
CMPT 409/981: Optimization for Machine Learning

Lecture 7

Sharan Vaswani

September 26, 2024

Recap

Polyak Momentum: Compute the gradient at wk and then extrapolate:
vk = wk + βk(wk − wk−1);wk+1 = vk − η∇f (wk).

Figure 1: Comparing GD vs HB momentum (with theoretical (η, β)) on a strongly-convex quadratic

1

Minimizing strongly-convex quadratics with HB momentum

Update: wk+1 = wk − η∇f (wk) + β(wk − wk−1)

Claim: For L-smooth, µ-strongly convex quadratics s.t. f (w) = 1
2w

TAw − bw + c where A is

symmetric, positive semi-definite, HB momentum with η = 4
(
√
L+

√
µ)2

and β =
(√

κ−1√
κ+1

)2

converges as: ∥wT − w∗∥ ≤
√

2
(√

κ−1√
κ+1 + ϵT

)T

∥w0 − w∗∥, where, limT→∞ ϵT → 0.
Proof: [

wk+1 − w∗

wk − w∗

]
=

[
wk − w∗ − η∇f (wk) + β(wk − wk−1)

wk − w∗

]

=

[
wk − w∗ − ηA(wk − w∗) + β(wk − w∗)− β(wk−1 − w∗)

wk − w∗

]
(Since ∇f (w) = Aw , Aw∗ = b)

=⇒

[
wk+1 − w∗

wk − w∗

]
=

[
(1 + β)Id − ηA −βId

Id 0

][
wk − w∗

wk−1 − w∗

]
If β = 0, we can recover the same equation as GD. 2

Minimizing strongly-convex quadratics with HB momentum

[
wk+1 − w∗

wk − w∗

]
︸ ︷︷ ︸

:=∆k+1∈R2d

=

[
(1 + β)Id − ηA −βId

Id 0

]
︸ ︷︷ ︸

:=H∈R2d×2d

[
wk − w∗

wk−1 − w∗

]
︸ ︷︷ ︸

:=∆k∈R2d

=⇒ ∆k+1 = H∆k

Recursing from k = 0 to T − 1, and taking norm,

∥∆T∥ =
∥∥HT∆0

∥∥ ≤
∥∥HT

∥∥ ∥∥∥∥∥
[
w0 − w∗

w−1 − w∗

]∥∥∥∥∥ (By definition of the matrix norm)

Define w−1 = w0 and lower-bounding the LHS,

∥wT − w∗∥ ≤
√

2
∥∥HT

∥∥ ∥w0 − w∗∥

Hence, we have reduced the problem to bounding
∥∥HT

∥∥.

3

Minimizing strongly-convex quadratics with HB momentum

Recall that for symmetric matrices, ∥B∥2 = ρ(B). Unfortunately, this relation is not true for
general asymmetric matrices, and ∥B∥ ≥ ρ(B).

Gelfand’s Formula: For a matrix B ∈ Rd×d such that ρ(B) := maxi∈[d] |λi |, then there exists a
sequence ϵk ≥ 0 such that limk→∞ ϵk = 0 and,∥∥Bk

∥∥ ≤ (ρ(B) + ϵk)
k .

Using this formula with our bound,

∥wT − w∗∥ ≤
√

2 (ρ(H) + ϵT)
T ∥w0 − w∗∥

Hence, we have reduced the problem to bounding ρ(H).

4

Minimizing strongly-convex quadratics with HB momentum

Similar to the GD case, let A = UΛUT be the eigen-decomposition of A, then,
(1 + β) Id − ηA = USUT where Si,i = 1 + β − ηλi . Hence,

H =

[
UT 0
0 UT

] [
(1 + β)Id − ηΛ −βId

Id 0

]
︸ ︷︷ ︸

:=H

[
U 0
0 U

]

Since U is orthonormal, ρ(H) = ρ(H). Hence we have reduced the problem to bounding ρ(H).

5

Minimizing strongly-convex quadratics with HB momentum

Let P be a permutation matrix such that:

Pi,j =


1 i is odd, j = i

1 i is even, j = d + i

0 otherwise

B = P H PT =


H1 0 . . . 0
0 H2 . . . 0
...

. . .
0 0 Hd


where,

Hi =

[
(1 + β)− ηλi −β

1 0

]
Note that ρ(H) = ρ(B) (a permutation matrix does not change the eigenvalues). Since B is a

block diagonal matrix, ρ(B) = maxi [ρ(Hi)]. Hence we have reduced the problem to bounding
ρ(Hi).

6

Minimizing strongly-convex quadratics with HB momentum

For a fixed i ∈ [d], let us compute the eigenvalues of Hi ∈ R2×2 by solving the characteristic
polynomial: det(Hi − uI2) = 0 w.r.t u.

u2 − (1 + β − ηλi)u + β = 0 =⇒ u =
1
2

[
(1 + β − ηλi)±

√
(1 + β − ηλi)2 − 4β

]
Let us set β such that, (1 + β − ηλi)

2 ≤ 4β. This ensures that the roots to the above equation
are complex conjugates. Hence,

1 + β − ηλi ≥ −2
√
β =⇒ (

√
β + 1) ≥

√
ηλi =⇒ β ≥ (1 −

√
ηλi)

2

If we ensure that β ≥ (1 −
√
ηλi)

2

u =
1
2

[
(1 + β − ηλi)± i

√
4β − (1 + β − ηλi)2

]
=⇒ |u|2 =

1
4
[
(1 + β − ηλi)

2 + 4β − (1 + β − ηλi)
2] = β =⇒ |u| =

√
β.

Hence, if β ≥ (1 −
√
ηλi)

2, ρ(Hi) =
√
β and ρ(B) = maxi [ρ(Hi)] =

√
β.

7

Minimizing strongly-convex quadratics with HB momentum

Using the result from the previous slide, if we ensure that for all i , β ≥ (1 −
√
ηλi)

2, then,
ρ(B) =

√
β. Hence, we want that,

β = max
i
{(1 −

√
ηλi)

2} ≤ max
λ∈[µ,L]

{(1 −
√
ηλ)2} = max{(1 −√

ηµ)2, (1 −
√
ηL)2}

Similar to GD, we equate the two terms in the max,

1 + ηµ− 2
√
ηµ = 1 + ηL− 2

√
ηL =⇒ η =

4
(
√
L+

√
µ)2

.

With this value of η, ρ(H) = ρ(H) = ρ(B) ≤
√
β =

√(
1 − 2

√
µ

(
√
L+

√
µ)

)2
=

√
L−√

µ√
L+

√
µ
=

√
κ−1√
κ+1 .

Putting everything together,

∥wT − w∗∥ ≤
√

2
(√

κ− 1√
κ+ 1

+ ϵT

)T

∥w0 − w∗∥

8

Questions?

8

Gradient Descent and Newton’s method

For L-smooth, µ-strongly convex functions,

Gradient Descent (GD) results in an O (exp (−T/κ)) rate.

Nesterov acceleration can speed up the convergence and results in an Θ(exp (−T/
√
κ)) rate.

Lower-Bound: Without additional assumptions, no first-order algorithm (one that only relies
on gradient information) can attain a dimension-free rate faster than Ω (exp (−T/

√
κ)).

Next, we will use second-order (Hessian) information to minimize twice differentiable, L-smooth
and µ-strongly convex functions and get faster rates under additional assumptions.

9

Gradient Descent and Newton’s method

Recall the GD update: wk+1 = wk − η∇f (wk). This can also be written as:

wk+1 = argmin
w

 f (wk) + ⟨∇f (wk),w − wk⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥w − wk∥2︸ ︷︷ ︸
Stay close to wk


i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the Euclidean norm) to the current point.

If f is twice-differentiable, and we approximate it by a second-order Taylor series expansion,

wk+1 = argmin
w

f (wk) + ⟨∇f (wk),w − wk⟩+
1
2
(w − wk)

T ∇2f (wk) (w − wk)︸ ︷︷ ︸
Second-order Taylor series approximation


=⇒ wk+1 = wk − [∇2f (wk)]

−1[∇f (wk)] (Newton Update)

10

Digression - Preconditioned Gradient Descent

Recall that GD achieves an O
(
κ log

(1
ϵ

))
convergence rate, and the condition number κ ≥ 1 is

the measure of problem difficulty.

Idea: Reparameterize the space so that the minimum function value remains the same, but
condition number in the reparameterized space is smaller enabling GD to converge faster.

Example: minw∈R2 f (w) = 1
2w

TAw where A =

[
L 0
0 µ

]
. For the above problem, w∗ = 0,

f (w∗) = 0 and κ = L
µ .

Let us choose a preconditioning matrix Q ∈ R2×2 such that w = Qv , and write the
reparameterized function g(v) := 1

2 [Qv]
TA[Qv] = 1

2v
TQTAQv .

If we choose Q =

[
1√
L

0
0 1√

µ

]
, QTAQ = I , g(v) = 1

2v
Tv . Clearly, v∗ = 0 and g(v∗) = 0 and

w∗ = Qv∗ = 0. For this problem, κ = 1 making it easier to solve using GD.

11

Digression - Preconditioned Gradient Descent

Formalizing the intuition on the previous slide, define a positive definite, symmetric matrix
Q ∈ Rd×d such that w = Qv and hence, v = Q

−1
w . Define g(v) := f (Qv).

Q: If w∗ = argminw f (w) and v∗ = argminv g(v), is f (w∗) = g(v∗)?

Computing the gradient of g(v), ∇g(v) = QT ∇f (Qv). Running GD on g(v), we get that,

vk+1 = vk − η∇g(vk) = vk − η[QT ∇f (Qvk)] = vk − η[QT ∇f (wk)]

=⇒ Q
−1
wk+1 = Q

−1
wk − η[Q∇f (wk)] =⇒ wk+1 = wk − η [QQT∇f (wk)]

Define a positive definite, symmetric P such that P = QQT. Since Q is symmetric, Q = P
1
2 .

Hence, for w = P
1
2v ,

wk+1 = wk − η [P∇f (wk)] (Preconditioned GD)

i.e., compute the gradient, “precondition” it by matrix P and then do the GD step.

12

Digression - Preconditioned Gradient Descent

Equivalent formulations of preconditioned gradient descent to minimize f (w),

Reparameterizing the space using a positive definite, symmetric matrix P
1
2 such that

v = P
−1

2w and using GD to minimize g(v) := f (P
1
2v).

Use GD with the preconditioned gradient P∇f (w).
The preconditioned GD update at iteration k can be written as:

wk+1 = argmin

 f (wk) + ⟨∇f (wk),w − wk⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥w − wk∥2
P

−1︸ ︷︷ ︸
Stay close to wk


i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the norm induced by matrix P

−1) to the current point.

We can also use a different preconditioner at every iteration, i.e.

wk+1 = wk − η[Pk∇f (wk)]

13

Digression - Preconditioned Gradient Descent

• But what is the “best” Pk around a specific iterate for a specific problem? For this, consider
the Hessian of g(v) = f (P

1
2v) and let us choose P such that the resulting κ = 1.

Recall that ∇g(v) = P
1
2 ∇f (P

1
2v) and hence, ∇2g(v) = P

1
2 [∇2f (P

1
2v)] (P

1
2)T. If

P = [∇2f (P
1
2v)]

−1
= [∇2f (w)]

−1, then,

∇2g(v) = [∇2f (P
1
2v)]

−1
2 [∇2f (P

1
2v)] [∇2f (P

1
2v)]

−1
2 = Id

Around iterate wk , define Pk := [∇2f (wk)]
−1 and using the equivalence to preconditioned

gradient descent, the resulting update can be written as:

wk+1 = wk − η [∇2f (wk)]
−1∇f (wk)

If η = 1, we have recovered the Newton method! Hence, the Newton method can be thought of
as finding the best preconditioner (one that minimizes the condition number) at every iteration
of preconditioned GD.

14

Newton Method

Using the equivalence to preconditioned GD, the Newton method is also equivalent to:

wk+1 = argmin

 f (wk) + ⟨∇f (wk),w − wk⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥w − wk∥2
∇2f (wk)︸ ︷︷ ︸

Stay close to wk


i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the “local norm” induced by the Hessian at wk) to the current point.

Example: Consider solving w∗ = argmin f (w) := 1
2w

TAw − bw + c . We know that
∇f (w) = Aw − b = A(w −w∗) and ∇2f (w) = A. Starting from point w0, consider the Newton
update with η = 1,

w1 = w0 − [A−1]A(w0 − w∗) = w∗

i.e. the Newton method can minimize quadratics in one step. In this case, Pk = P = A
−1 and

hence, g(v) = f (A
−1

2v) = 1
2 [A

−1
2v]TA[A

−1
2v]− b[A

−1
2v] + c = 1

2v
Tv − bA

−1
2v + c . Computing

the Hessian of g(v), ∇2g(v) = Id which has κ = 1.
15

Questions?

15

