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e Gradient Descent: wy 1 = wx — nV 1 (wg).
o Nesterov Acceleration: wy 1 = [wx + Br(wx — wx—1)] — NV (wi + Br(wi — wg—1)).

@ Nesterov acceleration can be interpreted as doing GD on “extrapolated” points where [y
can be interpreted as the “momentum” in the previous direction (wx — wk_1).



Minimizing Smooth, Strongly-Convex Functions

e Recall that for smooth, convex functions, GD is sub-optimal (convergence rate of O(1/¢)) and
can be improved by using Nesterov acceleration (convergence rate of ©(1/e)).

e For smooth, strongly-convex functions, the convergence rate of GD is O (k log (1/e)).
e Is GD optimal when minimizing smooth, strongly-convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, strongly-convex function such that
any first-order method requires Q (\/x log (1/¢)) iterations.

e GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is
optimal and requires © (y/k log (1/¢)) iterations



Nesterov Acceleration for Smooth, Strongly-Convex Functions

Nesterov acceleration results in the O (y/k log(%/c)) rate for smooth, strongly-convex functions.

In order to obtain this rate, the algorithm requires the following parameter settings: 1 = % and,
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Refer to Bubeck, 3.7.1 for the analysis.

@ Compared to the smooth, convex setting for which (3, varies, the strongly-convex setting
requires a constant [, in order to attain the accelerated rate.

@ Compared to GD, for smooth, strongly-convex functions, Nesterov acceleration requires
knowledge of x (and hence ) in order to set [3.

@ Unlike estimating L, estimating p is difficult, and misestimating it can result in bad
empirical performance. Common trick that results in decent performance is to use the

convex parameters with restarts.



Function class L-smooth | L-smooth + convex | L-smooth + p-strongly convex
Gradient Descent O (Y/e) O (Ye) O (# log (1/e))
Nesterov Acceleration = O (1/ve) O (Vr log (1/e))

Table 1: Optimization Zoo

@ For all cases, n = % for both GD and Nesterov acceleration, and we can use Armijo
line-search to estimate L and set the step-size.
@ Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires

knowledge of p to set fy.



Questions?



Heavy-Ball Momentum

@ Heavy Ball or Polyak momentum is often used as an alternative to Nesterov acceleration,
especially in ML.

@ It is one of the building blocks of commonly used methods such as Adam.

@ Nesterov Acceleration: v, = wy + Bi(wk — wk—1); W1 = vk — NV (vk) i.e. extrapolate
and compute the gradient at the extrapolated point v.

Polyak Momentum: Compute the gradient at wy and then "

L B = Wir)

extrapolate: vk = wi + Br(wk — wik—1); k1 = vk — NV (wg). Wy

Wi-1

@ When minimizing quadratics: f(w) = %WTAW — bw + ¢ where A is symmetric, positive
semi-definite, or equivalently solve linear systems of the form: Aw = b, using Polyak
momentum with optimal values of (1, 3) is equivalent to conjugate gradient.



Heavy-Ball Momentum

Brief History

e Quadratics: HB momentum with a specific (1, 8) can achieve the accelerated rate and
obtain a dependence on \/k asymptotically [Pol64].

o Quadratics: HB momentum with a different (7, 3) can achieve a non-asymptotic
accelerated rate after certain number of burn-in iterations (that depends on ) [WLAZ21].

@ General smooth, SC functions: Using Polyak’s (7, 3) parameters can result in cycling and
HB momentum is not guaranteed to converge [LRP16].

e General smooth, SC functions: Using a different (7, $), HB momentum can converge and
match the GD rate (no acceleration) [GFJ15].

@ General smooth, SC functions + Diagonal Hessian + Lipschitz-continuity of Hessian: Using
a different (7, 5), HB momentum matches the GD rate at the beginning, but achieves the
accelerated rate after O(k) iterations [WLWH22].

@ General smooth, SC functions + Lipschitz-continuity of Hessian: HB momentum with any
(n, B) will either result in a non-accelerated rate or will not converge [GTD23].



Heavy-Ball Momentum

e We will focus on minimizing strongly-convex quadratics: f(w) = 1wTAw — bw + c, where A

is a symmetric positive definite matrix.

Claim: For L-smooth, p-strongly convex quadratics, HB momentum with n = —*—_ and
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8= (ﬁj) achieves the following convergence rate:
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where e > 0 and lim7_ o e7 = 0.

2
e HB momentum with p = 1 and 3 = (1 — ﬁ) achieves a slightly-worse, but accelerated
non-asymptotic rate [WLA21].
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Minimizing strongly-convex quadratics with GD

e As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics.

Claim: For L-smooth, p-strongly convex quadratics, GD with n = ﬁ achieves the following
convergence rate:

Proof: For quadratics, Vf(w) = Aw — b,
Wir1 = wx — VI (wk) = wi — n[Aw, — b]

= W1 — W' = [lwie — w* —n[Awi — b]||
= ||wk — w* — n[Awx — Aw*]||  (Since Vf(w*) =0 = Aw* = b)
= [wirs = w'l| = [[(lg = nA) (e = W)l < |llg = nAll; [[wi — w?||
(By definition of the matrix norm: for matrix B, ||B||, = max { ”HB"/VHHZ} for all vectors v = 0)

We have thus reduced the problem to bounding ||lg — nAl,.



Minimizing strongly-convex quadratics with GD

Recall that [|wyy1 — w*|| < ||[lg — nAl|, [[wk — w*||. Since f is L-smooth and p-strongly convex,
wuly X V2f(w) =A< Lly.

If A= UAUT is the eigen-decomposition of A, and A1, A2, ..., Ay are the eigenvalues of A, then,
lg —nA = USUT where S;; =1 —n);.

4 — nAll, = [|S]|,. By definition of the matrix norm, for

symmetric matrices,

1Blly = p(B) := max{[\[B][, [A2[B]| - -, [Aa[B][}
where p(B) is the spectral radius of B.
Let us choose a step-size 1) € H, ﬂ Hence,
M =nAlla = 1512 = £(S) = max{[[S]], A2AS] -, Aa[SII} < max {1 —nAl}
Hla — nAll, = max{|1l —nu|, |1 —nL|} (Since 1 — 77)\ is linear in \)



Minimizing strongly-convex quadratics with GD

Recall that [[wicys — w*| < s — nAl, we — w*|| and ||l — nAll, < max{|L — | |1 — nL]}.
: 11
Since n € [Zv ﬁ},

L—p
Iy — nAll, < 1-— [—1)}=—2~
[[la = nAll, < max{1 —nu,n } [y

(By setting n = ﬁ we minimize max{1 — nu,nL — 1})

Putting everything together,

K —

L—p 1
Iwierr = wll < 7= lwic = Wl = ——= [lwic — w7

Recursing from k=0to T — 1,
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Questions?
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