CMPT 409/981: Optimization for Machine Learning

Lecture 8

Sharan Vaswani

October 1, 2024

Newton Method

We have seen that for quadratics, the Newton method converges to the minimizer in one step.

• Let us analyze the convergence of Newton for general L-smooth, μ -strongly convex functions. For this, we will consider two phases for the update:

$$w_{k+1} = w_k - \eta_k \left[\nabla^2 f(w_k) \right]^{-1} \nabla f(w_k),$$

Phase 1 (Damped Newton): For some α to be chosen later, if $\|\nabla f(w_k)\|^2 > \alpha$ ("far" from the solution), use the Newton method with the step-size η_k set according to the Back-tracking Armijo line-search.

Phase 2 (Pure Newton): If $\|\nabla f(w_k)\|^2 \le \alpha$ ("close" to the solution), use the Newton method with step-size equal to 1.

1

Let us first analyze the convergence rate for Phase 2. For this, we will need an additional assumption that the Hessian is Lipschitz continuous with constant M > 0:

$$\|\nabla^2 f(w) - \nabla^2 f(v)\| \le M \|w - v\|.$$

Claim: In Phase 2 of the Newton method, the iterates satisfy the following inequality,

$$\|w_{k+1} - w^*\| \le \frac{M}{2\mu} \|w_k - w^*\|^2$$

Proof:

$$\begin{aligned} w_{k+1} - w^* &= w_k - w^* - [\nabla^2 f(w_k)]^{-1} \nabla f(w_k) & \text{(Newton update with step-size 1.)} \\ &= [\nabla^2 f(w_k)]^{-1} \left[[\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k) \right] \\ & \Longrightarrow \|w_{k+1} - w^*\| = \left\| [\nabla^2 f(w_k)]^{-1} \left[[\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k) \right] \right\| \\ & \Longrightarrow \|w_{k+1} - w^*\| \le \left\| [\nabla^2 f(w_k)]^{-1} \right\| \left\| [\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k) \right\| \\ & \text{(By definition of the matrix norm)} \end{aligned}$$

Recall that $||w_{k+1} - w^*|| \le ||[\nabla^2 f(w_k)]^{-1}|| ||[\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k)||.$ $||w_{k+1} - w^*|| \le \frac{1}{\mu} ||[[\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k)]|| \qquad (\text{Since } \nabla^2 f(w) \succeq \mu I_d)$ $\implies ||w_{k+1} - w^*|| \le \frac{1}{\mu} ||[\nabla^2 f(w_k)](w_k - w^*) + \nabla f(w^*) - \nabla f(w_k)|| \qquad (1)$

Now let us bound $\nabla f(w^*) - \nabla f(w_k)$. By the fundamental theorem of calculus, for all x, y, $f(y) = f(x) + \int_{t=0}^{1} \left[\nabla f(t \, y + (1-t) \, x) \right] \, (y-x) \, dt$. This theorem also holds for the vector-valued gradient function,

$$\nabla f(y) = \nabla f(x) + \int_{t=0}^{1} \left[\nabla^{2} f(t y + (1-t)x) \right] (y-x) dt$$

Using the above statement with $x = w^*$ and $y = w_k$,

$$\Longrightarrow \nabla f(w_k) - \nabla f(w^*) = \int_{t=0}^1 \left[\nabla^2 f(t w_k + (1-t) w^*) \right] (w_k - w^*) dt \tag{2}$$

Combining eqs. (1) and (2),

$$\|w_{k+1} - w^*\|$$

$$\leq \frac{1}{\mu} \| [\nabla^2 f(w_k)](w_k - w^*) + \nabla f(w^*) - \nabla f(w_k) \|$$

$$= \frac{1}{\mu} \| \left[[\nabla^2 f(w_k)](w_k - w^*) - \int_{t=0}^1 \left[\nabla^2 f(t \, w_k + (1-t) \, w^*) \right] (w_k - w^*) \, dt \right] \|$$

$$= \frac{1}{\mu} \| \left[\int_{t=0}^1 [\nabla^2 f(w_k)](w_k - w^*) \, dt - \int_{t=0}^1 \left[\nabla^2 f(t \, w_k + (1-t) \, w^*) \right] (w_k - w^*) \, dt \right] \|$$

$$= \frac{1}{\mu} \| \int_{t=0}^1 \left[\nabla^2 f(w_k) - \nabla^2 f(t \, w_k + (1-t) \, w^*) \right] (w_k - w^*) \, dt \|$$

$$\leq \frac{1}{\mu} \int_{t=0}^1 \| \left[\nabla^2 f(w_k) - \nabla^2 f(t \, w_k + (1-t) \, w^*) \right] (w_k - w^*) \| \, dt \quad \text{(Jensen's inequality)}$$

$$\leq \frac{1}{\mu} \int_{t=0}^1 \| \nabla^2 f(w_k) - \nabla^2 f(t \, w_k + (1-t) \, w^*) \| \|w_k - w^*\| \, dt \quad \text{(Definition of matrix norm)}$$

From the previous slide,

$$\|w_{k+1} - w^*\| \le \frac{1}{\mu} \int_{t=0}^1 \|\nabla^2 f(w_k) - \nabla^2 f(t w_k + (1-t) w^*)\| \|w_k - w^*\| dt$$

Since the Hessian is M-Lipschitz,

$$\leq \frac{1}{\mu} \int_{t=0}^{1} M \|w_{k} - t w_{k} - (1 - t) w^{*}\| \|w_{k} - w^{*}\| dt$$

$$= \frac{M}{\mu} \|w_{k} - w^{*}\| \int_{t=0}^{1} \|(1 - t)(w_{k} - w^{*})\| dt$$

$$= \frac{M}{\mu} \|w_{k} - w^{*}\|^{2} \int_{t=0}^{1} (1 - t) dt$$

$$\implies \|w_{k+1} - w^{*}\| \leq \frac{M}{2\mu} \|w_{k} - w^{*}\|^{2}$$

Recall that for Phase 2 of the Newton method, $\|w_{k+1} - w^*\| \le c \|w_k - w^*\|^2$ where $c := \frac{M}{2\mu}$.

Claim: If in Phase 2, $||w_0 - w^*|| \le \frac{1}{2c} = \frac{\mu}{M}$, then after T iterations of the Pure Newton update,

 $\|w_T - w^*\| \le \left(\frac{1}{2}\right)^{2^T} \frac{1}{c} = \left(\frac{1}{2}\right)^{2^T} \frac{2\mu}{M}$. **Proof**: Let us prove it by induction.

Base-case: For T=0, $\|w_T-w^*\| \leq \frac{\mu}{M}$ which is true by our assumption.

Inductive hypothesis: If the statement is true for iteration k, then $||w_k - w^*|| \le \left(\frac{1}{2}\right)^{2^k} \frac{1}{c}$.

$$||w_{k+1} - w^*|| \le c ||w_k - w^*||^2 \le c \left(\left(\frac{1}{2}\right)^{2^k} \frac{1}{c}\right)^2 = \frac{1}{c} \left(\frac{1}{2}\right)^{2^{k+1}},$$

which completes the induction. Hence, $\|w_T - w^*\| \le \left(\frac{1}{2}\right)^{2^T} \frac{2\mu}{M}$. For $\|w_T - w^*\| \le \epsilon$, we need T such that,

$$\left(\frac{1}{2}\right)^{2^{T}} \frac{2\mu}{M} \leq \epsilon \implies T \geq \frac{1}{\log(2)} \log \left(\frac{\log\left(\frac{2\mu}{M\epsilon}\right)}{\log(2)}\right)$$

6

- From the previous slide, we can conclude that Phase 2 of the Newton method requires $O(\log(\log(1/\epsilon)))$ iterations to achieve an ϵ sub-optimality.
- This rate of convergence is often referred to as **quadratic** or **super-linear** convergence. Note that there is no dependence on κ and the dependence on $\frac{\mu}{M}$ is in the log log.
- But the bound is true only if $\|w_0 w^*\| \le \frac{\mu}{M}$ i.e. we enter Phase 2 only when we are "close enough" to the solution. This is referred to as **local convergence**. Hence, the Newton method has super-linear local convergence.
- Algorithmically, since we do not know w^* , we do not know when to start Phase 2 of the algorithm. By strong-convexity,

$$\|\nabla f(x) - \nabla f(y)\| \ge \mu \|x - y\| \implies \|w_0 - w^*\| \le \frac{1}{\mu} \|\nabla f(w_0)\|$$

Hence, in order to ensure that $\|w_0-w^*\|\leq \frac{\mu}{M}$, it suffices to guarantee that $\|\nabla f(w_0)\|^2\leq \alpha:=\frac{\mu^4}{M^2}$. This can be checked algorithmically.

Newton Method

Theorem: If $\|\nabla f(w)\|^2 \leq \alpha = \frac{\mu^4}{M^2}$, the algorithm switches to Phase 2 for T iterations of the pure Newton step and ensures that $\|w_T - w^*\| \leq \left(\frac{1}{2}\right)^{2^T} \frac{2\mu}{M}$.

- In order to prove global convergence for the Newton method i.e. starting from any initialization, we need to prove that Phase 1 of the Newton step can result in an iterate w such that $\|\nabla f(w)\|^2 \le \alpha$ and we can switch to Phase 2.
- Recall that for Phase 1, we will use the Backtracking Armijo line-search. For a prospective step-size $\tilde{\eta}_k$, check the (more general) Armijo condition,

$$f(w_k - \tilde{\eta}_k d_k) \le f(w_k) - c \, \tilde{\eta}_k \underbrace{\langle \nabla f(w_k), d_k \rangle}_{\text{Newton decrement}}$$

where $c \in (0,1)$ is a hyper-parameter and $d_k = [\nabla^2 f(w_k)]^{-1} \nabla f(w_k)$ is the Newton direction. If $\tilde{\eta}_k$ satisfies the above condition, use the Newton update with $\eta_k = \tilde{\eta}_k$.

Q: Why does the Newton direction make an acute angle with the gradient direction?

- Using a similar proof as the standard Back-tracking Armijo line-search, we can show that the step-size returned by the back-tracking procedure at iteration k is lower-bounded as: $\eta_k \geq \min\left\{\frac{2\mu\left(1-c\right)}{L}, \eta_{\max}\right\}$ (Need to prove this in Assignment 2).
- At iteration k, η_k is the step-size returned by the Back-tracking Armijo line-search and satisfies the general Armijo condition. Hence,

$$f(w_k - \eta_k d_k) - f^* \leq [f(w_k) - f^*] - c \, \eta_k \, \langle \nabla f(w_k), d_k \rangle$$

$$\implies f(w_{k+1}) - f^* \leq [f(w_k) - f^*] - c \, \eta_k \, \langle \nabla f(w_k), [\nabla^2 f(w_k)]^{-1} \nabla f(w_k) \rangle$$

Since $\nabla^2 f(w_k)$ is P.S.D, $\langle \nabla f(w_k), [\nabla^2 f(w_k)]^{-1} \nabla f(w_k) \rangle \geq 0$ and we need to lower-bound it,

Recall that $f(w_{k+1}) - f^* \leq [f(w_k) - f^*] - c \eta_k / L \|\nabla f(w_k)\|^2$.

$$f(w_{k+1}) - f^* \leq [f(w_k) - f^*] - \frac{c \min\left\{\frac{2\mu(1-c)}{L}, \eta_{\max}\right\}}{L} \|\nabla f(w_k)\|^2 \text{ (Lower-bound on } \eta_k)$$

$$\leq [f(w_k) - f^*] - \frac{\min\left\{\frac{\mu}{2L}, \frac{\eta_{\max}}{2}\right\}}{L} \|\nabla f(w_k)\|^2 \qquad \text{(Setting } c = 1/2)$$

$$\leq \left(1 - \frac{\mu \min\left\{\frac{\mu}{L}, \eta_{\max}\right\}}{L}\right) [f(w_k) - f^*] \qquad (\|\nabla f(w_k)\|^2 \geq 2\mu [f(w_k) - f^*])$$

$$\implies f(w_{k+1}) - f^* \leq \left(1 - \frac{\mu^2 \min\{1, \kappa \eta_{\max}\}}{L^2}\right) [f(w_k) - f^*]$$

Recursing from k=0 to au-1 and setting $\eta_{\mathsf{max}}=1$

$$f(w_{\tau}) - f^* \le \left(1 - \frac{1}{\kappa^2}\right)^{\tau} [f(w_0) - f^*] \le \exp\left(\frac{-\tau}{\kappa^2}\right) [f(w_0) - f^*]$$

Newton Method

Recall that $f(w_{\tau}) - f^* \leq \exp\left(\frac{-\tau}{\kappa^2}\right) \left[f(w_0) - f^*\right]$. Phase 1 terminates when $\|\nabla f(w_{\tau})\|^2 = \alpha$. Using L-smoothness, $\|\nabla f(w_{\tau})\|^2 \leq 2L [f(w_{\tau}) - f^*]$. To terminate Phase 1, we want

$$2L[f(w_{\tau}) - f^*] = 2L \exp\left(\frac{-\tau}{\kappa^2}\right) [f(w_0) - f^*] = \alpha$$

$$\implies \tau = \kappa^2 \log\left(\frac{2L M^2 [f(w_0) - f^*]}{\mu^4}\right) \qquad (Since \alpha = \frac{\mu^4}{M^2})$$

ullet Hence, iterations required for global convergence to an ϵ sub-optimality is,

$$\underbrace{\kappa^2 \log \left(\frac{2L \, M^2 \left[f(w_0) - f^* \right]}{\mu^4} \right)}_{\text{Phase 1}} + \underbrace{\frac{1}{\log(2)} \, \log \left(\frac{\log \left(\frac{2\mu}{M\epsilon} \right)}{\log(2)} \right)}_{\text{Phase 2}} = O \left(\kappa^2 + \log \left(\log \left(\frac{1}{\epsilon} \right) \right) \right)$$

• Recall that GD requires $O(\kappa \log(1/\epsilon))$ iterations. If we do a matrix inversion in every iteration, cost of each iteration is $O(d^3)$. Since computing gradients is linear in d, the cost of each GD iteration is O(d). Comparing computational complexity:

Gradient Descent: $O\left(d\kappa \log\left(\frac{1}{\epsilon}\right)\right)$ Newton Method: $O\left(\left(d^3\kappa^2 + d^3\log\left(\log\left(\frac{1}{\epsilon}\right)\right)\right)\right)$

ullet Newton method is more efficient than GD for small d (low-dimension) and small ϵ (high precision).

