
CMPT 409/981: Optimization for Machine Learning

Lecture 9

Sharan Vaswani

October 3, 2024



Dealing with Constrained Domains

• We have characterized the convergence of algorithms on smooth, (strongly)-convex functions
when the domain was Rd i.e. the optimization was “unconstrained”.

Numerous applications require optimizing functions over constrained domains. Examples:
In reinforcement learning, finding the optimal policy in an MDP is equivalent to a linear
programming with “flow” constraints.
In supervised machine learning or operations research, the model parameters need to be
optimized such that the resulting function is convex or monotonic in the input.
The experts problem in online learning is used for forecasting, and involves optimizing over
the probability simplex.

Projected GD: Modify GD to solve problems such as minw∈C f (w) where f is a convex function
and C is a convex set.

wk+1 = ΠC [wk − η∇f (wk)] ,

where, ΠC[x ] = argminw∈C
1
2 ∥w − x∥2 is the Euclidean projection onto the convex set C.

1



Dealing with Constrained Domains

Q: (i) Is ΠC[x ] unique for convex sets? (ii) For non-convex sets?

Ans: (i) Yes, since we are minimizing a strongly-convex function over a convex set. (ii) Not
necessarily, for example, when the set is the boundary of a circle and we are projecting the centre.

Q: For x ∈ Rd , compute the Euclidean projection onto the ℓ2-ball: B(0, 1) = {w | ∥w∥2
2 ≤ 1}?

Ans: We need to solve y = min∥w∥2
2≤1

1
2 ∥w − x∥2

2. If ∥x∥2
2 ≤ 1, x ∈ B(0, 1), and ΠB(0,1)[x ] = x .

If ∥x∥2
2 > 1, then the projection will result in a point on the boundary of B and have unit length.

Consider the set of candidate points of unit length: Z = {z | ∥z∥2
2 = 1}.

argmin
z∈Z

1
2
∥z − x∥2

2 = argmin
z∈Z

[
1 + ∥x∥2

2
− ⟨z , x⟩

]
= argmax

z∈Z
⟨z , x⟩ = x

∥x∥2
2

Hence, if ∥x∥2
2 > 1, then ΠB[x ] =

x
∥x∥2

2
. Putting both cases together, ΠB[x ] =

x
max{1,∥x∥2

2}
.

Can and should be formally done using Lagrange multipliers.

2



Dealing with Constrained Domains

• For convex optimization over unconstrained domains, we know that the minimizer can be
characterized by its gradient norm i.e. if w∗ is a minimizer, then, ∇f (w∗) = 0.

Optimality conditions: For constrained convex domains, if f is convex and
w∗ ∈ argminw∈C f (w), then ∀w ∈ C,

⟨∇f (w∗),w − w∗⟩ ≥ 0

i.e. if we are at the optimal, either the gradient is zero (if w∗ is inside C) or moving in the
negative direction of the gradient will push us out of C (if w∗ is at the boundary of C).

• For the Euclidean projection, if y := ΠC[x ] = argminw∈C
1
2 ∥w − x∥2, then, using the optimal

conditions above, ∀w ∈ C,
⟨x − y ,w − y⟩ ≤ 0

i.e. the angle between the rays y → x and y → w for all w ∈ C is greater than 90◦.

Q: For convex set C, if w∗ = argminw∈C f (w), what is ΠC[w
∗]?

Ans: w∗ since w∗ ∈ C 3



Dealing with Constrained Domains

Claim: Projections onto a convex set are non-expansive operations i.e. for all x1, x2, if
y1 := ΠC[x1] and y2 := ΠC[x2], then, ∥y1 − y2∥ ≤ ∥x1 − x2∥.

Proof: Recall from the last slide, that for the Euclidean projection, y = ΠC[x ],
⟨x − y ,w − y⟩ ≤ 0 for all w ∈ C. Hence,

⟨x1 − y1,w − y1⟩ ≤ 0 =⇒ ⟨x1 − y1, y2 − y1⟩ ≤ 0 (Set w = y2)

⟨x2 − y2,w − y2⟩ ≤ 0 =⇒ ⟨x2 − y2, y1 − y2⟩ ≤ 0 (Set w = y1)

Adding the two equations,

⟨x2 − y2, y1 − y2⟩+ ⟨x1 − y1, y2 − y1⟩ ≤ 0 =⇒ ⟨x2 − x1 + y1 − y2, y1 − y2⟩ ≤ 0

=⇒ ⟨y1 − y2, y1 − y2⟩ ≤ ⟨x1 − x2, y1 − y2⟩ =⇒ ∥y1 − y2∥2 ≤ ∥x1 − x2∥ ∥y1 − y2∥
(Cauchy Schwartz)

=⇒ ∥y1 − y2∥ ≤ ∥x1 − x2∥

4



Projected GD for Smooth, Strongly-Convex Functions

• Consider using projected GD: wk+1 = ΠC[wk − η∇f (wk)] to solve the problem: minw∈C f (w),
where f is an L-smooth, µ-strongly convex function and C is a convex set.

• In Assignment 2, you need to prove that: w∗ is a fixed point of the projected GD update i.e,
for any η ≥ 0, w∗ = ΠC [w

∗ − η∇f (w∗)].

• Using this property and the non-expansiveness of projections with x1 = w∗ − η∇f (w∗),
x2 = wk − η∇f (wk), y1 = w∗, y2 = wk+1,

∥wk+1 − w∗∥2 ≤ ∥wk − η∇f (wk)− w∗ + η∇f (w∗)∥2

With this change, the proof proceeds as before. Using the optimality condition for w∗,
smoothness and strong-convexity (similar to Lecture 4), we can derive the same linear rate (Need
to prove in Assignment 2) .

• We can also redo the proof for smooth, convex functions and get the same O (1/T)

convergence rate. Hence, projected GD is a good option for minimizing convex functions over
convex sets when the projection operation is computationally cheap.

5



Questions?

5



Optimization Zoo

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent Θ(1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Nesterov Acceleration - Θ(1/
√
ϵ) Θ (

√
κ log (1/ϵ))

Table 1: Using the first-order oracle that returns ∇f (w)

Today, we will use a stochastic first-order oracle that is less expensive, but returns a noisy
estimate of the gradient.

6



Stochastic Gradient Descent

• In machine learning, we typically care about minimizing the average of loss functions,

f (w) =
1
n

n∑
i=1

fi (w) .

i.e. our model should perform well on average across examples.

Examples: In supervised learning using a dataset of n input-output pairs {Xi , yi}ni=1,

f (w) =
1
n

n∑
i=1

1
2
(⟨Xi ,w⟩ − yi )

2 (Linear Regression)

f (w) =
1
n

n∑
i=1

log (1 + exp (−yi ⟨Xi ,w⟩)) (Logistic Regression)

• Gradient-based methods on such functions require computing ∇f (w) = 1
n

∑n
i=1 ∇fi (w)

which is an O(n) operation. Typically, n is large in practice and hence computing the gradient
across the whole datasets is expensive.

7



Stochastic Gradient Descent

• Stochastic Gradient Descent (SGD) only requires computing the gradient of one loss function
in each iteration. At iteration k , SGD samples loss function ik (typically uniformly) randomly:

wk+1 = wk − ηk∇fik(wk) .

• Unlike GD, each iteration of SGD is cheap and does not
depend on n.

• Unbiasedness: Since ik is picked uniformly at random, ∇fik(w) is unbiased,

E[∇fik(w)] =
n∑

i=1

1
n
∇fi (w) =

1
n

n∑
i=1

∇fi (w) = ∇f (w) .

• We will assume that f (w) is a finite-sum of n points only for convenience. In general, all the
results hold when using a stochastic first-order oracle that returns ∇f (w , ξ) such that
Eξ[∇f (w , ξ)] = ∇f (w).

8



Stochastic Gradient Descent

• Bounded variance: In order to analyze the convergence of SGD, we need to assume that the
variance (noise) in the stochastic gradients (technically, this is the trace of the covariance matrix
of the stochastic gradients) is bounded for all w , i.e. for σ2 < ∞,

Ei ∥∇fi (w)−∇f (w)∥2 ≤ σ2 .

• For SGD to converge to the minimizer, the step-size ηk
needs to decrease with k .
• The schedule according to which ηk needs to decrease
depends on the properties of f .
• Example: For smooth convex functions, ηk = O (1/

√
k),

whereas for smooth, strongly-convex functions,
ηk = O (1/k).

9



Optimization Zoo

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent O (1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Stochastic Gradient Descent Θ(1/ϵ2) Θ (1/ϵ2) Θ (1/ϵ)

Table 2: Comparing the convergence rates of GD and SGD

10



Questions?

10



Minimizing smooth, non-convex functions using SGD

Claim: For L-smooth functions lower-bounded by f ∗ and with bounded noise σ2, T iterations of
stochastic gradient descent with ηk = 1

L
1√
k+1

returns an iterate ŵ such that,

E[∥∇f (ŵ)∥2] ≤ 2L [f (w0)− f ∗]√
T

+
σ2 (1 + log(T ))√

T
.Proof: Using the L-smoothness of f with x = wk and y = wk+1 = wk − ηk∇fik(wk),

f (wk+1) ≤ f (wk) + ⟨∇f (wk),−ηk∇fik(wk)⟩+
L

2
η2
k ∥∇fik(wk)∥2

Taking expectation w.r.t ik on both sides,

E[f (wk+1)] ≤ f (wk) + E [⟨∇f (wk),−ηk∇fik(wk)⟩] +
L

2
E
[
η2
k ∥∇fik(wk)∥2

]
= f (wk) + ⟨∇f (wk),−ηkE [∇fik(wk)⟩] +

L

2
η2
k E

[
∥∇fik(wk)∥2

]
(Since ηk is independent of ik)

=⇒ E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2
E
[
∥∇fik(wk)∥2

]
(Unbiasedness) 11



Minimizing smooth, non-convex functions using SGD

Recall that E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2 E
[
∥∇fik(wk)∥2

]
.

E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2
E
[
∥∇fik(wk)−∇f (wk) +∇f (wk)∥2

]
= f (wk)− ηk ∥∇f (wk)∥2 +

Lη2
k

2
E
[
∥∇fik(wk)−∇f (wk)∥2

]
+

Lη2
k

2
E
[
∥∇f (wk)∥2

]
(Since E[⟨∇f (wk),∇fik(wk)−∇f (wk)⟩] = 0)

= f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2
E
[
∥∇f (wk)∥2

]
+

Lσ2η2
k

2
(Using the bounded variance assumption)

Setting ηk ≤ 1
L for all k ,

=⇒ E[f (wk+1)] ≤ f (wk)−
ηk
2

∥∇f (wk)∥2 +
Lσ2η2

k

2

12



Minimizing smooth, non-convex functions using SGD

Recall that E[f (wk+1)] ≤ f (wk)− ηk

2 ∥∇f (wk)∥2 +
Lσ2η2

k

2 .

=⇒ ηmin

2
∥∇f (wk)∥2 ≤ E[f (wk)− f (wk+1)] +

Lσ2η2
k

2
(ηmin := min{k=0,...,T−1} ηk)

Taking expectation w.r.t the randomness from iterations i = 0 to k − 1,

=⇒ ηmin

2
E
[
∥∇f (wk)∥2

]
≤ E[f (wk)− f (wk+1)] +

Lσ2η2
k

2

Summing from k = 0 to T − 1,

ηmin

2

T−1∑
k=0

E
[
∥∇f (wk)∥2

]
≤

T−1∑
k=0

E[f (wk)− f (wk+1)] +
Lσ2η2

k

2

=⇒ ηmin

2

T−1∑
k=0

E
[
∥∇f (wk)∥2

]
≤ E[f (w0)− f (wT )] +

Lσ2

2

T−1∑
k=0

η2
k

13



Minimizing smooth, non-convex functions using SGD

Recall that ηmin

2

∑T−1
k=0 E

[
∥∇f (wk)∥2

]
≤ E[f (w0)− f (wT )] +

Lσ2

2

∑T−1
k=0 η2

k . Dividing by T ,

ηmin

2

∑T−1
k=0 E

[
∥∇f (wk)∥2

]
T

≤ E[f (w0)− f (wT )]

T
+

Lσ2

2T

T−1∑
k=0

η2
k

=⇒ min
k=0,...,T−1

E
[
∥∇f (wk)∥2

]
≤ 2E[f (w0)− f ∗]

ηmin T
+

Lσ2

ηmin T

T−1∑
k=0

η2
k

Define ŵ := argmink∈{0,1,...,T−1} E[∥∇f (wk)∥2] and choosing ηk = 1
L

1√
k+1

=⇒ E[∥∇f (ŵ)∥2] ≤ 2E[f (w0)− f ∗]

ηmin T
+

Lσ2

ηmin T

T−1∑
k=0

η2
k

=⇒ E[∥∇f (ŵ)∥2] ≤ 2LE[f (w0)− f ∗]√
T

+
σ2
√
T

T∑
k=1

1
k

14



Minimizing smooth, non-convex functions using SGD

Recall that E[∥∇f (ŵ)∥2] ≤ 2LE[f (w0)−f ∗]√
T

+ σ2
√
T

∑T
k=1

1
k . Since

∑T
k=1

1
k ≤ 1 + log(T ),

=⇒ E[∥∇f (ŵ)∥2] ≤ 2L [f (w0)− f ∗]√
T

+
σ2 (1 + log(T ))√

T

• Hence, compared to GD that has an O (1/T) rate of convergence, SGD has an O (1/
√
T)

convergence rate, but each iteration of SGD is n times faster.

• Can modify the proof such that we get a guarantee for a random iterate j i.e. run SGD for T
iterations, randomly sample an iterate and in expectation (over the iterations), it will have small
gradient norm in expectation (over the randomness in each iteration).

15



Minimizing smooth, non-convex functions using SGD

• Typically in practice, we use a mini-batch of size b in the SGD update. At iteration k , sample
a batch Bk of examples:

wk+1 = wk − ηk

[
1
b

∑
i∈Bk

∇fi (wk)

]

• The examples in the batch can be sampled independently uniformly at random without
replacement, but other sampling schemes also work.

• The gradients can be computed in parallel (e.g. on a GPU) and the resulting update is efficient.
• Theoretically, the same proof works, but the “effective” noise is reduced to σ2

b = n−b
n b σ2.

Lower Bound: Without additional assumptions, for smooth functions, no first-order algorithm
using the stochastic gradient oracle can obtain a (dimension-independent) convergence rate
faster than Ω (1/

√
T).

Hence, SGD is optimal for minimizing general smooth, non-convex functions.

16



Questions?

16


