CMPT 409/981: Optimization for Machine Learning

Lecture 8

Sharan Vaswani
October 1, 2024



Newton Method

We have seen that for quadratics, the Newton method converges to the minimizer in one step.
e Let us analyze the convergence of Newton for general L-smooth, p-strongly convex functions.
For this, we will consider two phases for the update:

Wi+1 = Wk — Tk [sz(Wk)]AVf(Wk) )

Phase 1 (Damped Newton): For some « to be chosen later, if ||V £(w)|* > a (“far” from
the solution), use the Newton method with the step-size 7, set according to the Back-tracking
Armijo line-search.

Phase 2 (Pure Newton): If |V (w)||> < a (“close” to the solution), use the Newton method
with step-size equal to 1.



Newton Method - Phase 2

Let us first analyze the convergence rate for Phase 2. For this, we will need an additional
assumption that the Hessian is Lipschitz continuous with constant M > 0:

|V2f(w) = V2F(V)[| < M |lw — v].
Claim: In Phase 2 of the Newton method, the iterates satisfy the following inequality,
M
[Wi1 — w*[| < oM lwie — w1
Proof:
Wki1 — w* = we — w* — [V2f(wi)] "VF(wx)  (Newton update with step-size 1.)
= [V2F(wi)] ™ [[V2F(wi)](wk — w*) =V (wi)]
— ks — wl = V2] (92wl (wi — w*) — VF(wa)]|

= [wirr — w* || < [[IV2E(wi)] || ([[V2F(wi)l(wie = w*) = Vi (wi) |
(By definition of the matrix norm)



Newton Method - Phase 2

Recall that ||wyi1 — w*| < ||[V2f(wk)]71“ H[V2f(wk)](wk —w*) — Vf(wk)H.
[lwir1r — w™| < i | [[V2F(wi)](wie — w*) — V()] I (Since V2f(w) = ply)

= Wk — v < % [[V2F (wi)l(wic — w*) + VE(w") = V()| (1)

Now let us bound Vf(w*) — Vf(wk). By the fundamental theorem of calculus, for all x, y,
f(y) = f(x) + ftl:o [VI(ty + (1 —t)x)] (v — x) dt. This theorem also holds for the
vector-valued gradient function,

1
Vi(y) = Vf(x) +/ [V2f(ty +(1—1t)x)] (y —x)dt
t=0
Using the above statement with x = w* and y = w,

1
= Vf(wg) — VFf(w") = /70 [V2f(t wi + (1 — t) w*)] (we — w*)dt (2)



Newton Method - Phase 2

Combining egs. (1) and (2),
[Wita — w7

< L Al — w) + 90~ T

i
|:[V2f(Wk)](Wk —w") — /t:O [V2f(t wi + (1 —t) W*)} (wg — w™) dt}

{ [VQf(Wk)](Wk—W*) dt—/ [sz(twk—i—(l—t) W*)} (wy — W*)dt:|
t=0 =0

Tl= T T

1
/_0 [V2F(wi) — V2F (twic + (1 — t) w*)] (wi — w*)dt

IN

1
/ | [V2F(wi) = V2F (twi + (1 — £) w™)] (wie — w*)]| dt (Jensen’s inequality)
t=0

IN
TR TR

1
/ ||V2f(wk) — V2f (twy + (1 — 1) W*)H lwx — w*|| dt  (Definition of matrix norm)
t=0



Newton Method - Phase 2

From the previous slide,

1 1
Hmﬂ—wwg;/\W%m@—v%uM+u—nwﬂum—wwm
t=0

Since the Hessian is M-Lipschitz,

1t . .
S—/ M ||wx — tw — (1L — ) w™|| ||lwx — w™|| dt
o Je=0
M ot .
= — [lwx — w"| (1= t)(wk — w™)l| dt
1% t=0
M 1
:—wm—wf/(bﬂm
M t=0
; M w12
= |[wiy1 — w"| <5, [ wie — w™||
ol



Newton Method - Phase 2

M

Recall that for Phase 2 of the Newton method, ||wyy1 — w*|| < ¢ ||wix — w*||* where ¢ := T

Claim: If in Phase 2, [[wo — w*|| < & = 4, then after T iterations of the Pure Newton update,
1\2" 1 112" 2

lwr —wil < (3)" 2=(2)" %

Proof: Let us prove it by induction.

Base-case: For T =0, ||lwr — w*|| < {; which is true by our assumption.

. : ] . . 2k
Inductive hypothesis: If the statement is true for iteration k, then ||wx — w*[| < (3)” 1.

2k+1

2
| <l 7 < ) =
Wiyl — W c ||lwkx —w c - =) =2 (2
k+1 = k = 5 c - (3 )

.
|lwr — w*| < (%)2 zﬁ" For ||wr — w*|| <€, we

which completes the induction. Hence,

need T such that,
.,
1\> 2u 1 log (24/mc)
= —<e = T> |
(2) M= = Tog(2) °g( log(2) )




Newton Method - Phase 2

e From the previous slide, we can conclude that Phase 2 of the Newton method requires
O (log (log (1/€))) iterations to achieve an e sub-optimality.

e This rate of convergence is often referred to as quadratic or super-linear convergence. Note

that there is no dependence on « and the dependence on 47 is in the loglog.

e But the bound is true only if ||wp — w*|| < /7 i.e. we enter Phase 2 only when we are “close
enough” to the solution. This is referred to as local convergence. Hence, the Newton method
has super-linear local convergence.

o Algorithmically, since we do not know w*, we do not know when to start Phase 2 of the
algorithm. By strong-convexity,

o1
IVFG) = VEWI 2 g lx = yIl = llwo —wl| < 2 [IVF(wo)ll

Hence, in order to ensure that [[wy — w*|| < {7, it suffices to guarantee that
4
IVF(wo)|? < o= 47z~ This can be checked algorithmically.



Questions?



Newton Method

Theorem: If ||Vf(w)||2 <a= A‘j,—: the algorithm switches to Phase 2 for T iterations of the

pure Newton step and ensures that ||wr — w*|| < (%)2 e

e In order to prove global convergence for the Newton method i.e. starting from any
initialization, we need to prove that Phase 1 of the Newton step can result in an iterate w such
that |[VF(w)|® < a and we can switch to Phase 2.

e Recall that for Phase 1, we will use the Backtracking Armijo line-search. For a prospective
step-size fjx, check the (more general) Armijo condition,

fF(wic — fidi) < f(wi) — i (VF(wi), d)
————
Newton decrement

where ¢ € (0,1) is a hyper-parameter and di = [V2f(wy)] "V f(wy) is the Newton direction. If
fjx satisfies the above condition, use the Newton update with nx = fj.

Q: Why does the Newton direction make an acute angle with the gradient direction?



Newton Method - Phase 1

e Using a similar proof as the standard Back-tracking Armijo line-search, we can show that the
step-size returned by the back-tracking procedure at iteration k is lower-bounded as:
Nk > min {wfc),nmax} (Need to prove this in Assignment 2).

e At iteration k, 7 is the step-size returned by the Back-tracking Armijo line-search and satisfies
the general Armijo condition. Hence,

f(wi — midi) — £7 < [f(wie) — 7] — e (VF(wi), die)

— f(wiy1) — FF < [F(wi) — F] — e (VF(wi), [V2F(wi)] 7V F(wi))

Since V2f(wy) is P.S.D, (Vf(wg), [V2f(wk)] "V f(wk)) > 0 and we need to lower-bound it,

(VF(wi), [V2F(Wi)] *VF(wie)) > Amin[V2F(wie)] ™ [V F(wie) ||
= F(Wir1) — £ < [F(wi) — £7] = cni Ain[V2F(wi)] [V F(wie) |
f(wirn) — £ < [f(wi) — F] — Cffk IV F (w12
(Since Amin[VZf(Wi)] ™ = x—rorrwy = 1)



Newton Method - Phase 1

Recall that f(wyi1) — £ < [F(wk) — F*] —em/L ||Vf(Wk)||2-

¢ min {L[C),nmax}

f(Wipr) — < [f(wk) — 7] — ||Vf(W;<)||2 (Lower-bound on )

L
< [flwi) = ]~ w IV F(we) ) (Setting ¢ = 1/)2)
< (1— ”m'n{[’m}> [F(w) = £1  (IVF)IR > 2l (wi) — £°])

— flwers) = 7 < (1= 200 ) g g

Recursing from k =0 to 7 — 1 and setting Mmax = 1

Flw:) — £* < (1—;2>T [ (wo) — £7] <exp< ) [f(wo) = 7]
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Newton Method

Recall that f(w,) — f* < exp (=F) [f(wo) — f*]. Phase 1 terminates when ||V f(w.)||* = a. Using
L-smoothness, ||V f(w,)|*> < 2L[f(w,) — f*]. To terminate Phase 1, we want
* —T *
2L[F(w,) — F1=2Lexp (=7 ) [F(wo) = F] =
2L M2 [f(wo) — *]
114
e Hence, iterations required for global convergence to an e sub-optimality is,

B N ey

Phase 1 Phase 2

= 7=k Iog( (Since ae = ,\‘j,—‘;)

e Recall that GD requires O (k log (1/¢)) iterations. If we do a matrix inversion in every iteration, cost
of each iteration is O(d®). Since computing gradients is linear in d, the cost of each GD iteration is
O(d). Comparing computational complexity:

Gradient Descent: O (dk log (/<)) Newton Method: O ((d*k* + d*log (log (Y/<))))

e Newton method is more efficient than GD for small d (low-dimension) and small € (high precision).

11



Questions?



