (x) ≤
√

1 + 2 log2(x). Assuming T ≥ 384
√

κ

ln(
√

2) e
2 so T ln(

√
2)

384
√

κ
≥ e2,
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exp
(
I

2

)
≥
√

1/e


T ln(

√
2)

384
√

κ√
1 + 2 log2

(
T ln(

√
2)

384
√

κ

)


1/ ln(2)

Since 2x = (exp(x))ln(2),

2( I2 ) = (exp(I/2))ln(2) ≥ (
√

1/e)ln(2)


T ln(

√
2)

384
√

κ√
1 + 2 log2

(
T ln(

√
2)

384
√

κ

)


ln(2)/ ln(2)

= (exp(I/2))ln(2) ≥ (
√

1/e)ln(2)


T ln(

√
2)

384
√

κ√
1 + 2 log2

(
T ln(

√
2)

384
√

κ

)


=⇒ 1
2I/2 ≤ 2

√
1 + 2 log2

(
T ln(

√
2)

384
√

κ

)
384

√
κ

T ln(
√

2)

=
29 3

√
κ
(
1 + 2 log2

(
T ln(

√
2)

384
√

κ

))
ln(2)

1
T

Define C1 :=
29 3

√
κ

(
1+2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2) , meaning that 1

2I/2 ≤ C1
T . Using the overall conver-

gence rate,

E[∥wT − w∗∥] ≤ 1
2( I4 )

(
6
√

2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥

)
+ 24χκ
µ(κ− 1)

1
2( I4 )

≤
√
C1√
T

(
6
√

2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥

)
+ 24χκ
µ(κ− 1)

√
C1√
T

=⇒ E ∥wT − w∗∥ ≤ 6
√

2
√
C1

√
κ

1√
T

exp
(

− T

8
√
κ

)
∥w0 − w∗∥ + 24χκ

µ(κ− 1)

√
C1√
T

We assumed that I ≥ ln(
√
κ) meaning that we want T s.t.⌊

1
ln(

√
2)

W
(
T ln(

√
2)

384
√
κ

)⌋
≥ ln(

√
κ)

Since W(x) ≥ log (
√

4x+1+1
2 ) for x > 0 we need to have:

1
ln(

√
2)

W
(
T ln(

√
2)

384
√
κ

)
− 1 ≥ ln

√
κ

=⇒ log (

√
4T ln(

√
2)

384
√

κ
+ 1 + 1

2 ) ≥ ln (
√
κ) + 1
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=⇒ T ≥ 384
√
κ

4 ln(
√

2)

(
(2ln(

√
κ)+2 − 2)2 − 1

)

Hence, it suffices to choose

=⇒ T >
96

√
κ

ln(
√

2)
16 · 2ln(κ)

Since e > 2

=⇒ T >
96

√
κ

ln(
√

2)
16 · eln(κ) = 3 · 29κ

√
κ

ln(
√

2)

Therefore to satisfy all the assumptions we need that

T ≥ max
{

3 · 29κ
√
κ

ln(
√

2)
,
384

√
κ

ln(
√

2)
e2
}

= max
{

3 · 210κ
√
κ

ln(2) ,
3 · 28 e2√

κ

ln(2)

}

Let C3 = 3·28 max{4κ,e2}
ln(2) then

T ≥
√
κC3

With this constraint then 1√
T

≤ 1
κ1/4√

C3
. Hence the final convergence rate can be presented

as

E ∥wT − w∗∥ ≤ 6
√

2
√
C1

√
κ

1
κ1/4

√
C3

exp
(

− T

8
√
κ

)
∥w0 − w∗∥ + 24χκ

µ(κ− 1)

√
C1√
T

= 6
√

2
√
C1
C3
κ

1/4 exp
(

− T

8
√
κ

)
∥w0 − w∗∥ + 24χκ

µ(κ− 1)

√
C1√
T
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Corollary 2. For L-smooth, µ strongly-convex quadratics with κ > 1, Algorithm 1 with
batch-size b such that b ≥ b∗ := n 1

1+ n−1
C κ2

attains the same rate as in Theorem 4 for

T ∈
[

3·28√
κ

ln(2) max
{
4κ, e2} , C1

√
(n−1)b
3(n−b)

]
, where C,C1 are defined in Theorem 4.

Proof. By the batch-size constraint in Theorem 4, we need b
n ≥ 1

1+ (n−1)aI
3

. From Theorem 4,

aI = 2−I ≤ C2
1

T 2 hence

b

n
≥ 1

1 + n−1
3(T/C1)2

=⇒ 1 + n− 1
3 (T/C1)2 ≤ n

b

=⇒ 3 (T/C1)2
(

1 − n

b

)
≤ 1 − n

=⇒ (T/C1)2 ≤ (n− 1)b
3(n− b)

=⇒ T ≤C1

√
(n− 1)b
3(n− b)
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Appendix G

Proofs for two-phase SHB

Theorem 10. For L-smooth, µ strongly-convex quadratics with κ > 4, Algorithm 2 with
batch-size b such that b ≥ b∗ = n 1

1+ n−1
C κ2

results in the following convergence,

E ∥wT −1 − w∗∥ ≤ 6
√

2c2κ

cL
exp

(
− T

κq

γ

8 ln((1 − c)T )

)
∥w0 − w∗∥

+ 12
√

6Lc2 ζσ√
cLµ

exp
(

−(1 − c)T γ
8κ ln(T )

)
+ 8

√
Lc2 ln(T )ζκ3/2

e γ
√
cL

σ√
(1 − c)T

where q = 1 − ln(c
√

κ+1−c)
ln(κ) , ζ =

√
n−b

(n−1)b captures the dependence on the batch-size,

c2 = exp
(

1
κ ln((1−c)T )

)
, cL = 4(1−γ)

µ2
[
1 − exp

(
−µ γ

2L

)]
and C := 3526.

Proof. After T0 iterations, by Theorem 2 with a = 1, and χ =
√
E ∥∇fi(w∗)∥2,

E ∥wT0 − w∗∥ ≤ 6
√

2
√
κ exp

(
− T0

4
√
κ

)
∥w0 − w∗∥ + 12

√
3ζχ
µ

(since in Theorem 2, ζ =
√

3 n−b
(n−1)b)

After T1 iterations, by Theorem 1 with γ = (1/T1)1/T1 and τ = 1,

E[ET ] ≤ ∥wT0 − w∗∥2 c2 exp
(

− T1 γ

4κ ln(T1)

)
+ 64Lσ2c2ζ

2κ3

e2 γ2
(ln(T1))2

T1

Taking square-root on both sides and using that
√
E[ET ] ≥ E[

√
ET ]

E[
√

ET ] ≤ ∥wT0 − w∗∥
√
c2 exp

(
− T1 γ

8κ ln(T1)

)
+ 8

√
Lc2 σζκ

3/2

e γ

(ln(T1))√
T1
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Taking expectation over the randomness in iterations t = 0 to T0 − 1,

E[
√

ET ] ≤
√
c2 exp

(
− T1 γ

8κ ln(T1)

)
E ∥wT0 − w∗∥ + 8

√
Lc2 σζκ

3/2

e γ

(ln(T1))√
T1

Using the above inequality and using that χ2 ≤ 2Lσ2,

=⇒ E[
√

ET ] ≤
√
c2 exp

(
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8κ ln(T1)

)[
6
√
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]
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(ln(T1))√
T1

For T1 ≥ e and since γ ≤ 1
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+
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Consider term A := 6
√

2√
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√
κ exp

(
− γ

8 ln(T1)

(
T0√

κ
+ T1

κ

))
∥w0 − w∗∥. We have,

T0√
κ

+ T1
κ

= cT√
κ

+ (1 − c)T
κ

=T c
√
κ+ 1 − c

κ

Suppose T
κq = T c

√
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κ then

κq = κ

c
√
κ+ 1 − c

=⇒ q =1 − ln(c
√
κ+ 1 − c)
ln(κ)

Since c ∈ (0, 1), q ∈ (0.5, 1), then

A ≤6
√

2c2κ exp
(

− T

κq

γ

8 ln((1 − c)T )

)
∥w0 − w∗∥

Consider the noise B := 12
√

6Lc2 ζσ
µ exp

(
− T1 γ

8κ ln(T1)

)
+ 8

√
Lc2 σζκ3/2

e γ
(ln(T1))√

T1
.

B = 12
√

6Lc2 ζσ

µ
exp

(
− T1 γ

8κ ln(T1)

)
+ 8

√
Lc2 σζκ

3/2

e γ

(ln(T1))√
T1
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= 12
√

6Lc2 ζσ

µ
exp

(
− (1 − c)T γ

8κ ln((1 − c)T )

)
+ 8

√
Lc2 σζκ

3/2

e γ

(ln((1 − c)T ))√
(1 − c)T

≤ 12
√

6Lc2 ζσ

µ
exp

(
−(1 − c)T γ

8κ ln(T )

)
+ 8

√
Lc2 σζκ

3/2

e γ

ln(T )√
(1 − c)T

(Since c ∈ (0, 1))

Putting everything together,

E[
√

ET ] ≤ 6
√

2c2κ exp
(

− T

κq

γ

8 ln((1 − c)T )

)
∥w0 − w∗∥

+ 12
√

6Lc2 ζσ

µ
exp

(
−(1 − c)T γ

8κ ln(T )

)
+ 8

√
Lc2 σζκ

3/2

e γ

ln(T )√
(1 − c)T

Using Lemma 1 with cL = 4(1−γ)
µ2

[
1 − exp

(
−µ γ

2L

)]
then

√
cL E ∥wT −1 − w∗∥ ≤ 6

√
2c2κ exp

(
− T

κq

γ

8 ln((1 − c)T )

)
∥w0 − w∗∥

+ 12
√

6Lc2 ζσ

µ
exp

(
−(1 − c)T γ

8κ ln(T )

)
+ 8

√
Lc2 σζκ

3/2

e γ

ln(T )√
(1 − c)T

=⇒ E ∥wT −1 − w∗∥ ≤ 6
√

2c2κ

cL
exp

(
− T

κq

γ

8 ln((1 − c)T )

)
∥w0 − w∗∥

+ 12
√

6Lc2 ζσ√
cLµ

exp
(

−(1 − c)T γ
8κ ln(T )

)
+ 8

√
Lc2 ln(T )ζκ3/2

e γ
√
cL

σ√
(1 − c)T

Corollary 3. For L-smooth, µ strongly-convex quadratics with κ > 4, Algorithm 2 with
batch-size b such that b ≥ b∗ = n 1

1+ n−1
C κ2

and c = 1
2 results in a rate of O

(
exp

(
− T

κ0.7

)
+ σ√

T

)
for all T .

Proof. From Theorem 10, q = 1 − ln(c
√

κ+1−c)
ln(κ) , plug in c = 1

2 , then

q =1 −
ln
(√

κ+1
2

)
ln(κ)

Since q is monotonically decreasing with respect to κ and κ > 4 then

q ≤1 −
ln
(√

4+1
2

)
ln(4) ≈ 0.7

Hence the bias term in the rate of Theorem 10 converges asO
(
exp

(
− T

κq

))
≤ O

(
exp

(
− T

κ0.7

))
.

The noise term converges at the rate of O
(

σ√
T

)
hence the convergence rate of Algorithm 2

when c = 0.5 is O
(
exp

(
− T

κ0.7

)
+ σ√

T

)
.
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Appendix H

Hybrid SHB

We introduce a hybrid algorithm (Algorithm 3) that combines multi-stage SHB (Algorithm 1)
and two-phase algorithm (Algorithm 2). Given a fixed dataset and T and b as input, we

use T̄ := 3·28√
κ

ln(2) max
{
4κ, e2} (Theorem 4) and T ∗ := C1

√
(n−1)b
3(n−b) (Corollary 2) to determine

different cases for our hybrid algorithm. We observe that Algorithm 3 can achieve an
accelerated convergence rate when the batch-size is sufficiently large and the number of
iterations T satisfies T̄ ≤ T ≤ T ∗. When the T constraint is not satisfied, Algorithm 3
results in a partially accelerated convergence rate.

Algorithm 3: Hybrid SHB
Input: T (iteration budget), b (batch-size)
Initialization: w0, w−1 = w0, k = 0
Calculate T̄ based on Theorem 4
Calculate T ∗ based on Corollary 2 and set m = T/T ∗

if T ≥ T̄ and m ≤ 1 then
T0 = 0, T1 = T , T2 = 0 ;

else if T ≥ T̄ and 1 < m ≤ 2 then
T0 = 0, T1 = T

m , T2 = m−1
m T ;

else
T0 = T

2 , T1 = 0, T2 = T
2 ;

end
for k = 0; k ≤ T0 − 1; k = k + 1 do

Set a = 1, α, β according to Theorem 2
Use Update 2.1

end
for k = T0; k ≤ T0 + T1 − 1; k = k + 1 do

Set parameters according to Algorithm 1
Use Update from Algorithm 1

end
for k = T0 + T1; k ≤ T − 1; k = k + 1 do

Set ηk, λk according to Theorem 1
Use Update 3.1

end
return wT
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Theorem 11. For L-smooth, µ strongly-convex quadratics with κ > 4, Algorithm 3
with batch-size b such that b ≥ b∗ = n 1

1+ n
C κ2

, T̄ = 3·28√
κ

ln(2) max
{
4κ, e2}, T ∗ = C1

√
(n−1)b
3(n−b)

(Corollary 2), m = T
T ∗ results in the following convergences,

When T ≥ T̄ and m ≤ 1,

E ∥wT − w∗∥ ≤ 6
√

2
√
C1
C3
κ

1/4 exp
(

− T

8
√
κ

)
∥w0 − w∗∥ + 24χκ

µ(κ− 1)

√
C1√
T
.

When T ≥ T̄ and 1 < m ≤ 2,

E ∥wT −1 − w∗∥2 ≤ 6
√

2
√
C1c2
C3cL

κ
1/4 exp

(
− T

κr

γ

8 ln(T/m)

)
∥w0 − w∗∥

+

24
√

6LC1c2mκ

µ
√
cL(κ− 1) exp

−T

κ

(m− 1) γ
8m ln

(
m−1

m T
)
+

8
√
c2Lmζκ

3/2 ln
(

m−1
m T

)
eγ
√

(m− 1)cL

 σ√
T

When T < T̄ or m > 2,

E[∥wT −1 − w∗∥] ≤6
√

2κ
√
c2
cL

exp
(

− T

κq

γ

8 ln(T2)

)
∥w0 − w∗∥

+ 12
√

6Lc2ζκ

µ
√
cL

exp
(

− T γ

16κ ln(T/2)

)
σ + 8

√
2c2Lζκ

3/2 ln(T/2)
eγ

√
cL

σ√
T

where r = 1 −
ln
(√

κ
m

+1− 1
m

)
ln(κ) , q = 1 −

ln
(√

κ
2 + 1

2

)
ln(κ) , ζ =

√
n−b
nb captures the dependence on the

batch-size, c2 = exp
(

1
κ ln(T2)

)
, cL = 4(1−γ)

µ2
[
1 − exp

(
−µ γ

2L

)]
, C1 :=

29 3

√
κ

(
1+2 log2

(
T1 ln(

√
2)

384
√
κ

))
ln(2) ,

C3 = 3·28 max{4κ,e2}
ln(2) and C := 3526.

Proof. Case 1: m ≤ 1 then T0 = 0, T1 = T , T2 = 0
We only run multi-stage SHB in this case hence the convergence rate is similar to Theorem 4.

Case 2: 1 < m ≤ 2 then T0 = 0, T1 = T
m , T2 = m−1

m T

After T0 + T1 = T1 iterations, by Theorem 4 and χ =
√
E ∥∇fi(w∗)∥2,

E ∥wT1 − w∗∥ ≤ 6
√

2
√
C1
C3
κ

1/4 exp
(

− T1
8
√
κ

)
∥w0 − w∗∥ + 24

√
3κ

√
C1

µ(κ− 1)
χ√
T1

(since in Theorem 4, ζ =
√

3 n−b
(n−1)b)

After T iterations, by Theorem 1 with τ = 1 and γ = (1/T2)1/T2 ,

E ∥wT −1 − w∗∥2 ≤ c2
cL

∥wT1 − w∗∥2 exp
(

−T2
4κ

γ

ln(T2)

)
+ 64Lσ2c2ζ

2κ3

e2 cL

(ln(T2))2

γ2T2
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Taking square-root on both sides and using that
√
E[∥wT −1 − w∗∥2] ≥ E[

√
∥wT −1 − w∗∥2]

E[∥wT −1 − w∗∥] ≤ ∥wT1 − w∗∥
√
c2
cL

exp
(

−T2
8κ

γ

ln(T2)

)
+ 8

√
c2Lζκ

3/2 ln(T2)
eγ

√
cL

σ√
T2

Taking expectation over the randomness in iterations t = 0 to T0 − 1,

E[∥wT −1 − w∗∥] ≤E ∥wT1 − w∗∥
√
c2
cL

exp
(

−T2
8κ

γ

ln(T2)

)
+ 8

√
c2Lζκ

3/2 ln(T2)
eγ

√
cL

σ√
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Using the above inequality and χ2 ≤ 2Lσ2,

=⇒ E[∥wT −1 − w∗∥] ≤
√
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exp
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6
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2
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Consider term A := 6
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2
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κ1/4 exp
(
− T1

8
√

κ
− T2 γ

8κ ln(T1)
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γ ≤ 1,
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Consider term T1√
κ
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κ
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m
√
κ
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=
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=⇒ r = 1 −
ln
(√

κ
m + 1 − 1

m

)
ln(κ)

Hence for r = 1 −
ln
(√

κ
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+1− 1
m

)
ln(κ) ,
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Consider the noise B := 24
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Putting everything together,
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Case 3: m > 2 then T0 = T
2 , T1 = 0, T2 = T

2

After T0 iterations, by Theorem 2 with a = 1, and χ =
√
E ∥∇fi(w∗)∥2,

E ∥wT0 − w∗∥ ≤ 6
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(since in Theorem 2, ζ =
√
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After T iterations, by Theorem 1 with τ = 1 and γ = (1/T2)1/T2 ,
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Taking square-root on both sides and using that
√
E[∥wT −1 − w∗∥2] ≥ E[

√
∥wT −1 − w∗∥2]

E[∥wT −1 − w∗∥] ≤ ∥wT0 − w∗∥
√
c2
cL

exp
(

−T2
8κ

γ

ln(T2)

)
+ 8

√
c2Lζκ

3/2 ln(T2)
eγ

√
cL

σ√
T2

Taking expectation over the randomness in iterations t = 0 to T , using the above inequality
and χ2 ≤ 2Lσ2,

=⇒ E[∥wT −1 − w∗∥] ≤
√
c2
cL

exp
(

−T2
8κ

γ

ln(T2)

)[
6
√

2
√
κ exp

(
− T0

4
√
κ

)
∥w0 − w∗∥ + 12

√
6Lζσ
µ

]

+ 8
√
c2Lζκ

3/2 ln(T2)
eγ

√
cL

σ√
T2

=6
√

2κ
√
c2
cL

exp
(

− T0
4
√
κ

− T2 γ

8κ ln(T2)

)
∥w0 − w∗∥

+ 12
√

6Lc2ζκ

µ
√
cL

exp
(

− T2 γ

8κ ln(T2)

)
σ + 8

√
c2Lζκ

3/2 ln(T2)
eγ

√
cL

σ√
T2

≤6
√

2κ
√
c2
cL

exp
(

− γ

8 ln(T2)

(
T0√
κ

+ T2
κ

))
∥w0 − w∗∥

+ 12
√

6Lc2ζκ

µ
√
cL

exp
(

− T2 γ

8κ ln(T2)

)
σ + 8

√
c2Lζκ

3/2 ln(T2)
eγ

√
cL

σ√
T2

Consider term T0√
κ

+ T2
κ ,

T0√
κ

+ T2
κ

= T

2
√
κ

+ T

2κ

=T
√
κ+ 1
2κ

Suppose T
κq = T

√
κ+1
2κ then

κq = κ
√

κ
2 + 1

2

=⇒ q =1 −
ln
(√

κ
2 + 1

2

)
ln(κ)

Putting everything together,
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Appendix I

Additional experiments

I.1 Quadratics experiments on LIBSVM datasets

To conduct experiments for smooth, strongly-convex functions, we adopt the settings from
Vaswani et al. [2022]. Our experiment involves the SHB variant and other commonly used
optimization methods. The comparison will be based on two common supervised learning
losses, squared loss for regression tasks and logistic loss for classification. We will utilize a
linear model with ℓ2-regularization λ

2 ∥w∥2 in which λ = 0.01. To assess the performance of
the optimization methods, we use ijcnn and rcv1 data sets from LIBSVM [Chang and Lin,
2011]. For each dataset, the training iterations will be fixed at T = 100n, where n is the
number of samples in the training dataset, and we will use a batch-size of 100. To ensure
statistical significance, each experiment will be run 5 times independently, and the average
result and standard deviation will be plotted. We will use the full gradient norm as the
performance measure and plot it against the number of gradient evaluations.

The methods for comparison are: SGD with constant step-sizes (K-CNST), SGD with exponen-
tially decreasing step-sizes [Vaswani et al., 2022] (K-EXP), SGD with exponentially decreasing
step-sizes and SLS [Vaswani et al., 2022, 2021] (SLS-EXP), SHB with constant step-sizes
(set according to Theorem 5) (SHB-CNST), SHB with exponentially decreasing step-sizes
(set according to Theorem 1) (SHB-EXP), SHB with exponentially decreasing step-sizes (set
according to Theorem 1) and SLS [Vaswani et al., 2021] (SHB-SLS-EXP).

(a) ijcnn (b) rcv1

Figure I.1: Squared loss on ijcnn and rcv1 datasets
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(a) ijcnn (b) rcv1

Figure I.2: Logistic loss on ijcnn and rcv1 datasets

From Fig. I.1 and Fig. I.2, we observe that exponentially decreasing step-sizes for both SHB
and SGD have close performance and they both outperform their constant step-sizes variants.
We also note that using stochastic line-search by Vaswani et al. [2021], SHB-SLS-EXP
matches the performance of the variant with known smoothness.

I.2 Comparison to Pan et al. [2023] multi-stage SHB

In this section, we consider minimizing smooth, strongly-convex quadratics. The data
generation procedure is similar to Chapter 5. We vary κ ∈ {2000, 1000, 500, 200, 100} and the
magnitude of the noise r ∈ {10−2, 10−4, 10−6, 10−8}. For each dataset, we use a batch-size
b = 0.9n to ensure that it is sufficiently large for SHB to achieve an accelerated rate with all
of our chosen κ. We fix the total number of iterations T = 7000 and initialization w0 = 0⃗.
For each experiment, we consider 3 independent runs, and plot the average result. We will
use the full gradient norm as the performance measure and plot it against the number of
iterations.

We compare the following methods: Multi-stage SHB (Algorithm 1) (Multi-SHB), our heuris-
tic Multi-stage SHB (Algorithm 1) with constant momentum parameter (Multi-SHB-CNST),
Two-phase SHB (Algorithm 2) with c = 0.5 (2P-SHB), Multi-stage SHB [Pan et al., 2023]
with C = 2 (Multi-SHB-PAN-2) and C = T

√
κ (Multi-SHB-PAN-T-KAP).

We observe that with a sufficiently large batch-size the method by Pan et al. [2023] is able
to avoid the divergence behaviour in Fig. 4.1. Furthermore, the performance of 2P-SHB,
Multi-SHB, Multi-SHB-CNST is similar to the method in Pan et al. [2023], and it consistently
lies in-between the two extremes.
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(a) κ = 2000, r = 10−2 (b) κ = 2000, r = 10−4 (c) κ = 2000, r = 10−6 (d) κ = 2000, r = 10−8

(e) κ = 1000, r = 10−2 (f) κ = 1000, r = 10−4 (g) κ = 1000, r = 10−6 (h) κ = 1000, r = 10−8

(i) κ = 500, r = 10−2 (j) κ = 500, r = 10−4 (k) κ = 500, r = 10−6 (l) κ = 500, r = 10−8

(m) κ = 200, r = 10−2 (n) κ = 200, r = 10−4 (o) κ = 200, r = 10−6 (p) κ = 200, r = 10−8

(q) κ = 100, r = 10−2 (r) κ = 100, r = 10−4 (s) κ = 100, r = 10−6 (t) κ = 100, r = 10−8

Figure I.3: Comparison of Multi-SHB, Multi-SHB-CNST, 2P-SHB, Multi-SHB-PAN-2, and
Multi-SHB-PAN-T-KAP. With a sufficiently large batch-size, the method by Pan et al. [2023]
is able to avoid the divergence behaviour in Fig. 4.1. The performance of SHB variants
is similar to the method in Pan et al. [2023], and it consistently lies in-between the two
extremes.
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