CMPT 409/981: Optimization for Machine Learning Lecture 6

Sharan Vaswani

September 24, 2024

- Gradient Descent: $w_{k+1} = w_k \eta \nabla f(w_k)$.
- Nesterov Acceleration: $w_{k+1} = [w_k + \beta_k (w_k w_{k-1})] \eta \nabla f(w_k + \beta_k (w_k w_{k-1})).$
- Nesterov acceleration can be interpreted as doing GD on "extrapolated" points where β_k can be interpreted as the "momentum" in the previous direction $(w_k - w_{k-1})$.
- Recall that for smooth, convex functions, GD is sub-optimal (convergence rate of $O(1/\epsilon)$) and can be improved by using Nesterov acceleration (convergence rate of $\Theta(1/{\sqrt{\epsilon}})).$
- For smooth, strongly-convex functions, the convergence rate of GD is $O(\kappa \log(1/\epsilon))$.
- Is GD optimal when minimizing smooth, strongly-convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, strongly-convex function such that **and remains any first-order method requires** $\Omega(\sqrt{\kappa} \log(1/\epsilon))$ iterations.

• GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is \overline{C} is sub-optimal iof minimizing sinooth, so
optimal and requires $\Theta\left(\sqrt{\kappa} \log{(1/\epsilon)}\right)$ iterations

Nesterov Acceleration for Smooth, Strongly-Convex Functions

Nesterov acceleration results in the $O\left(\sqrt{\kappa} \log(1/\epsilon)\right)$ rate for smooth, strongly-convex functions.

In order to obtain this rate, the algorithm requires the following parameter settings: $\eta=\frac{1}{L}$ and,

$$
\beta_k = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
$$

Refer to Bubeck, 3.7.1 for the analysis.

- **•** Compared to the smooth, convex setting for which β_k varies, the strongly-convex setting requires a constant β_k in order to attain the accelerated rate.
- Compared to GD, for smooth, strongly-convex functions, Nesterov acceleration requires knowledge of κ (and hence μ) in order to set β_k .
- \bullet Unlike estimating L, estimating μ is difficult, and misestimating it can result in bad empirical performance. Common trick that results in decent performance is to use the convex parameters with restarts.

- For all cases, $\eta = \frac{1}{L}$ for both GD and Nesterov acceleration, and we can use Armijo line-search to estimate L and set the step-size.
- Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires knowledge of μ to set β_k .

Questions?

Heavy-Ball Momentum

- \bullet Heavy Ball or Polyak momentum is often used as an alternative to Nesterov acceleration, especially in ML.
- It is one of the building blocks of commonly used methods such as Adam.
- Nesterov Acceleration: $v_k = w_k + \beta_k (w_k w_{k-1})$; $w_{k+1} = v_k \eta \nabla f(v_k)$ i.e. extrapolate and compute the gradient at the extrapolated point v_k .

Polyak Momentum: Compute the gradient at w_k and then extrapolate: $v_k = w_k + \beta_k (w_k - w_{k-1}); w_{k+1} = v_k - \eta \nabla f(w_k).$

When minimizing quadratics: $f(w) = \frac{1}{2}w^{\mathsf{T}} A w - bw + c$ where A is symmetric, positive semi-definite, or equivalently solve linear systems of the form: $Aw = b$, using Polyak momentum with *optimal* values of (η, β) is equivalent to conjugate gradient.

Heavy-Ball Momentum

Brief History

- Quadratics: HB momentum with a specific (η, β) can achieve the accelerated rate and $\frac{1}{2}$ determined the momentum man a opening $(1, 0)$ obtain a dependence on $\sqrt{\kappa}$ asymptotically [\[Pol64\]](#page-13-0).
- Quadratics: HB momentum with a different (η, β) can achieve a non-asymptotic accelerated rate after certain number of burn-in iterations (that depends on κ) [\[WLA21\]](#page-14-0).
- General smooth, SC functions: Using Polyak's (η, β) parameters can result in cycling and HB momentum is not guaranteed to converge [\[LRP16\]](#page-13-1).
- General smooth, SC functions: Using a different (η, β) , HB momentum can converge and match the GD rate (no acceleration) [\[GFJ15\]](#page-13-2).
- \bullet General smooth, SC functions $+$ Diagonal Hessian $+$ Lipschitz-continuity of Hessian: Using a different (η, β) , HB momentum matches the GD rate at the beginning, but achieves the accelerated rate after $O(\kappa)$ iterations [\[WLWH22\]](#page-14-1).
- \bullet General smooth, SC functions $+$ Lipschitz-continuity of Hessian: HB momentum with any (η, β) will either result in a non-accelerated rate or will not converge [\[GTD23\]](#page-13-3).

Heavy-Ball Momentum

• We will focus on minimizing strongly-convex quadratics: $f(w) = \frac{1}{2}w^{T}Aw - bw + c$, where A is a symmetric positive definite matrix.

Claim: For L-smooth, μ -strongly convex quadratics, HB momentum with $\eta = \frac{4}{\sqrt{L}}$ $\frac{4}{(\sqrt{L}+\sqrt{\mu})^2}$ and $\beta=\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^2$ achieves the following convergence rate:

$$
\|w_{\mathcal{T}}-w^*\|\leq \sqrt{2}\,\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}+\epsilon_{\mathcal{T}}\right)^{\mathcal{T}}\,\|w_0-w^*\|
$$

where $\epsilon_T > 0$ and $\lim_{T \to \infty} \epsilon_T = 0$.

 \bullet HB momentum with $\eta=\frac{1}{L}$ and $\beta=\left(1-\frac{1}{2\sqrt{\kappa}}\right)^2$ achieves a slightly-worse, but accelerated non-asymptotic rate [\[WLA21\]](#page-14-0).

$$
\|w_{\mathcal{T}}-w^*\| \leq 4\sqrt{\kappa} \left(1-\frac{1}{2\sqrt{\kappa}}\right)^{\mathcal{T}} \|w_0-w^*\|
$$

Minimizing strongly-convex quadratics with GD

• As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics. **Claim**: For L-smooth, μ -strongly convex quadratics, GD with $\eta = \frac{2}{\mu + L}$ achieves the following convergence rate:

$$
\|w_T - w^*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^T \|w_0 - w^*\|
$$

Proof: For quadratics, $\nabla f(w) = Aw - b$,

$$
w_{k+1} = w_k - \eta \nabla f(w_k) = w_k - \eta [Aw_k - b]
$$

\n
$$
\implies ||w_{k+1} - w^*|| = ||w_k - w^* - \eta [Aw_k - b]||
$$

\n
$$
= ||w_k - w^* - \eta [Aw_k - Aw^*]|| \qquad \text{(Since } \nabla f(w^*) = 0 \implies Aw^* = b)
$$

\n
$$
\implies ||w_{k+1} - w^*|| = ||(I_d - \eta A)(w_k - w^*)|| \le ||I_d - \eta A||_2 ||w_k - w^*||
$$

\n(By definition of the matrix norm: for matrix B , $||B||_2 = \max \left\{ \frac{||Bv||_2}{||v||_2} \right\}$ for all vectors $v \neq 0$)
\nWe have thus reduced the problem to bounding $||I_d - \eta A||_2$.

Minimizing strongly-convex quadratics with GD

Recall that $||w_{k+1} - w^*|| \le ||I_d - \eta A||_2 ||w_k - w^*||$. Since f is L-smooth and μ -strongly convex, $\mu I_d \preceq \nabla^2 f(w) = A \preceq L I_d$.

If $A = U\Lambda U^{\dagger}$ is the eigen-decomposition of A , and $\lambda_1, \lambda_2, \ldots, \lambda_d$ are the eigenvalues of A , then, $I_d - \eta A = USU^{\mathsf{T}}$ where $S_{i,i} = 1 - \eta \lambda_i$.

Since U is an orthonormal matrix, $\|I_d-\eta A\|_2=\|S\|_2$. By definition of the matrix norm, for symmetric matrices,

$$
||B||_2 = \rho(B) := \max\{|\lambda_1[B]|, |\lambda_2[B]|, \ldots, |\lambda_d[B]| \}
$$

where $\rho(B)$ is the spectral radius of B.

Let us choose a step-size $\eta \in \left[\frac{1}{L},\frac{1}{\mu}\right]$. Hence,

 $\left\|I_d-\eta A\right\|_2=\left\|S\right\|_2=\rho(S)=\max\{|\lambda_1[S]| \,, |\lambda_2[S]| \,, \ldots, |\lambda_d[S]|\} \leq \max_{\lambda\in[\mu,L]}\{|1-\eta\lambda|\}$

 $||I_d - \eta A||_2 = \max\{|1 - \eta \mu|, |1 - \eta L|\}$ (Since $1 - \eta \lambda$ is linear in λ)

Minimizing strongly-convex quadratics with GD

Recall that $||w_{k+1} - w^*|| \le ||I_d - \eta A||_2 ||w_k - w^*||$ and $||I_d - \eta A||_2 \le \max\{|1 - \eta \mu|, |1 - \eta L|\}.$ Since $\eta \in \left[\frac{1}{L},\frac{1}{\mu}\right]$, $||I_d - \eta A||_2 \le \max\{1 - \eta \mu, \eta L - 1\} = \frac{L - \mu}{L + \mu}$ $L + \mu$ (By setting $\eta = \frac{2}{\mu + L}$, we minimize max $\{1 - \eta \mu, \eta L - 1\}$)

Putting everything together,

$$
\|w_{k+1} - w^*\| \le \frac{L - \mu}{L + \mu} \|w_k - w^*\| = \frac{\kappa - 1}{\kappa + 1} \|w_k - w^*\|
$$

Recursing from $k = 0$ to $T - 1$,

$$
\|w_{T}-w^*\| \leq \left(\frac{\kappa-1}{\kappa+1}\right)^T \|w_0-w^*\|.
$$

Questions?

- Ħ Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson, Global convergence of the heavy-ball method for convex optimization, 2015 European control conference (ECC), IEEE, 2015, pp. 310–315.
- E. Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut, Provable non-accelerations of the heavy-ball method, arXiv preprint arXiv:2307.11291 (2023).
- 暈 Laurent Lessard, Benjamin Recht, and Andrew Packard, Analysis and design of optimization algorithms via integral quadratic constraints, SIAM Journal on Optimization 26 (2016), no. 1, 57–95.
- F. Boris T Polyak, Some methods of speeding up the convergence of iteration methods, Ussr computational mathematics and mathematical physics 4 (1964), no. 5, 1–17.
- Jun-Kun Wang, Chi-Heng Lin, and Jacob D Abernethy, A modular analysis of provable 冨 acceleration via polyak's momentum: Training a wide relu network and a deep linear network, International Conference on Machine Learning, PMLR, 2021, pp. 10816–10827.
- F. Jun-Kun Wang, Chi-Heng Lin, Andre Wibisono, and Bin Hu, Provable acceleration of heavy ball beyond quadratics for a class of polyak-lojasiewicz functions when the non-convexity is averaged-out, International conference on machine learning, PMLR, 2022, pp. 22839–22864.