CMPT 409/981: Optimization for Machine Learning Lecture 9

Sharan Vaswani

October 3, 2024

Dealing with Constrained Domains

• We have characterized the convergence of algorithms on smooth, (strongly)-convex functions when the domain was \mathbb{R}^d i.e. the optimization was "unconstrained".

Numerous applications require optimizing functions over constrained domains. Examples:

- In reinforcement learning, finding the optimal policy in an MDP is equivalent to a linear programming with "flow" constraints.
- In supervised machine learning or operations research, the model parameters need to be optimized such that the resulting function is convex or monotonic in the input.
- The experts problem in online learning is used for forecasting, and involves optimizing over the probability simplex.

Projected GD: Modify GD to solve problems such as $\min_{w \in C} f(w)$ where f is a convex function and C is a convex set.

$$w_{k+1} = \Pi_{\mathcal{C}} \left[w_k - \eta \nabla f(w_k) \right] \,,$$

where, $\Pi_{\mathcal{C}}[x] = \arg \min_{w \in \mathcal{C}} \frac{1}{2} \|w - x\|^2$ is the Euclidean projection onto the convex set \mathcal{C} .

Q: (i) Is $\Pi_{\mathcal{C}}[x]$ unique for convex sets? (ii) For non-convex sets?

Ans: (i) Yes, since we are minimizing a strongly-convex function over a convex set. (ii) Not necessarily, for example, when the set is the boundary of a circle and we are projecting the centre.

Q: For $x \in \mathbb{R}^d$, compute the Euclidean projection onto the ℓ_2 -ball: $\mathcal{B}(0,1) = \{w | \|w\|_2^2 \le 1\}$? Ans: We need to solve $y = \min_{\|w\|_2^2 \le 1} \frac{1}{2} \|w - x\|_2^2$. If $\|x\|_2^2 \le 1$, $x \in \mathcal{B}(0,1)$, and $\Pi_{\mathcal{B}(0,1)}[x] = x$. If $\|x\|_2^2 > 1$, then the projection will result in a point on the boundary of \mathcal{B} and have unit length. Consider the set of candidate points of unit length: $Z = \{z \mid \|z\|_2^2 = 1\}$.

$$\arg\min_{z \in Z} \frac{1}{2} ||z - x||_{2}^{2} = \arg\min_{z \in Z} \left[\frac{1 + ||x||^{2}}{2} - \langle z, x \rangle \right] = \arg\max_{z \in Z} \langle z, x \rangle = \frac{x}{||x||_{2}^{2}}$$

Hence, if $||x||_2^2 > 1$, then $\Pi_{\mathcal{B}}[x] = \frac{x}{||x||_2^2}$. Putting both cases together, $\Pi_{\mathcal{B}}[x] = \frac{x}{\max\{1, ||x||_2^2\}}$. Can and should be formally done using Lagrange multipliers.

Dealing with Constrained Domains

• For convex optimization over unconstrained domains, we know that the minimizer can be characterized by its gradient norm i.e. if w^* is a minimizer, then, $\nabla f(w^*) = 0$.

Optimality conditions: For constrained convex domains, if f is convex and $w^* \in \arg\min_{w \in C} f(w)$, then $\forall w \in C$,

$$\langle
abla f(w^*), w - w^*
angle \geq 0$$

i.e. if we are at the optimal, either the gradient is zero (if w^* is inside C) or moving in the negative direction of the gradient will push us out of C (if w^* is at the boundary of C).

• For the Euclidean projection, if $y := \prod_{\mathcal{C}} [x] = \arg \min_{w \in \mathcal{C}} \frac{1}{2} \|w - x\|^2$, then, using the optimal conditions above, $\forall w \in \mathcal{C}$,

$$\langle x-y,w-y\rangle \leq 0$$

i.e. the angle between the rays $y \to x$ and $y \to w$ for all $w \in C$ is greater than 90°.

Q: For convex set C, if $w^* = \arg \min_{w \in C} f(w)$, what is $\Pi_C[w^*]$? Ans: w^* since $w^* \in C$

Dealing with Constrained Domains

Claim: Projections onto a convex set are non-expansive operations i.e. for all x_1, x_2 , if $y_1 := \prod_{\mathcal{C}} [x_1]$ and $y_2 := \prod_{\mathcal{C}} [x_2]$, then, $||y_1 - y_2|| \le ||x_1 - x_2||$.

Proof: Recall from the last slide, that for the Euclidean projection, $y = \prod_{\mathcal{C}} [x]$, $\langle x - y, w - y \rangle \leq 0$ for all $w \in \mathcal{C}$. Hence,

$$\langle x_1 - y_1, w - y_1 \rangle \le 0 \implies \langle x_1 - y_1, y_2 - y_1 \rangle \le 0$$
 (Set $w = y_2$)
$$\langle x_2 - y_2, w - y_2 \rangle \le 0 \implies \langle x_2 - y_2, y_1 - y_2 \rangle \le 0$$
 (Set $w = y_1$)

Adding the two equations,

 $\implies \|y_1-y_2\| \le \|x_1-x_2\|$

Projected GD for Smooth, Strongly-Convex Functions

• Consider using projected GD: $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta \nabla f(w_k)]$ to solve the problem: $\min_{w \in \mathcal{C}} f(w)$, where f is an L-smooth, μ -strongly convex function and \mathcal{C} is a convex set.

• In Assignment 2, you need to prove that: w^* is a fixed point of the projected GD update i.e, for any $\eta \ge 0$, $w^* = \prod_C [w^* - \eta \nabla f(w^*)]$.

• Using this property and the non-expansiveness of projections with $x_1 = w^* - \eta \nabla f(w^*)$, $x_2 = w_k - \eta \nabla f(w_k)$, $y_1 = w^*$, $y_2 = w_{k+1}$,

$$\|w_{k+1} - w^*\|^2 \le \|w_k - \eta \nabla f(w_k) - w^* + \eta \nabla f(w^*)\|^2$$

With this change, the proof proceeds as before. Using the optimality condition for w^* , smoothness and strong-convexity (similar to Lecture 4), we can derive the same linear rate (Need to prove in Assignment 2).

• We can also redo the proof for smooth, convex functions and get the same $O(1/\tau)$ convergence rate. Hence, projected GD is a good option for minimizing convex functions over convex sets when the projection operation is computationally cheap.

Questions?

Function class	<i>L</i> -smooth	<i>L</i> -smooth + convex	<i>L</i> -smooth + μ -strongly convex
Gradient Descent	$\Theta\left(1/\epsilon ight)$	$O\left(1/\epsilon ight)$	$O\left(\kappa \log\left(1/\epsilon ight) ight)$
Nesterov Acceleration	-	$\Theta\left(1/\sqrt{\epsilon} ight)$	$\Theta\left(\sqrt{\kappa}\log\left(1/\epsilon ight) ight)$

Table 1: Using the first-order oracle that returns $\nabla f(w)$

Today, we will use a stochastic first-order oracle that is less expensive, but returns a noisy estimate of the gradient.

Stochastic Gradient Descent

• In machine learning, we typically care about minimizing the average of loss functions,

$$f(w)=\frac{1}{n}\sum_{i=1}^n f_i(w).$$

i.e. our model should perform well on average across examples.

Examples: In supervised learning using a dataset of *n* input-output pairs $\{X_i, y_i\}_{i=1}^n$,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \left(\langle X_i, w \rangle - y_i \right)^2$$
 (Linear Regression)
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \langle X_i, w \rangle \right) \right)$$
 (Logistic Regression)

• Gradient-based methods on such functions require computing $\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w)$ which is an O(n) operation. Typically, *n* is large in practice and hence computing the gradient across the whole datasets is expensive.

Stochastic Gradient Descent

• Stochastic Gradient Descent (SGD) only requires computing the gradient of one loss function in each iteration. At iteration k, SGD samples loss function i_k (typically uniformly) randomly:

$$w_{k+1} = w_k - \eta_k \nabla f_{ik}(w_k).$$

• Unlike GD, each iteration of SGD is cheap and does not depend on *n*.

• **Unbiasedness**: Since i_k is picked uniformly at random, $\nabla f_{ik}(w)$ is unbiased,

$$\mathbb{E}[\nabla f_{ik}(w)] = \sum_{i=1}^n \frac{1}{n} \nabla f_i(w) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w).$$

• We will assume that f(w) is a finite-sum of n points only for convenience. In general, all the results hold when using a *stochastic first-order oracle* that returns $\nabla f(w, \xi)$ such that $\mathbb{E}_{\xi}[\nabla f(w, \xi)] = \nabla f(w)$.

• **Bounded variance**: In order to analyze the convergence of SGD, we need to assume that the variance (*noise*) in the stochastic gradients (technically, this is the trace of the covariance matrix of the stochastic gradients) is bounded for all w, i.e. for $\sigma^2 < \infty$,

$$\mathbb{E}_i \left\|\nabla f_i(w) - \nabla f(w)\right\|^2 \leq \sigma^2$$

• For SGD to converge to the minimizer, the step-size η_k needs to decrease with k.

• The schedule according to which η_k needs to decrease depends on the properties of f.

• *Example*: For smooth convex functions, $\eta_k = O(1/\sqrt{k})$, whereas for smooth, strongly-convex functions, $\eta_k = O(1/k)$.

- → Decreasing step-size SGD
- → Constant step-size SGD

▶ GD

Function class	<i>L</i> -smooth	L-smooth + convex	<i>L</i> -smooth + μ -strongly convex
Gradient Descent	$O\left(1/\epsilon ight)$	$O\left(1/\epsilon ight)$	$O\left(\kappa \log\left(1/\epsilon ight) ight)$
Stochastic Gradient Descent	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$

 Table 2: Comparing the convergence rates of GD and SGD

Questions?

Claim: For *L*-smooth functions lower-bounded by f^* and with bounded noise σ^2 , *T* iterations of stochastic gradient descent with $\eta_k = \frac{1}{L} \frac{1}{\sqrt{k+1}}$ returns an iterate \hat{w} such that,

$$\mathbb{E}[\left\|\nabla f(\hat{w})\right\|^2] \leq \frac{2L[f(w_0) - f^*]}{\sqrt{T}} + \frac{\sigma^2\left(1 + \log(T)\right)}{\sqrt{T}}$$

Proof: Using the *L*-smoothness of *f* with $x = w_k$ and $y = w_{k+1} = w_k - \eta_k \nabla f_{ik}(w_k)$,

$$f(w_{k+1}) \leq f(w_k) + \langle
abla f(w_k), -\eta_k
abla f_{ik}(w_k)
angle + rac{L}{2} \eta_k^2 \left\|
abla f_{ik}(w_k)
ight\|^2$$

Taking expectation w.r.t i_k on both sides,

$$\mathbb{E}[f(w_{k+1})] \leq f(w_k) + \mathbb{E}\left[\langle \nabla f(w_k), -\eta_k \nabla f_{ik}(w_k) \rangle\right] + \frac{L}{2} \mathbb{E}\left[\eta_k^2 \left\| \nabla f_{ik}(w_k) \right\|^2\right]$$
$$= f(w_k) + \langle \nabla f(w_k), -\eta_k \mathbb{E}\left[\nabla f_{ik}(w_k) \rangle\right] + \frac{L}{2} \eta_k^2 \mathbb{E}\left[\left\| \nabla f_{ik}(w_k) \right\|^2\right]$$
(Since η_k is independent of i_k)

$$\implies \mathbb{E}[f(w_{k+1})] \le f(w_k) - \eta_k \|\nabla f(w_k)\|^2 + \frac{L\eta_k^2}{2} \mathbb{E}\left[\|\nabla f_{ik}(w_k)\|^2\right] \qquad (\text{Unbiasedness})$$

Recall that
$$\mathbb{E}[f(w_{k+1})] \leq f(w_k) - \eta_k \left\| \nabla f(w_k) \right\|^2 + \frac{L\eta_k^2}{2} \mathbb{E}\left[\left\| \nabla f_{ik}(w_k) \right\|^2 \right]$$

$$\begin{split} [f(w_{k+1})] &\leq f(w_k) - \eta_k \left\| \nabla f(w_k) \right\|^2 + \frac{L\eta_k^2}{2} \mathbb{E} \left[\left\| \nabla f_{ik}(w_k) - \nabla f(w_k) + \nabla f(w_k) \right\|^2 \right] \\ &= f(w_k) - \eta_k \left\| \nabla f(w_k) \right\|^2 + \frac{L\eta_k^2}{2} \mathbb{E} \left[\left\| \nabla f_{ik}(w_k) - \nabla f(w_k) \right\|^2 \right] + \frac{L\eta_k^2}{2} \mathbb{E} \left[\left\| \nabla f(w_k) \right\|^2 \right] \\ &\quad (\text{Since } \mathbb{E} [\langle \nabla f(w_k), \nabla f_{ik}(w_k) - \nabla f(w_k) \rangle] = 0) \\ &= f(w_k) - \eta_k \left\| \nabla f(w_k) \right\|^2 + \frac{L\eta_k^2}{2} \mathbb{E} \left[\left\| \nabla f(w_k) \right\|^2 \right] + \frac{L\sigma^2 \eta_k^2}{2} \\ &\quad (\text{Using the bounded variance assumption}) \end{split}$$

Setting $\eta_k \leq \frac{1}{L}$ for all k,

Æ

$$\implies \mathbb{E}[f(w_{k+1})] \leq f(w_k) - \frac{\eta_k}{2} \|\nabla f(w_k)\|^2 + \frac{L\sigma^2 \eta_k^2}{2}$$

Recall that
$$\mathbb{E}[f(w_{k+1})] \le f(w_k) - \frac{\eta_k}{2} \|\nabla f(w_k)\|^2 + \frac{L\sigma^2 \eta_k^2}{2}.$$

 $\implies \frac{\eta_{\min}}{2} \|\nabla f(w_k)\|^2 \le \mathbb{E}[f(w_k) - f(w_{k+1})] + \frac{L\sigma^2 \eta_k^2}{2} \quad (\eta_{\min} := \min_{\{k=0,...,T-1\}} \eta_k)$

Taking expectation w.r.t the randomness from iterations i = 0 to k - 1,

$$\implies \frac{\eta_{\min}}{2} \mathbb{E}\left[\left\| \nabla f(w_k) \right\|^2 \right] \leq \mathbb{E}[f(w_k) - f(w_{k+1})] + \frac{L \sigma^2 \eta_k^2}{2}$$

Summing from k = 0 to T - 1,

$$\begin{split} \frac{\eta_{\min}}{2} \sum_{k=0}^{T-1} \mathbb{E}\left[\|\nabla f(w_k)\|^2 \right] &\leq \sum_{k=0}^{T-1} \mathbb{E}[f(w_k) - f(w_{k+1})] + \frac{L\sigma^2 \eta_k^2}{2} \\ \implies \frac{\eta_{\min}}{2} \sum_{k=0}^{T-1} \mathbb{E}\left[\|\nabla f(w_k)\|^2 \right] &\leq \mathbb{E}[f(w_0) - f(w_T)] + \frac{L\sigma^2}{2} \sum_{k=0}^{T-1} \eta_k^2 \end{split}$$

Recall that
$$\frac{\eta_{\min}}{2} \sum_{k=0}^{T-1} \mathbb{E} \left[\left\| \nabla f(w_k) \right\|^2 \right] \leq \mathbb{E}[f(w_0) - f(w_T)] + \frac{L\sigma^2}{2} \sum_{k=0}^{T-1} \eta_k^2$$
. Dividing by T ,

$$\frac{\eta_{\min}}{2} \frac{\sum_{k=0}^{T-1} \mathbb{E} \left[\left\| \nabla f(w_k) \right\|^2 \right]}{T} \leq \frac{\mathbb{E}[f(w_0) - f(w_T)]}{T} + \frac{L\sigma^2}{2T} \sum_{k=0}^{T-1} \eta_k^2$$

$$\implies \min_{k=0,\dots,T-1} \mathbb{E} \left[\left\| \nabla f(w_k) \right\|^2 \right] \leq \frac{2\mathbb{E}[f(w_0) - f^*]}{\eta_{\min} T} + \frac{L\sigma^2}{\eta_{\min} T} \sum_{k=0}^{T-1} \eta_k^2$$
Define $\hat{w} := \arg\min_{k \in \{0,1,\dots,T-1\}} \mathbb{E}[\left\| \nabla f(w_k) \right\|^2]$ and choosing $\eta_k = \frac{1}{L} \frac{1}{\sqrt{k+1}}$

$$\implies \mathbb{E}[\left\| \nabla f(\hat{w}) \right\|^2] \leq \frac{2\mathbb{E}[f(w_0) - f^*]}{\eta_{\min} T} + \frac{L\sigma^2}{\eta_{\min} T} \sum_{k=0}^{T-1} \eta_k^2$$

$$\implies \mathbb{E}[\left\| \nabla f(\hat{w}) \right\|^2] \leq \frac{2L\mathbb{E}[f(w_0) - f^*]}{\sqrt{T}} + \frac{\sigma^2}{\sqrt{T}} \sum_{k=1}^{T-1} \frac{1}{k}$$

Recall that
$$\mathbb{E}[\|\nabla f(\hat{w})\|^2] \leq \frac{2L\mathbb{E}[f(w_0)-f^*]}{\sqrt{T}} + \frac{\sigma^2}{\sqrt{T}} \sum_{k=1}^T \frac{1}{k}$$
. Since $\sum_{k=1}^T \frac{1}{k} \leq 1 + \log(T)$,
 $\implies \mathbb{E}[\|\nabla f(\hat{w})\|^2] \leq \frac{2L[f(w_0)-f^*]}{\sqrt{T}} + \frac{\sigma^2(1+\log(T))}{\sqrt{T}}$

• Hence, compared to GD that has an $O(1/\tau)$ rate of convergence, SGD has an $O(1/\sqrt{\tau})$ convergence rate, but each iteration of SGD is *n* times faster.

• Can modify the proof such that we get a guarantee for a random iterate j i.e. run SGD for T iterations, randomly sample an iterate and in expectation (over the iterations), it will have small gradient norm in expectation (over the randomness in each iteration).

• Typically in practice, we use a mini-batch of size b in the SGD update. At iteration k, sample a batch B_k of examples:

$$w_{k+1} = w_k - \eta_k \left[\frac{1}{b} \sum_{i \in B_k} \nabla f_i(w_k)
ight]$$

• The examples in the batch can be sampled independently uniformly at random without replacement, but other sampling schemes also work.

- \bullet The gradients can be computed in parallel (e.g. on a GPU) and the resulting update is efficient.
- Theoretically, the same proof works, but the "effective" noise is reduced to $\sigma_b^2 = \frac{n-b}{n\,b}\,\sigma^2$.

Lower Bound: Without additional assumptions, for smooth functions, no first-order algorithm using the stochastic gradient oracle can obtain a (dimension-independent) convergence rate faster than $\Omega(1/\sqrt{\tau})$.

Hence, SGD is optimal for minimizing general smooth, non-convex functions.

Questions?