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Recap

Gradient Descent: wk+1 = wk − η∇f (wk).

Nesterov Acceleration: wk+1 = [wk + βk(wk − wk−1)]− η∇f (wk + βk(wk − wk−1)).

Nesterov acceleration can be interpreted as doing GD on “extrapolated” points where βk

can be interpreted as the “momentum” in the previous direction (wk − wk−1).
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Minimizing Smooth, Strongly-Convex Functions

• Recall that for smooth, convex functions, GD is sub-optimal (convergence rate of O(1/ϵ)) and
can be improved by using Nesterov acceleration (convergence rate of Θ(1/

√
ϵ)).

• For smooth, strongly-convex functions, the convergence rate of GD is O (κ log (1/ϵ)).

• Is GD optimal when minimizing smooth, strongly-convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, strongly-convex function such that
any first-order method requires Ω (

√
κ log (1/ϵ)) iterations.

• GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is
optimal and requires Θ(

√
κ log (1/ϵ)) iterations
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Nesterov Acceleration for Smooth, Strongly-Convex Functions

Nesterov acceleration results in the O (
√
κ log(1/ϵ)) rate for smooth, strongly-convex functions.

In order to obtain this rate, the algorithm requires the following parameter settings: η = 1
L and,

βk =

√
κ− 1√
κ+ 1

Refer to Bubeck, 3.7.1 for the analysis.

Compared to the smooth, convex setting for which βk varies, the strongly-convex setting
requires a constant βk in order to attain the accelerated rate.

Compared to GD, for smooth, strongly-convex functions, Nesterov acceleration requires
knowledge of κ (and hence µ) in order to set βk .

Unlike estimating L, estimating µ is difficult, and misestimating it can result in bad
empirical performance. Common trick that results in decent performance is to use the
convex parameters with restarts.
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Summary

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent Θ(1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Nesterov Acceleration - Θ(1/
√
ϵ) Θ (

√
κ log (1/ϵ))

Table 1: Optimization Zoo

For all cases, η = 1
L for both GD and Nesterov acceleration, and we can use Armijo

line-search to estimate L and set the step-size.

Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires
knowledge of µ to set βk .
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Questions?
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Heavy-Ball Momentum

Heavy Ball or Polyak momentum is often used as an alternative to Nesterov acceleration,
especially in ML.
It is one of the building blocks of commonly used methods such as Adam.
Nesterov Acceleration: vk = wk + βk(wk − wk−1) ;wk+1 = vk − η∇f (vk) i.e. extrapolate
and compute the gradient at the extrapolated point vk .

Polyak Momentum: Compute the gradient at wk and then
extrapolate: vk = wk + βk(wk − wk−1);wk+1 = vk − η∇f (wk).

When minimizing quadratics: f (w) = 1
2w

TAw − bw + c where A is symmetric, positive
semi-definite, or equivalently solve linear systems of the form: Aw = b, using Polyak
momentum with optimal values of (η, β) is equivalent to conjugate gradient.
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Heavy-Ball Momentum

Brief History

Quadratics: HB momentum with a specific (η, β) can achieve the accelerated rate and
obtain a dependence on

√
κ asymptotically [Pol64].

Quadratics: HB momentum with a different (η, β) can achieve a non-asymptotic
accelerated rate after certain number of burn-in iterations (that depends on κ) [WLA21].
General smooth, SC functions: Using Polyak’s (η, β) parameters can result in cycling and
HB momentum is not guaranteed to converge [LRP16].
General smooth, SC functions: Using a different (η, β), HB momentum can converge and
match the GD rate (no acceleration) [GFJ15].
General smooth, SC functions + Diagonal Hessian + Lipschitz-continuity of Hessian: Using
a different (η, β), HB momentum matches the GD rate at the beginning, but achieves the
accelerated rate after O(κ) iterations [WLWH22].
General smooth, SC functions + Lipschitz-continuity of Hessian: HB momentum with any
(η, β) will either result in a non-accelerated rate or will not converge [GTD23].
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Heavy-Ball Momentum

• We will focus on minimizing strongly-convex quadratics: f (w) = 1
2w

TAw − bw + c , where A

is a symmetric positive definite matrix.

Claim: For L-smooth, µ-strongly convex quadratics, HB momentum with η = 4
(
√
L+

√
µ)2

and

β =
(√

κ−1√
κ+1

)2
achieves the following convergence rate:

∥wT − w∗∥ ≤
√

2
(√

κ− 1√
κ+ 1

+ ϵT

)T

∥w0 − w∗∥

where ϵT ≥ 0 and limT→∞ ϵT = 0.

• HB momentum with η = 1
L and β =

(
1 − 1

2
√
κ

)2
achieves a slightly-worse, but accelerated

non-asymptotic rate [WLA21].

∥wT − w∗∥ ≤ 4
√
κ

(
1 − 1

2
√
κ

)T

∥w0 − w∗∥
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Minimizing strongly-convex quadratics with GD

• As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics.

Claim: For L-smooth, µ-strongly convex quadratics, GD with η = 2
µ+L achieves the following

convergence rate:

∥wT − w∗∥ ≤
(
κ− 1
κ+ 1

)T

∥w0 − w∗∥

Proof: For quadratics, ∇f (w) = Aw − b,

wk+1 = wk − η∇f (wk) = wk − η[Awk − b]

=⇒ ∥wk+1 − w∗∥ = ∥wk − w∗ − η[Awk − b]∥
= ∥wk − w∗ − η[Awk − Aw∗]∥ (Since ∇f (w∗) = 0 =⇒ Aw∗ = b)

=⇒ ∥wk+1 − w∗∥ = ∥(Id − ηA) (wk − w∗)∥ ≤ ∥Id − ηA∥2 ∥wk − w∗∥
(By definition of the matrix norm: for matrix B, ∥B∥2 = max

{
∥Bv∥2
∥v∥2

}
for all vectors v ̸= 0)

We have thus reduced the problem to bounding ∥Id − ηA∥2.
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Minimizing strongly-convex quadratics with GD

Recall that ∥wk+1 − w∗∥ ≤ ∥Id − ηA∥2 ∥wk − w∗∥. Since f is L-smooth and µ-strongly convex,
µId ⪯ ∇2f (w) = A ⪯ LId .

If A = UΛUT is the eigen-decomposition of A, and λ1, λ2, . . . , λd are the eigenvalues of A, then,
Id − ηA = USUT where Si,i = 1 − ηλi .

Since U is an orthonormal matrix, ∥Id − ηA∥2 = ∥S∥2. By definition of the matrix norm, for
symmetric matrices,

∥B∥2 = ρ(B) := max{|λ1[B]| , |λ2[B]| , . . . , |λd [B]|}

where ρ(B) is the spectral radius of B.

Let us choose a step-size η ∈
[

1
L ,

1
µ

]
. Hence,

∥Id − ηA∥2 = ∥S∥2 = ρ(S) = max{|λ1[S ]| , |λ2[S ]| , . . . , |λd [S ]|} ≤ max
λ∈[µ,L]

{|1 − ηλ|}

∥Id − ηA∥2 = max{|1 − ηµ| , |1 − ηL|} (Since 1 − ηλ is linear in λ)
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Minimizing strongly-convex quadratics with GD

Recall that ∥wk+1 − w∗∥ ≤ ∥Id − ηA∥2 ∥wk − w∗∥ and ∥Id − ηA∥2 ≤ max{|1 − ηµ| , |1 − ηL|}.

Since η ∈
[

1
L ,

1
µ

]
,

∥Id − ηA∥2 ≤ max{1 − ηµ, ηL− 1} =
L− µ

L+ µ

(By setting η = 2
µ+L , we minimize max{1 − ηµ, ηL− 1})

Putting everything together,

∥wk+1 − w∗∥ ≤ L− µ

L+ µ
∥wk − w∗∥ =

κ− 1
κ+ 1

∥wk − w∗∥

Recursing from k = 0 to T − 1,

∥wT − w∗∥ ≤
(
κ− 1
κ+ 1

)T

∥w0 − w∗∥ .
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Questions?
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