CMPT 409/981: Optimization for Machine Learning Lecture 8

Sharan Vaswani

October 1, 2024

We have seen that for quadratics, the Newton method converges to the minimizer in one step.

• Let us analyze the convergence of Newton for general L-smooth, μ -strongly convex functions. For this, we will consider two phases for the update:

$$
w_{k+1} = w_k - \eta_k \left[\nabla^2 f(w_k)\right]^{-1} \nabla f(w_k),
$$

Phase 1 (Damped Newton): For some α to be chosen later, if $\|\nabla f(w_k)\|^2 > \alpha$ ("far" from the solution), use the Newton method with the step-size n_k set according to the Back-tracking Armijo line-search.

Phase 2 (Pure Newton): If $\|\nabla f(w_k)\|^2 \leq \alpha$ ("close" to the solution), use the Newton method with step-size equal to 1.

Let us first analyze the convergence rate for Phase 2. For this, we will need an additional assumption that the Hessian is Lipschitz continuous with constant $M > 0$:

$$
\left\|\nabla^2 f(w)-\nabla^2 f(v)\right\| \leq M \left\|w-v\right\|.
$$

Claim: In Phase 2 of the Newton method, the iterates satisfy the following inequality,

$$
||w_{k+1} - w^*|| \leq \frac{M}{2\mu} ||w_k - w^*||^2
$$

Proof:

$$
w_{k+1} - w^* = w_k - w^* - [\nabla^2 f(w_k)]^{-1} \nabla f(w_k)
$$
 (Newton update with step-size 1.)
\n
$$
= [\nabla^2 f(w_k)]^{-1} [[\nabla^2 f(w_k)] (w_k - w^*) - \nabla f(w_k)]
$$
\n
$$
\implies ||w_{k+1} - w^*|| = ||[\nabla^2 f(w_k)]^{-1} [[\nabla^2 f(w_k)] (w_k - w^*) - \nabla f(w_k)]||
$$
\n
$$
\implies ||w_{k+1} - w^*|| \le ||[\nabla^2 f(w_k)]^{-1}|| ||[\nabla^2 f(w_k)] (w_k - w^*) - \nabla f(w_k)||
$$
\n
$$
(\text{By definition of the matrix norm})
$$

Recall that
$$
||w_{k+1} - w^*|| \le ||[\nabla^2 f(w_k)]^{-1}|| \, ||[\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k)||
$$
.
\n $||w_{k+1} - w^*|| \le \frac{1}{\mu} \, ||[[\nabla^2 f(w_k)](w_k - w^*) - \nabla f(w_k)]||$ (Since $\nabla^2 f(w) \succeq \mu I_d$)
\n $\implies ||w_{k+1} - w^*|| \le \frac{1}{\mu} \, ||[\nabla^2 f(w_k)](w_k - w^*) + \nabla f(w^*) - \nabla f(w_k)||$ (1)

Now let us bound $\nabla f(w^*) - \nabla f(w_k)$. By the fundamental theorem of calculus, for all x, y, $f(y) = f(x) + \int_{t=0}^{1} [\nabla f(t y + (1-t) x)] (y-x) dt$. This theorem also holds for the vector-valued gradient function,

$$
\nabla f(y) = \nabla f(x) + \int_{t=0}^{1} \left[\nabla^2 f(t \, y + (1-t) \, x) \right] (y-x) \, dt
$$

Using the above statement with $x = w^*$ and $y = w_k$,

$$
\implies \nabla f(w_k) - \nabla f(w^*) = \int_{t=0}^1 \left[\nabla^2 f(t w_k + (1-t) w^*) \right] (w_k - w^*) dt \tag{2}
$$

Combining eqs. (1) and (2), $\|w_{k+1} - w^*\|$ \leq $\frac{1}{\cdot}$ μ $\left\|\left[\nabla^2 f(w_k)\right](w_k - w^*) + \nabla f(w^*) - \nabla f(w_k)\right\|$ $=$ $\frac{1}{1}$ μ $\left[[\nabla^2 f(w_k)](w_k - w^*) - \int^1 \right]$ $t=0$ $[\nabla^2 f(t w_k + (1-t) w^*)](w_k - w^*) dt]$ $=$ $\frac{1}{1}$ μ \int_1^1 $t=0$ $[\nabla^2 f(w_k)](w_k - w^*) dt - \int_0^1$ $t=0$ $[\nabla^2 f(t w_k + (1-t) w^*)](w_k - w^*) dt]$ $=$ $\frac{1}{1}$ μ \int_0^1 $t=0$ $[\nabla^2 f(w_k) - \nabla^2 f(t w_k + (1 - t) w^*)](w_k - w^*) dt$ \leq $\frac{1}{-}$ μ \int_0^1 $t=0$ $\left\|\left[\nabla^2 f(w_k) - \nabla^2 f(t w_k + (1-t) w^*)\right] (w_k - w^*)\right\|$ (Jensen's inequality) \leq $\frac{1}{1}$ μ \int_0^1 $t=0$ $\left\|\nabla^2 f(w_k) - \nabla^2 f(t w_k + (1-t) w^*)\right\| \|w_k - w^*\| dt$ (Definition of matrix norm)

From the previous slide,

$$
\|w_{k+1} - w^*\| \leq \frac{1}{\mu} \int_{t=0}^1 \left\|\nabla^2 f(w_k) - \nabla^2 f(t w_k + (1-t) w^*)\right\| \|w_k - w^*\| dt
$$

Since the Hessian is M-Lipschitz,

$$
\leq \frac{1}{\mu} \int_{t=0}^{1} M \|w_k - t w_k - (1 - t) w^*\| \|w_k - w^*\| dt
$$

\n
$$
= \frac{M}{\mu} \|w_k - w^*\| \int_{t=0}^{1} \|(1 - t)(w_k - w^*)\| dt
$$

\n
$$
= \frac{M}{\mu} \|w_k - w^*\|^2 \int_{t=0}^{1} (1 - t) dt
$$

\n
$$
\implies \|w_{k+1} - w^*\| \leq \frac{M}{2\mu} \|w_k - w^*\|^2
$$

Recall that for Phase 2 of the Newton method, $||w_{k+1} - w^*|| \le c ||w_k - w^*||^2$ where $c := \frac{M}{2\mu}$. **Claim**: If in Phase 2, $||w_0 - w^*|| \leq \frac{1}{2c} = \frac{\mu}{M}$, then after T iterations of the Pure Newton update, $\|w_T - w^*\| \leq \left(\frac{1}{2}\right)^{2^T} \frac{1}{c} = \left(\frac{1}{2}\right)^{2^T} \frac{2\mu}{M}.$ Proof: Let us prove it by induction. **Base-case**: For $T = 0$, $\|w_T - w^*\| \leq \frac{\mu}{M}$ which is true by our assumption.

Inductive hypothesis: If the statement is true for iteration k, then $\|w_k - w^*\| \leq \left(\frac{1}{2}\right)^{2^k} \frac{1}{c}$.

$$
\|w_{k+1} - w^*\| \leq c \|w_k - w^*\|^2 \leq c \left(\left(\frac{1}{2}\right)^{2^k} \frac{1}{c} \right)^2 = \frac{1}{c} \left(\frac{1}{2}\right)^{2^{k+1}},
$$

which completes the induction. Hence, $\|w_\mathcal{T} - w^*\| \leq \left(\frac{1}{2}\right)^{2^\mathcal{T}} \frac{2\mu}{M}$. For $\|w_\mathcal{T} - w^*\| \leq \epsilon$, we need T such that.

$$
\left(\frac{1}{2}\right)^{2^T} \frac{2\mu}{M} \le \epsilon \implies T \ge \frac{1}{\log(2)} \log\left(\frac{\log(2\mu/M\epsilon)}{\log(2)}\right)
$$

• From the previous slide, we can conclude that Phase 2 of the Newton method requires O (log (log $(1/\epsilon)$)) iterations to achieve an ϵ sub-optimality.

• This rate of convergence is often referred to as **quadratic** or **super-linear** convergence. Note that there is no dependence on κ and the dependence on $\frac{\mu}{M}$ is in the log log.

• But the bound is true only if $\|w_0 - w^*\| \leq \frac{\mu}{M}$ i.e. we enter Phase 2 only when we are "close enough" to the solution. This is referred to as **local convergence**. Hence, the Newton method has super-linear local convergence.

● Algorithmically, since we do not know w^{*}, we do not know when to start Phase 2 of the algorithm. By strong-convexity,

$$
\|\nabla f(x)-\nabla f(y)\| \geq \mu \|x-y\| \implies \|w_0-w^*\| \leq \frac{1}{\mu} \|\nabla f(w_0)\|
$$

Hence, in order to ensure that $\|w_0 - w^*\| \leq \frac{\mu}{M}$, it suffices to guarantee that $\|\nabla f(w_0)\|^2 \leq \alpha := \frac{\mu^4}{M^2}$. This can be checked algorithmically.

Questions?

Newton Method

Theorem: If $\|\nabla f(w)\|^2 \leq \alpha = \frac{\mu^4}{M^2}$, the algorithm switches to Phase 2 for T iterations of the pure Newton step and ensures that $\|w_{\mathcal{T}} - w^*\| \leq \left(\frac{1}{2}\right)^{2^{\mathcal{T}}} \frac{2\mu}{M}$.

• In order to prove global convergence for the Newton method i.e. starting from any initialization, we need to prove that Phase 1 of the Newton step can result in an iterate w such that $\left\| \nabla f(w) \right\|^{2} \leq \alpha$ and we can switch to Phase 2.

• Recall that for Phase 1, we will use the Backtracking Armijo line-search. For a prospective step-size $\tilde{\eta}_k$, check the (more general) Armijo condition,

$$
f(w_k - \tilde{\eta}_k d_k) \leq f(w_k) - c \tilde{\eta}_k \underbrace{\langle \nabla f(w_k), d_k \rangle}_{\text{Newton decrement}}
$$

where $c\in(0,1)$ is a hyper-parameter and $d_k=[\nabla^2 f(w_k)]^{-1}\nabla f(w_k)$ is the Newton direction. If $\tilde{\eta}_k$ satisfies the above condition, use the Newton update with $\eta_k = \tilde{\eta}_k$.

Q: Why does the Newton direction make an acute angle with the gradient direction?

• Using a similar proof as the standard Back-tracking Armijo line-search, we can show that the step-size returned by the back-tracking procedure at iteration k is lower-bounded as: $\eta_k \geq \min\left\{\frac{2\mu\left(1-c\right)}{L}\right\}$ $\left\{\frac{1-c}{L},\eta_\mathsf{max}\right\}$ (Need to prove this in Assignment 2).

• At iteration k, η_k is the step-size returned by the Back-tracking Armijo line-search and satisfies the general Armijo condition. Hence,

$$
f(w_k - \eta_k d_k) - f^* \leq [f(w_k) - f^*] - c \eta_k \langle \nabla f(w_k), d_k \rangle
$$

\n
$$
\implies f(w_{k+1}) - f^* \leq [f(w_k) - f^*] - c \eta_k \langle \nabla f(w_k), [\nabla^2 f(w_k)]^{-1} \nabla f(w_k) \rangle
$$

Since $\nabla^2 f(w_k)$ is P.S.D, $\langle \nabla f(w_k), [\nabla^2 f(w_k)]^{-1} \nabla f(w_k) \rangle \ge 0$ and we need to lower-bound it,

$$
\langle \nabla f(w_k), [\nabla^2 f(w_k)]^{-1} \nabla f(w_k) \rangle \ge \lambda_{\min} [\nabla^2 f(w_k)]^{-1} ||\nabla f(w_k)||^2
$$

\n
$$
\implies f(w_{k+1}) - f^* \le [f(w_k) - f^*] - c \eta_k \lambda_{\min} [\nabla^2 f(w_k)]^{-1} ||\nabla f(w_k)||^2
$$

\n
$$
f(w_{k+1}) - f^* \le [f(w_k) - f^*] - \frac{c \eta_k}{L} ||\nabla f(w_k)||^2
$$

\n(Since $\lambda_{\min} [\nabla^2 f(w_k)]^{-1} = \frac{1}{\lambda_{\max} [\nabla^2 f(w_k)]} = \frac{1}{L})$

Recall that $f\big(\mathsf{w}_{k+1}\big) - f^* \leq [f\big(\mathsf{w}_k\big) - f^*\big] - \frac{c \, \eta_k}{L} \, \|\nabla f(\mathsf{w}_k)\|^2.$

$$
f(w_{k+1}) - f^* \leq [f(w_k) - f^*] - \frac{c \min\left\{\frac{2\mu(1-c)}{L}, \eta_{\max}\right\}}{L} \|\nabla f(w_k)\|^2 \text{ (Lower-bound on } \eta_k)
$$

\n
$$
\leq [f(w_k) - f^*] - \frac{\min\left\{\frac{\mu}{2L}, \frac{\eta_{\max}}{2}\right\}}{L} \|\nabla f(w_k)\|^2 \qquad \text{(Setting } c = 1/2\text{)}
$$

\n
$$
\leq \left(1 - \frac{\mu \min\left\{\frac{\mu}{L}, \eta_{\max}\right\}}{L}\right) [f(w_k) - f^*] \qquad \left(\|\nabla f(w_k)\|^2 \geq 2\mu [f(w_k) - f^*]\right)
$$

\n
$$
\implies f(w_{k+1}) - f^* \leq \left(1 - \frac{\mu^2 \min\{1, \kappa \eta_{\max}\}}{L^2}\right) [f(w_k) - f^*]
$$

Recursing from $k = 0$ to $\tau - 1$ and setting $\eta_{\text{max}} = 1$

$$
f(w_{\tau}) - f^* \le \left(1 - \frac{1}{\kappa^2}\right)^{\tau} \left[f(w_0) - f^*\right] \le \exp\left(\frac{-\tau}{\kappa^2}\right) \left[f(w_0) - f^*\right]
$$

Newton Method

Recall that $f(w_\tau)-f^*\leq \exp\left(\frac{-\tau}{\kappa^2}\right)$ $[f(w_0)-f^*]$. Phase 1 terminates when $\|\nabla f(w_\tau)\|^2=\alpha$. Using L-smoothness, $\|\nabla f(w_\tau)\|^2 \leq 2L\left[f(w_\tau)-f^*\right]$. To terminate Phase 1, we want

$$
2L\left[f(w_{\tau}) - f^*\right] = 2L \exp\left(\frac{-\tau}{\kappa^2}\right) \left[f(w_0) - f^*\right] = \alpha
$$
\n
$$
\implies \tau = \kappa^2 \log\left(\frac{2L M^2 \left[f(w_0) - f^*\right]}{\mu^4}\right) \tag{Since } \alpha = \frac{\mu^4}{M^2}
$$

• Hence, iterations required for global convergence to an ϵ sub-optimality is,

$$
\underbrace{\kappa^2 \log \left(\frac{2L M^2 \left[f(w_0) - f^* \right]}{\mu^4} \right)}_{\text{Phase 1}} + \underbrace{\frac{1}{\log(2)} \log \left(\frac{\log \left(2\nu/\mu_\epsilon \right)}{\log(2)} \right)}_{\text{Phase 2}} = O \left(\kappa^2 + \log \left(\log \left(1/\epsilon \right) \right) \right)
$$

• Recall that GD requires $O(\kappa \log{(1/\epsilon)})$ iterations. If we do a matrix inversion in every iteration, cost of each iteration is $O(d^3)$. Since computing gradients is linear in d, the cost of each GD iteration is $O(d)$. Comparing computational complexity:

Gradient Descent: $O(d\kappa \log{(1/\epsilon)})$ Newton Method: $O((d^3\kappa^2 + d^3 \log{(\log{(1/\epsilon)})}))$

• Newton method is more efficient than GD for small d (low-dimension) and small ϵ (high precision).

Questions?