
CMPT 409/981: Optimization for Machine Learning

Lecture 7

Sharan Vaswani

September 26, 2024



Recap

Polyak Momentum: Compute the gradient at wk and then extrapolate:
vk = wk + βk(wk − wk−1);wk+1 = vk − η∇f (wk).

Figure 1: Comparing GD vs HB momentum (with theoretical (η, β)) on a strongly-convex quadratic
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Minimizing strongly-convex quadratics with HB momentum

Update: wk+1 = wk − η∇f (wk) + β(wk − wk−1)

Claim: For L-smooth, µ-strongly convex quadratics s.t. f (w) = 1
2w

TAw − bw + c where A is

symmetric, positive semi-definite, HB momentum with η = 4
(
√
L+

√
µ)2

and β =
(√

κ−1√
κ+1

)2

converges as: ∥wT − w∗∥ ≤
√

2
(√

κ−1√
κ+1 + ϵT

)T

∥w0 − w∗∥, where, limT→∞ ϵT → 0.
Proof: [

wk+1 − w∗

wk − w∗

]
=

[
wk − w∗ − η∇f (wk) + β(wk − wk−1)

wk − w∗

]

=

[
wk − w∗ − ηA(wk − w∗) + β(wk − w∗)− β(wk−1 − w∗)

wk − w∗

]
(Since ∇f (w) = Aw , Aw∗ = b)

=⇒

[
wk+1 − w∗

wk − w∗

]
=

[
(1 + β)Id − ηA −βId

Id 0

][
wk − w∗

wk−1 − w∗

]
If β = 0, we can recover the same equation as GD. 2



Minimizing strongly-convex quadratics with HB momentum

[
wk+1 − w∗

wk − w∗

]
︸ ︷︷ ︸

:=∆k+1∈R2d

=

[
(1 + β)Id − ηA −βId

Id 0

]
︸ ︷︷ ︸

:=H∈R2d×2d

[
wk − w∗

wk−1 − w∗

]
︸ ︷︷ ︸

:=∆k∈R2d

=⇒ ∆k+1 = H∆k

Recursing from k = 0 to T − 1, and taking norm,

∥∆T∥ =
∥∥HT∆0

∥∥ ≤
∥∥HT

∥∥ ∥∥∥∥∥
[
w0 − w∗

w−1 − w∗

]∥∥∥∥∥ (By definition of the matrix norm)

Define w−1 = w0 and lower-bounding the LHS,

∥wT − w∗∥ ≤
√

2
∥∥HT

∥∥ ∥w0 − w∗∥

Hence, we have reduced the problem to bounding
∥∥HT

∥∥.
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Minimizing strongly-convex quadratics with HB momentum

Recall that for symmetric matrices, ∥B∥2 = ρ(B). Unfortunately, this relation is not true for
general asymmetric matrices, and ∥B∥ ≥ ρ(B).

Gelfand’s Formula: For a matrix B ∈ Rd×d such that ρ(B) := maxi∈[d ] |λi |, then there exists a
sequence ϵk ≥ 0 such that limk→∞ ϵk = 0 and,∥∥Bk

∥∥ ≤ (ρ(B) + ϵk)
k .

Using this formula with our bound,

∥wT − w∗∥ ≤
√

2 (ρ(H) + ϵT )
T ∥w0 − w∗∥

Hence, we have reduced the problem to bounding ρ(H).
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Minimizing strongly-convex quadratics with HB momentum

Similar to the GD case, let A = UΛUT be the eigen-decomposition of A, then,
(1 + β) Id − ηA = USUT where Si,i = 1 + β − ηλi . Hence,

H =

[
UT 0
0 UT

] [
(1 + β)Id − ηΛ −βId

Id 0

]
︸ ︷︷ ︸

:=H

[
U 0
0 U

]

Since U is orthonormal, ρ(H) = ρ(H). Hence we have reduced the problem to bounding ρ(H).
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Minimizing strongly-convex quadratics with HB momentum

Let P be a permutation matrix such that:

Pi,j =


1 i is odd, j = i

1 i is even, j = d + i

0 otherwise

B = P H PT =


H1 0 . . . 0
0 H2 . . . 0
...

. . .
0 0 Hd


where,

Hi =

[
(1 + β)− ηλi −β

1 0

]
Note that ρ(H) = ρ(B) (a permutation matrix does not change the eigenvalues). Since B is a

block diagonal matrix, ρ(B) = maxi [ρ(Hi )]. Hence we have reduced the problem to bounding
ρ(Hi ).
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Minimizing strongly-convex quadratics with HB momentum

For a fixed i ∈ [d ], let us compute the eigenvalues of Hi ∈ R2×2 by solving the characteristic
polynomial: det(Hi − uI2) = 0 w.r.t u.

u2 − (1 + β − ηλi )u + β = 0 =⇒ u =
1
2

[
(1 + β − ηλi )±

√
(1 + β − ηλi )2 − 4β

]
Let us set β such that, (1 + β − ηλi )

2 ≤ 4β. This ensures that the roots to the above equation
are complex conjugates. Hence,

1 + β − ηλi ≥ −2
√
β =⇒ (

√
β + 1) ≥

√
ηλi =⇒ β ≥ (1 −

√
ηλi )

2

If we ensure that β ≥ (1 −
√
ηλi )

2

u =
1
2

[
(1 + β − ηλi )± i

√
4β − (1 + β − ηλi )2

]
=⇒ |u|2 =

1
4
[
(1 + β − ηλi )

2 + 4β − (1 + β − ηλi )
2] = β =⇒ |u| =

√
β.

Hence, if β ≥ (1 −
√
ηλi )

2, ρ(Hi ) =
√
β and ρ(B) = maxi [ρ(Hi )] =

√
β.
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Minimizing strongly-convex quadratics with HB momentum

Using the result from the previous slide, if we ensure that for all i , β ≥ (1 −
√
ηλi )

2, then,
ρ(B) =

√
β. Hence, we want that,

β = max
i
{(1 −

√
ηλi )

2} ≤ max
λ∈[µ,L]

{(1 −
√
ηλ)2} = max{(1 −√

ηµ)2, (1 −
√
ηL)2}

Similar to GD, we equate the two terms in the max,

1 + ηµ− 2
√
ηµ = 1 + ηL− 2

√
ηL =⇒ η =

4
(
√
L+

√
µ)2

.

With this value of η, ρ(H) = ρ(H) = ρ(B) ≤
√
β =

√(
1 − 2

√
µ

(
√
L+

√
µ)

)2
=

√
L−√

µ√
L+

√
µ
=

√
κ−1√
κ+1 .

Putting everything together,

∥wT − w∗∥ ≤
√

2
(√

κ− 1√
κ+ 1

+ ϵT

)T

∥w0 − w∗∥
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Questions?
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Gradient Descent and Newton’s method

For L-smooth, µ-strongly convex functions,

Gradient Descent (GD) results in an O (exp (−T/κ)) rate.

Nesterov acceleration can speed up the convergence and results in an Θ(exp (−T/
√
κ)) rate.

Lower-Bound: Without additional assumptions, no first-order algorithm (one that only relies
on gradient information) can attain a dimension-free rate faster than Ω (exp (−T/

√
κ)).

Next, we will use second-order (Hessian) information to minimize twice differentiable, L-smooth
and µ-strongly convex functions and get faster rates under additional assumptions.
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Gradient Descent and Newton’s method

Recall the GD update: wk+1 = wk − η∇f (wk). This can also be written as:

wk+1 = argmin
w

 f (wk) + ⟨∇f (wk),w − wk⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥w − wk∥2︸ ︷︷ ︸
Stay close to wk


i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the Euclidean norm) to the current point.

If f is twice-differentiable, and we approximate it by a second-order Taylor series expansion,

wk+1 = argmin
w

f (wk) + ⟨∇f (wk),w − wk⟩+
1
2
(w − wk)

T ∇2f (wk) (w − wk)︸ ︷︷ ︸
Second-order Taylor series approximation


=⇒ wk+1 = wk − [∇2f (wk)]

−1[∇f (wk)] (Newton Update)
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Digression - Preconditioned Gradient Descent

Recall that GD achieves an O
(
κ log

( 1
ϵ

))
convergence rate, and the condition number κ ≥ 1 is

the measure of problem difficulty.

Idea: Reparameterize the space so that the minimum function value remains the same, but
condition number in the reparameterized space is smaller enabling GD to converge faster.

Example: minw∈R2 f (w) = 1
2w

TAw where A =

[
L 0
0 µ

]
. For the above problem, w∗ = 0,

f (w∗) = 0 and κ = L
µ .

Let us choose a preconditioning matrix Q ∈ R2×2 such that w = Qv , and write the
reparameterized function g(v) := 1

2 [Qv ]
TA[Qv ] = 1

2v
TQTAQv .

If we choose Q =

[
1√
L

0
0 1√

µ

]
, QTAQ = I , g(v) = 1

2v
Tv . Clearly, v∗ = 0 and g(v∗) = 0 and

w∗ = Qv∗ = 0. For this problem, κ = 1 making it easier to solve using GD.
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Digression - Preconditioned Gradient Descent

Formalizing the intuition on the previous slide, define a positive definite, symmetric matrix
Q ∈ Rd×d such that w = Qv and hence, v = Q

−1
w . Define g(v) := f (Qv).

Q: If w∗ = argminw f (w) and v∗ = argminv g(v), is f (w∗) = g(v∗)?

Computing the gradient of g(v), ∇g(v) = QT ∇f (Qv). Running GD on g(v), we get that,

vk+1 = vk − η∇g(vk) = vk − η[QT ∇f (Qvk)] = vk − η[QT ∇f (wk)]

=⇒ Q
−1
wk+1 = Q

−1
wk − η[Q∇f (wk)] =⇒ wk+1 = wk − η [QQT∇f (wk)]

Define a positive definite, symmetric P such that P = QQT. Since Q is symmetric, Q = P
1
2 .

Hence, for w = P
1
2v ,

wk+1 = wk − η [P∇f (wk)] (Preconditioned GD)

i.e., compute the gradient, “precondition” it by matrix P and then do the GD step.
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Digression - Preconditioned Gradient Descent

Equivalent formulations of preconditioned gradient descent to minimize f (w),

Reparameterizing the space using a positive definite, symmetric matrix P
1
2 such that

v = P
−1

2w and using GD to minimize g(v) := f (P
1
2v).

Use GD with the preconditioned gradient P∇f (w).
The preconditioned GD update at iteration k can be written as:

wk+1 = argmin

 f (wk) + ⟨∇f (wk),w − wk⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥w − wk∥2
P

−1︸ ︷︷ ︸
Stay close to wk


i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the norm induced by matrix P

−1) to the current point.

We can also use a different preconditioner at every iteration, i.e.

wk+1 = wk − η[Pk∇f (wk)]
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Digression - Preconditioned Gradient Descent

• But what is the “best” Pk around a specific iterate for a specific problem? For this, consider
the Hessian of g(v) = f (P

1
2v) and let us choose P such that the resulting κ = 1.

Recall that ∇g(v) = P
1
2 ∇f (P

1
2v) and hence, ∇2g(v) = P

1
2 [∇2f (P

1
2v)] (P

1
2 )T. If

P = [∇2f (P
1
2v)]

−1
= [∇2f (w)]

−1, then,

∇2g(v) = [∇2f (P
1
2v)]

−1
2 [∇2f (P

1
2v)] [∇2f (P

1
2v)]

−1
2 = Id

Around iterate wk , define Pk := [∇2f (wk)]
−1 and using the equivalence to preconditioned

gradient descent, the resulting update can be written as:

wk+1 = wk − η [∇2f (wk)]
−1∇f (wk)

If η = 1, we have recovered the Newton method! Hence, the Newton method can be thought of
as finding the best preconditioner (one that minimizes the condition number) at every iteration
of preconditioned GD.
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Newton Method

Using the equivalence to preconditioned GD, the Newton method is also equivalent to:

wk+1 = argmin

 f (wk) + ⟨∇f (wk),w − wk⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥w − wk∥2
∇2f (wk )︸ ︷︷ ︸

Stay close to wk


i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the “local norm” induced by the Hessian at wk) to the current point.

Example: Consider solving w∗ = argmin f (w) := 1
2w

TAw − bw + c . We know that
∇f (w) = Aw − b = A(w −w∗) and ∇2f (w) = A. Starting from point w0, consider the Newton
update with η = 1,

w1 = w0 − [A−1]A(w0 − w∗) = w∗

i.e. the Newton method can minimize quadratics in one step. In this case, Pk = P = A
−1 and

hence, g(v) = f (A
−1

2v) = 1
2 [A

−1
2v ]TA[A

−1
2v ]− b[A

−1
2v ] + c = 1

2v
Tv − bA

−1
2v + c . Computing

the Hessian of g(v), ∇2g(v) = Id which has κ = 1.
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Questions?
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