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Abstract. For many supervised learning tasks, it is difficult or impossible to obtain
ground truth labels for the set of training instances. Such applications include sentiment
recognition, textual entailment where the labels are subjective, computer visions tasks
like object detection, tracking and recognition which need large amounts of labeled data
or medical applications such a tumor classification which requires a dangerous procedure
such as biopsy to obtain the golden ground truth. All of these applications make use of
multiple annotators to estimate the ground truth labels. There has been a substantial
amount of research on how to combine ground truth estimates from multiple sources and
use these estimates to train learning systems to make predictions on future instances. In
this paper, we present a survey of the various methodologies that have been proposed in the
literature to learn from multiple annotators. We briefly describe some of the approaches
used and, in particular, we focus on the three methods proposed in [11], [19], and [12].
Moreover, we outline future research directions to better solve the problem.

1 Introduction

Supervised learning traditionally relies on a domain expert who ’teaches’ the learning system
with necessary supervision. In particular, the expert supervises the learning by providing the
correct answers i.e. ground truth data (labels in the case of classification and real values in the
case of regression) for a set of input instances called the training set. The supervised learning
system once trained can then be used to predict labels/values for hitherto unseen input instances
called the test set. Under some assumptions, the greater the size of the training set, the better
the predictions on the test set. This motivates the need for multiple domain experts or even
multiple non-experts providing labels for training the system. Indeed Snow et al. [16] show
that multiple non-experts can perform as well as a single domain expert. Another motivation for
using multiple annotators (annotator here refers to a person labeling a set of training instances)
is when the ground truth data consists of subjective examples. This includes examples such as
sentiment analysis, movie rating, and key phrase extraction. Such tasks warrant the need for
multiple annotators for estimating the ground truth data. Another class of problems, where
multiple annotators are useful, is scenarios where the true ground truth data (called the golden
ground truth) is hard to obtain. Examples include the classification of a tumor as benign or
malignant. The true ground truth data can be obtained only after a biopsy of the tissue which
is an invasive, expensive and dangerous procedure and is not often done. To reduce the sparsity
of the training set, multiple radiologists label the tumor as benign or malignant and their labels
are combined to estimate the ground truth.

Effectively exploiting the ground truth data from various sources comes with its own set of
problems. Each annotator has different accuracies in labeling the ground truth. For example, a
domain expert will have a much higher accuracy compared to a non-expert annotating images
on a crowd sourcing platform like Amazon Mechanical Turk. For training the system correctly, it
becomes important to assign weights to the annotator estimates proportional to their accuracies
in labeling the ground truth. There are other design decisions which need to be made. One can
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estimate the ground truth from the annotator estimates first and then train the learning system
using the appropriately weighted estimates as the training set [14] or estimate the ground truth
and do the learning simultaneously [11]. Other important issues include the choice of the classifier
for learning, the dependence of the annotator accuracies on input instances (some input instances
might be relatively easier to label than others) and the dependence of the annotator accuracies
on time.

In this survey, we compare state of the art methods to handle the issues described above and
outline some directions of future work. This paper is structured as follows. Section 2 surveys the
previous work on handling multiple annotators for the supervised learning setting. In section 3,
we get into the precise mathematical details of three important methodologies. The survey is
presented in an incremental chronological fashion. In particular, we start off with [14] and show
how [11] improves it. We then present how [19] relaxes some of the assumptions of [11] leading
to better results. Finally we present [12] which improves on [11] by formulating the problem
in a different way. Section 4 presents some comparative results for each of the methodologies
presented. In section 5 we conclude our survey and outline some directions for future work.

2 Overview

There has been much work on estimating ground truth labels from multiple annotators in the ab-
sence of gold ground truth data in the context of bio-statistics and epidemiology (see [6], [7], [3]).
However, in the machine learning community, learning a classifier using estimates from multiple
annotators was first done by Smyth et.al in [14,15] for labeling volcanoes in satellite images of
Venus. However, this approach first estimated the ground truth from annotator estimates and
used the probabilistic ground truths to learn a classifier. Some other approaches [1,2,13] exploit
prior knowledge about the labeler similarities

In this paper, we survey approaches in the most general setting i.e. approaches which do not
assume any prior knowledge about the labelers or relationships between them. Jin and Ghahra-
mani [8] used the expectation maximization algorithm to estimate the ground truth and learn the
classifier simultaneously. However they had a different use case where each training instance has
a distribution over class labels. In 2009, Raykar et.al in [11] adapted this approach for learning
from multiple annotators. They use the EM algorithm using the unknown ground truth labels
as latent variables. In particular, they estimate the ground truth in the E step and use these
estimates to train the classifier in the M step. They extend this idea for multiclass classification
and regression. They also experiment with the Bayesian approach putting some prior on the
weights and annotator accuracies to obtain the MAP estimate instead of the MLE. This work
has been extended in different ways. For example, Raykar et.al assume the annotator accuracies
are independent on the input instance at hand. This is not a very reasonable assumption and was
relaxed in [19]. Other extensions include the use of Gaussian processes in [5] for jointly learning
the ground truth and training the classifier. Yan et.al also explored an active learning approach
for learning from multiple annotators in [18]. In [4], the authors consider the dependence of anno-
tator accuracies on time. However modeling this dependence results only in a small improvement
(around 1 - 2 %) in the results. Finally in 2013, Rodrigues et.al in [12] discussed certain disad-
vantages of modeling the problem using the unknown ground truth as latent variables. Instead,
they use the also unknown annotator accuracies as latent variables and show the advantages of
their proposed approach. In this survey, we focus on 3 important approaches described above
namely the EM formulation proposed by Raykar et.al in [11]and its extensions in [19] and [12].
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3 Methodology

In this section, we first describe the work done in [11]. The improvements presented in [19] and
[12] are later discussed. We follow the notation used in [11]. Consider a data set of N data points{
D(xi, yi)

}N
i=1

, where xi ∈ X and and yi ∈ Y are the feature vector and the actual label for

the ith instance, respectively. yi is often referred to as the gold standard or the ground truth.
Depending on Y, there are 3 cases:

1. Binary classification: Y = {0, 1}.
2. Multi-class classification: Y = {1, ..,K}.
3. Regression: Y = R.

In this paper, we focus on the classification problem. We consider the case of R different anno-
tators or experts that provide the noisy labels y1i , y

2
i , ..., y

R
i for the ith instance.

In the following we discuss some of the different approaches for solving this problem

3.1 Majority voting

In the case of multiple labels, a commonly used strategy is to use the label that the majority
agree on as an estimate of the true label. So the hidden true label ŷi can be calculated as follows:

ŷi =

{
1 if (1/R)

∑R
r=1 y

r
i > 0.5

0 if (1/R)
∑R

r=1 y
r
i < 0.5

, (1)

where the case of tie (ŷi = 0.5) can be broken by a super-expert or randomly [11].

3.2 Approach proposed by Rayker et.al[11]

The approach adopted in [11] assumes that the dependencies between x, y, and yr can be modeled
using the graphical model in Figure 1.

Fig. 1. Plate representation of general latent ground truth model [12]
.

This model assumes that the labels provided by the annotators yr are independent of the
input features given the true labels. This assumption may not be accurate, especially, in the case
of easy instances where the annotators are less likely to make mistakes.

The algorithm proposed in [11] is based on a maximum-likelihood estimator that jointly
learns the classifier, the annotator accuracy, and the actual true label. The performance of the
rth annotator is measured in terms of the sensitivity αr and the specificity βr with respect to
the unknown gold standard. α and β are used to distinguish the true positive rate from the true
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negative rate, respectively. Hence, αr = Pr [yr = 1|y = 1] and βr = Pr [yr = 0|y = 0]. In the case
where these rates are symmetric, we use ηr = αr = βr.

In order to incorporate prior knowledge about each annotator, the authors experiment with
a Bayesian approach - they impose a prior on the sensitivity and specificity and derive the
maximum-a-posteriori (MAP) estimate. However, we do not discuss this case here because of the
spcae constraints. Moreover, we focus only on the classification case. However, the paper also
discusses categorical, ordinal and regression problems.

Classification model: The paper uses the logistic regression model. This can be easily extended
to other classification models. The classification model can be expressed as follows:

ŷ =

{
1 if wTx ≥ γ
0 otherwise

, where ŷ is the estimated class label, w is the weight vector, x is the feature

vector, and γ is the threshold that determines the operating point of the classifier. The receiver
operating characteristics is determined by γ. For logistic regression, the model can be expressed
as: Pr [y = 1|x,w] = σ(wTx)), where σ(z) = 1/(1 + e−z).

Estimation problem: The problem can be formulated as follows. Given the training data

D =
{

(xi, y
1
i , .., y

R
i )
}N
i=1

of N instances and R annotators, the goal is to estimate the sensitivity

α =
[
α1, .., αR

]
, the specificity β =

[
β1, .., βR

]
, and the ground truth y1, .., yN .

To solve this problem, [11] propose two approaches; the maximum likelihood estimator (MLE)
and the MAP. We focus on the MLE approach.

Maximum likelihood estimator (MLE): With the assumption that the N training instances
are sampled independently, the likelihood can be expressed by:

Pr [D|θ] =

N∏
i=1

Pr
[
y1i , .., y

R
i |xi, θ

]
,

where θ = {w,α, β} are the parameters.
Using the graphical model in Figure 1, the likelihood can be decomposed into:

Pr [D|θ] =

N∏
i=1

{
Pr
[
y1i , .., y

R
i |yi = 1, α

]
× Pr [yi = 1|xi, w] + Pr

[
y1i , .., y

R
i |yi = 0, β

]
× Pr [yi = 0|xi, w]

}
.

Furthermore, the annotators are independent given the true label so:

Pr
[
y1i , .., y

R
i |yi = 1, α

]
=
∏R

r=1 Pr [yri |yi = 1, αr] =
∏R

r=1

[
[αr]

yr
i [1− αr]

1−yr
i

]
Similarly,

Pr
[
y1i , .., y

R
i |yi = 0, β

]
=
∏R

r=1 Pr [yri |yi = 0, βr] =
∏R

r=1

[
[βr]

1−yr
i [1− βr]

yr
i

]
.

EM algorithm: The parameter and label estimation is performed by an Expectation Max-
imization (EM) algorithm that iterates between estimating the ground truth and then finding
the model parameters. The details of the algorithm are provided in [11]. The parameters are
initialized using majority voting. The EM algorithm iterates between:

1. E-step: estimate the true labels µi = Pr
[
yi = 1|y1i , .., yRi , xi, θ

]
.

2. M-step: Using the estimates of the true labels, find the MLE parameters θ.

The detials of the derivation are provided in the paper.
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3.3 Approach proposed by Yan et.al[19]

As explained in section 3.2, [11] assumed that the expert reliability is independent of the input
instance. The work in [19] relaxes this assumption. It takes into account that some annotators
are better at labeling some types of data points. Another difference is that [19] assumes that the
performance of each annotator is symmetric for positive and negative examples so α = β = η.

The graphical model that represents this approach is presented in Figure 2. It can be noticed
in this figure that there is an edge from x to yr which was not present in Figure 1. This edge
models the dependence of the annotated labels on the input instance. This paper adopts two
choices, namely the Bernoulli model and the Gaussian model for the probability distribution
whereas it uses the logistic regression model as the classification model.

Fig. 2. Plate representation of the approach in [19]
.

Bernoulli model: This is similar to the model presented in section 3.2 except for the changes
described above. It can be formulated as follows:

Pr
[
y
(r)
i |xi, yi

]
= [1− ηr(xi)]

|yr
i−yi| [ηr(xi)]

1−|yr
i−yi|,

where η(xi) is a logistic function given by: η(xi) = 1/(1 + e−(u
r)T xi) and ur is the weight vector

for the rth annotator.

Gaussian model: This model represents the dependence of the labels on the input using a

Gaussian distribution as follows: Pr
[
y
(r)
i |xi, yi

]
= N (y

(r)
i ; yi, σ(xi)), where σ(xi) represents the

variance of the distribution given by: σ(xi) = 1/(1 + e−(u
r)T xi) and ur is the weight vector for

the rth annotator. This model can represent the performance of different annotators on different
input instances. For example, large σ(xi) represents high uncertainty on this instance.

Maximum likelihood estimator (MLE): As in [11], the MLE was used to estimate the
parameters θ = {ut, wt}. This is done by maximizing the likelihood function which can be
derived like in the previous subsection.

EM algorithm: This is similar to [11] which uses the EM approach to solve this problem. The
difference in this paper is in the update rules which depends on the choice of the probability
distributions. For the Gaussian and the Bernoulli models, there are no closed-form solution for
this problems. So the authors used the LBFGS quasi-Newton method. A detailed derivation is
provided in the paper.
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3.4 Approach proposed by Rodrigues et.al[12]

In [12], the authors argue that the use of ground truth labels as latent variables is inefficient in
cases where the number of classes is large. Since we need to marginalize the latent variables out
of the likelihood, for applications like Part of Speech Tagging (POS), Named Entity Recognition
(NER), the number of possible label sequences grows exponentially with the length of the input
and hence it becomes intractable to marginalize over the output space. Another problem with
using ground truth labels as latent variables is the explosion of the number of parameters which
needs to be stored. For example for K classes, we need to store the probability P (yri |yi) for each
annotator r and for each class i. Thus we need to store K×K parameters for each annotator. The
number of parameters become very large as K increases and this often leads to overfitting. To
handle this problem, the authors propose a formulation which models the annotator accuracies
as latent variables.

Fig. 3. Plate model for formulation considering annotator accuracies as latent variables

The authors introduce the variable zri which in this case is a binary random variable whose
value indicates whether the rth annotator labeled the ith instance correctly or not. Hence zri ∼
Bernoulliπr, where πr denotes the annotator accuracy. The plate model for this formulation is
given in Figure 3. As explained before, xi denotes the features for the ith instance and yri denotes
the label assigned by annotator r to instance i. Similar to [11], the latent variable annotator
accuracy in this case does not depend on the characteristics of the input instance being labeled
(i.e. there is no arc from xi to zri . If for a particular instance i, an annotator r has zri = 0, the
label assigned to i by r is given by a random model Prand(yri = k|xi).

Maximum Likelihood Estimator (MLE): The likelihood function for this case is defined
in equation 2

p(D,Z|θ) =

N∏
i=1

R∏
i=1

p(zRi=1|πr)(p(yri |xi, zri ,w) (2)

Here θ = { π, w } represent the model parameters. π is the vector of annotator accuracies
whereas w represent the weights of the classifier. In this case too, logistic regression is used as
the classifier. The likelihood can be further simplified to equation 3.

p(D,Z|θ) =

N∏
i=1

R∏
i=1

(πrpLogReg(yri |xi,w) + (1− πr)prand(yri |xi)) (3)

In this equation, pLogReg(yri |xi,w) is the output of the logistic regression classifier with weights
w. For simplicity, the authors use prand(yri |xi) = 1

k which corresponds to the intuition that
if the annotator misclassifies a particular instance, the label assigned to it follows a uniform
distribution.
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EM algorithm: As in [11], the authors use Expectation Maximization to find the MLE for
the likelihood function defined in equation 3. We skip the details of the EM derivation for this
problem. The interested reader is advised to look into [12] for a detailed derivation.

4 Comparative experimental results

In this section, we present three experiments to compare the various approaches - simple majority
voting baselines and the three approaches presented in [11,19,12].

4.1 Comparison 1: Between Raykar’s approach and Majority Voting

This experiment uses a data set for digital mammography which is a screening tool that can
detect breast cancer. The goal is to classify abnormal areas (lesions) into potentially malignant
(1) or not (0), given a set of descriptive morphological features for a region on a image. The
ground truth (whether the lesion is cancer or not) is obtained from biopsy. The ground truth
was used to verify the results and to compare the conventional classifier with the proposed one.
The dataset is available through [9]. It contains 497 positive and 1618 negative examples. Each
instance is described by a set of 27 morphological features. The annotated labels were simulated
according to αr and βr. This experiment consists of two trials as follows:

1. This trial simulated 5 radiologists with α = [0.9, 0.8, 0.57, 0.6, 0.55] and
β = [0.95, 0.85, 0.62, 0.65, 0.58].

2. This trial simulated 8 radiologists with only 1 expert (large value for α and β).

The paper compares the performance of the proposed algorithm with:

1. A classifier trained using the biopsy proved ground truth.
2. A classifier trained using majority-voting labels.

The results for the comparison are presented in Figures 4, 5, and 6. The comparison is based
on the ROC curve. Figures 4 presents the results for the first trial. It shows that the method
proposed in [11]is almost as good as that which uses the true ground truth labels and outperforms
majority voting.

Fig. 4. Comparative ROC curves for digital mammography with 5 simulated radiologists
.
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For the second trial, the results are presented in Figure 5. The figure shows the ROC curve
for the estimated true labels. We see that the proposed method is better than the majority
voting. This figure presents the estimate for specificity and sensitivity for each of the simulated
radiologists. The estimates from the proposed methods are more accurate than the ones estimated
using majority voting. This experiment shows the effectiveness of the proposed method, especially
when there are only a few experts.

Fig. 5. Comparative ROC curves for digital mammography with 8 radiologists. The end of the dashed
blue line shows the estimates of the sensitivity and specificity obtained from the majority voting algo-
rithm. The end of the solid red line shows the estimates from the proposed method. The ellipse denotes
one standard deviation

.

4.2 Comparison 2: Between Raykar’s approach and Smythe’s decoupled
estimation

Figure 6 presents a comparison between the proposed method and the decoupled method pro-
posed in [14] which first estimates the ground truth and then uses the probabilistic ground truth
labels to train the classifier. This comparison uses the same digital mammography dataset with
8 simulated radiologists as described previously.

4.3 Comparison 3: Between Yan’s and Raykar’s approaches

This experiment was presented in [19]. It compares approaches used in [11] and [19]. As in
section 4.1, the experiment uses a real data set for digital mammography. The data were labeled
by three expert radiologists. Moreover, the ground truth was obtained through biopsy. The data
contains 28 positive examples and 47 negative examples, and each instance is described by 8
morphological features. The data set was divided into training set (40 percent) and testing set
(60 percent). Figure 7 presents the results for this experiment. The figure compares the following
approaches:

1. M.L.-Original: The algorithm proposed in [11].
2. M.L.: The approach proposed in [19] with the following variations of the probability distri-

butions:
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Fig. 6. Comparative ROC curves for [11] and the decoupled estimation in [14] for digital mammography
.

– M.L.-Bernoulli(x): The approach described in Section 3.3
– M.L.-Gaussian(x): The approach described in Section 3.3

3. L.R.-Majority: logistic regression classifier using the majority vote as the true label.
4. L.R.-Annotatorr: logistic regression classifier using the labels from the rth expert as the true

label.
5. L.R.-true label: logistic regression classifier using the true label.
6. L.R.-Concatenation: This model was not clear from the paper.

The results shows that the algorithm proposed in [19] provides improvements over the one
in [11]. This can be attributed to relaxation of the independence assumption in [11].

4.4 Comparison 4: Between Rodrigues’s and Raykar’s approaches

This subsection presents comparative results between the approach adopted in [11](Raykar)
and [12] (MA - LR). Rodrigues et.al also compare against two baselines - against Soft Majority
Voting (MVsoft) which trains the logistic regression classifier with the soft probabilistic labels
obtained by the voting process and against Hard Majority Voting(MVhard) which trains the
logistic regression classifier with deterministic labels obtained from majority voting.

The algorithms are compared on datasets from the UCI repository. Since these datasets
contain only true labels for the training set, the authors simulate multiple annotators. To obtain
the estimate for each annotator for each instance, the label for that instance is obtained by
flipping the true label with a probability of p(flip). This simulates an annotator with an average
accuracy of 1− p(flip). Since all the annotators do not label all instances, the authors introduce
p(label) which represents the fraction of instances in the training set labeled by the annotators.
We show two of these simulated results - on the annealing dataset (798 instances, 38 features, 6
classes) and the ionosphere dataset (351 instances, 34 feature, 2 classes).

As can be seen from figures 8 and 9, the approach proposed by Rodrigues does as good
as Raykar’s approach when the number of classes is small (2 in the case of the Ionosphere
dataset), whereas it dominates Raykar’s approach as the number of classes increases to 6 in
annealing dataset. This can be explained by the possible overfitting because of the large number
of parameters in Raykar’s approach. Rodrigues also provide comparative results on sentiment
polarity using the dataset introduced in [10] and the music genre classification dataset introduced
in [17]. The approach of Rodrigues et.al does better than Raykar’s on such real world datasets
as well.
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L.R.−Annotator5 AUC: 0.64

Figure 3: R.O.C. comparison of multi-labeler methods
for UCI datasets Ionosphere and Housing.

Since we have 5 doctor labels but no golden ground-
truth (biopsy), we will assume that the majority vote
of the 5 doctors are a fair approximation to the true
labels. For this experiment we proceeded as follows:
after training, we used our model to pick the best la-
beler for each training data point. Then, we trained
a simple logistic regression model using the suggested
label. We compared our two proposed models (M.L.-
Gaussian(x) and M.L.-Bernoulli(x)) against a
baseline model where for each training data point the
corresponding labeler is picked randomly among the
five available labelers (Random selection). Fig-
ure 4 shows the corresponding ROCs for this exper-
iment. Note that when using the annotator’s labels
suggested by our model, a simple logistic regression
method clearly outperforms a model trained using la-
bels coming from a labeler picked at random among
the five labels available form the annotators. This
model has an interesting potential in a medical setting
where annotating cases is expensive. The proposed
model can rank experts by case and can help decide
which annotator is more apt to label a given new case.

Part III: Performance on the breast dataset

CAD algorithms for mammography are designed to de-
tect suspicious findings in a digitized mammographic
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Figure 4: ROCs of the three logistic regression mod-
els for the cardiac data: M.L.-Gaussian(x), M.L.-
Bernoulli(x) and Random selection.

image with a high sensitivity. Given a set of descrip-
tive morphological features for a region in an image,
the task is to predict whether it is potentially malig-
nant or not. We use a set of mammograms collected
from hospitals that generate a biopsy-proven (which
provides the golden ground-truth) dataset containing
28 positive and 47 negative examples. Each instance
is described by a set of 8 morphological features and
labeled independently by three doctors. Results are
presented in Figure 5. Note that the results are simi-
lar to the ones obtained in part I. Our proposed M.L.
methods again significantly outperform the baseline
methods and each individual annotator even when us-
ing a reduced set of training data (only 40% in this
case).
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L.R.−Annotator2 AUC: 0.69
L.R.−Annotator3 AUC: 0.78
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Figure 5: Results for the breast dataset

5 Conclusion

Traditionally, supervised learning relies on a single la-
beler playing the role of a teacher providing the neces-
sary supervision. However, the increasing availability

Fig. 7. Results for experiment 2 using breast cancer dataset [11]
.

5 Conclusion and Future research directions

In this paper, we presented some applications and scenarios for which learning from annotators
becomes important. We present a survey of the field focusing particularly on supervised learning
approaches which do not assume any prior knowledge on relation between annotators. These
approaches are important in a variety of applications, such as NLP, computer vision, health
care where the task can be crowd-sourced. We then presented the precise mathematical details
of three of these approaches namely those proposed in [11], [19] and [12]. We compared their
assumptions, mathematical formulations and results on certain benchmark datasets.

All previous literature assumes independence between the various annotators or assumes that
this relation is known a priori. It will be interesting to model these relations and also learn these
from the data. In fact Raykar et.al suggests a way of doing this. Rodrigues et.al proposes to
extend their model using annotator accuracies as latent variables by modeling the dependence
of these accuracies on the input instance as in [19]. We can integrate this model by also taking
the dependence of these accuracies on time as in [4]. These extensions represent the most general
framework for learning from multiple annotators. Another area which has not been explored is
the dependence of the precision-recall on the classifier used. All the approaches described use
logistic regression with the exception of [5] which uses Gaussian process regression. It will also
be interesting to explore the Bayesian optimization in this context. Raykar et.al puts a prior
on the weights and annotator accuracies and derive the maximum a-posteriori (MAP) estimate.
The precision-recall using the Bayesian approach is much higher than the MLE estimate as was
shown in experiments in [12]. It will be useful to explore the Bayesian approach for other models
as well. We can also do the full Bayesian optimization rather than just the MAP estimate. This
will give us appropriate confidence intervals for our estimate which may prove useful in sensitive
applications such as medical diagnostics.
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Fig. 8. 5 simulated annotators with p(flip) = [0.1, 0.3, 0.5, 0.6, 0.7] Annealing Dataset (a) RMSE
between the estimated and true annotator accuracies. (b) Training set accuracies (c) Test set accuracies

Fig. 9. 5 simulated annotators with p(flip) = [0.1, 0.3, 0.5, 0.6, 0.7] Ionosphere Dataset (a) RMSE
between the estimated and true annotator accuracies. (b) Training set accuracies (c) Test set accuracies
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