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Recap

For L-smooth, convex functions, GD with η = 1/L requires T = O
( 1
ϵ

)
iterations to return a

point wT that is ϵ-suboptimal meaning that f (wT ) ≤ f (w∗) + ϵ.

Lower Bound: For any initialization, there exists a smooth, convex function such that any
first-order method requires Ω

(
1√
ϵ

)
iterations.
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Nesterov Acceleration

Gradient Descent: wk+1 = GD(wk) where GD is a function such that GD(w) := w − η∇f (w).

Nesterov Acceleration: wk+1 = GD(wk + βk(wk −wk−1)) for βk ≥ 0 to be determined. Hence,

wk+1 = [wk + βk(wk − wk−1)]− η∇f (wk + βk(wk − wk−1))

i.e. Nesterov acceleration can be interpreted as doing GD on “extrapolated” points where βk can
be interpreted as the “momentum” in the previous direction (wk − wk−1).

If we define sequence vk := wk + βk(wk − wk−1), and initialize
w0 = v0, then, for k ≥ 1,

vk = wk + βk(wk − wk−1) ; wk+1 = vk − η∇f (vk) . (1)
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Nesterov Acceleration

By eliminating wk from the equation on the previous slide,

vk+1 = vk − ηk∇f (vk) + βk+1[vk − vk−1]− η βk+1[∇f (vk)−∇f (vk−1)]

i.e. Nesterov acceleration can be interpreted as moving along a combination of three directions –
the gradient direction ∇f (vk), the momentum direction for the iterates [vk − vk−1] and the
momentum direction for the gradients [∇f (vk)−∇f (vk−1)].

• Nesterov acceleration does not result
in monotonic descent in the function
values.

Figure 1: https://francisbach.com/continuized-acceleration/
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Nesterov Acceleration for Smooth, Convex Functions

Analysis: Define dk := βk(wk − wk−1), set η = 1
L and define gk := − 1

L∇f (wk + dk). For
simplicity, set w1 = w0. For k ≥ 1,

wk+1 = [wk + βk(wk − wk−1)]− η∇f (wk + βk(wk − wk−1))

=⇒ wk+1 = wk + dk −
1
L
∇f (wk + dk) = wk + dk + gk = GD(wk + dk)

In order to set the momentum parameter βk , we define a sequence {λk}Tk=1 such that,

λ0 = 0 ; λk =
1 +

√
1 + 4λ2

k−1

2
; βk+1 =

λk − 1
λk+1

(2)

Claim: For L-smooth, convex functions, Nesterov acceleration with η = 1
L , βk set according

to eq. (2) and T ≥
√

2L ∥w1−w∗∥√
ϵ

iterations to obtain point wT+1 that is ϵ-suboptimal meaning
that f (wT+1) ≤ f (w∗) + ϵ.

Hence, Nesterov acceleration is optimal for minimizing the class of smooth, convex functions!
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Nesterov Acceleration for Smooth, Convex Functions

In order to prove the claim, we will need the following lemma:
Lemma: When using Nesterov acceleration with η = 1

L , for any vector y ,
f (wk+1)− f (y) ≤ ⟨∇f (wk + dk),wk + dk − y⟩ − 1

2L ∥∇f (wk + dk)∥2.

Proof: Using L-smoothness, since Nesterov acceleration is equivalent to GD on wk + dk ,

f (wk+1)− f (wk + dk) ≤ ⟨∇f (wk + dk),wk+1 − wk − dk⟩+
L

2
∥wk+1 − wk − dk∥2

= −1
L
⟨∇f (wk + dk),∇f (wk + dk)⟩+

1
2L

∥∇f (wk + dk)∥2

=⇒ f (wk+1)− f (wk + dk) ≤
−1
2L

∥∇f (wk + dk)∥2

=⇒ f (wk+1)− f (y) ≤ f (wk + dk)− f (y)− 1
2L

∥∇f (wk + dk)∥2

Using convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ with x = wk + dk and y = y

=⇒ f (wk+1)− f (y) ≤ ⟨∇f (wk + dk),wk + dk − y⟩ − 1
2L

∥∇f (wk + dk)∥2 (3)
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Nesterov Acceleration for Smooth, Convex Functions

For any y , f (wk+1)− f (y) ≤ ⟨∇f (wk + dk),wk + dk − y⟩ − 1
2L ∥∇f (wk + dk)∥2.

Using the lemma with y = w∗, with f ∗ := f (w∗) and define ∆k := f (wk)− f ∗,

∆k+1 = f (wk+1)− f ∗ ≤ ⟨∇f (wk + dk),wk + dk − w∗⟩ − 1
2L

∥∇f (wk + dk)∥2

= −L

2

[
2
〈
−∇f (wk + dk)

L
, (wk − w∗) + dk

〉
+

1
L2 ∥∇f (wk + dk)∥2

]
=⇒ ∆k+1 ≤ −L

2

[
2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2

]
(4)

Using the lemma with y = wk ,

[f (wk+1)− f ∗]− [f (wk)− f ∗] ≤ ⟨∇f (wk + dk), dk⟩ −
1
2L

∥∇f (wk + dk)∥2

=⇒ ∆k+1 −∆k ≤ −L

2

[
2
〈
−∇f (wk + dk)

L
, dk

〉
+

1
L2 ∥∇f (wk + dk)∥2

]
=⇒ ∆k+1 −∆k ≤ −L

2

[
2⟨gk , dk⟩+ ∥gk∥2

]
(5)
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Nesterov Acceleration for Smooth, Convex Functions

• We want to combine equations eq. (4) and eq. (5) in order to get a handle on ∆T . For
λk > 1, let us calculate (λk − 1) eq. (5) + eq. (4) and also multiply both sides by λk ,

λk [(λk − 1) (∆k+1 −∆k) + ∆k+1]

≤ −Lλk

2

[
(λk − 1)

[
2⟨gk , dk⟩+ ∥gk∥2

]
+
[
2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2

]]
• Let us first simplify the LHS,

λk [(λk − 1) (∆k+1 −∆k) + ∆k+1] = λ2
k ∆k+1 − (λ2

k − λk)∆k

• We wish to sum from k = 1 to T , and telescope the terms. For the LHS, we want that,

λ2
k−1 = λ2

k − λk =⇒ λk =
1 +

√
1 + 4λ2

k−1

2
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Nesterov Acceleration for Smooth, Convex Functions

Simplifying the RHS: −Lλk

2

[
(λk − 1)

[
2⟨gk , dk⟩+ ∥gk∥2

]
+
[
2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2

]]
︸ ︷︷ ︸

(∗)

.

(∗) = λk

[
2⟨gk , dk⟩+ ∥gk∥2

]
−
[
2⟨gk , dk⟩+ ∥gk∥2 − 2⟨gk ,wk − w∗ + dk⟩ − ∥gk∥2

]
=

1
λk

[
λ2
k

(
2⟨gk , dk⟩+ ∥gk∥2

)
+ 2λk⟨gk ,wk − w∗⟩

]
=

1
λk

[
∥wk − w∗ + λkdk + λkgk∥2 − ∥wk − w∗ + λkdk∥2

]
We wish to sum from k = 1 to T , and telescope the terms. For the RHS, we want that,

wk − w∗ + λkdk + λkgk = wk+1 − w∗ + λk+1dk+1 = wk + dk + gk − w∗ + λk+1dk+1

= wk + dk + gk − w∗ + λk+1βk+1[wk+1 − wk ]

= wk + dk + gk − w∗ + λk+1 βk+1[wk + dk + gk − wk ]

=⇒ We want that: wk − w∗ + λk(dk + gk) = wk − w∗ + (1 + λk+1 βk+1) [dk + gk ]

This can be achieved if βk+1 = λk−1
λk+1

.
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Nesterov Acceleration for Smooth, Convex Functions

Recall that:
λ2
k ∆k+1 − (λ2

k − λk)∆k ≤ − Lλk
2

[
(λk − 1)

[
2⟨gk , dk⟩+ ∥gk∥2]+ [

2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2]].
• By using the sequence λk =

1+
√

1+4λ2
k−1

2 and setting βk+1 = λk−1
λk+1

,

λ2
k ∆k+1 − λ2

k−1 ∆k ≤ L

2

[
∥wk − w∗ + λkdk∥2 − ∥wk+1 − w∗ + λk+1dk+1∥2

]
Summing from k = 1 to T , since λ0 = 0

λ2
T∆T+1 ≤ L

2

[
∥w1 − w∗ + λ1d1∥2 − ∥wT+1 − w∗ + λT+1dT+1∥2

]
≤ L

2
∥w1 − w∗∥2 (Since w0 = w1 =⇒ d1 = β1(w1 − w0) = 0)

=⇒ ∆T+1 = f (wT+1)− f ∗ ≤ L

2λ2
T

∥w1 − w∗∥2 (6)
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Nesterov Acceleration for Smooth, Convex Functions

Recall that f (wT+1)− f ∗ ≤ L
2λ2

T
∥w1 − w∗∥2. Let us prove that λk ≥ k

2 by induction.

Base case: k = 1, λ1 =
1+
√

1+4λ2
0

2 = 1 ≥ 1
2 .

Inductive step: Assuming the statement is true for k − 1 i.e. λk−1 ≥ k−1
2 ,

λk =
1 +

√
1 + 4λ2

k−1

2
=

1 +
√

1 + (k − 1)2

2
≥ k

2
This completes the induction. Hence, λk ≥ k

2 and λT ≥ T
2 .

=⇒ f (wT+1)− f ∗ ≤ 2L ∥w1 − w∗∥2

T 2

Hence, Nesterov acceleration with η = 1
L and a carefully engineered βk sequence can obtain the

accelerated O
( 1
T2

)
rate for smooth, convex functions.
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Questions?
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Strongly convex functions

First-order definition: If f is differentiable, it is µ-strongly convex iff its domain D is a convex
set and for all x , y ∈ D and µ > 0,

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ

2
∥y − x∥2

i.e. for all y , the function is lower-bounded by the quadratic defined in the RHS.

Second-order definition: If f is twice differentiable, it is strongly-convex iff its domain D is a
convex set and for all x ∈ D,

∇2f (x) ⪰ µId

i.e. for all x , the eigenvalues of the Hessian are lower-bounded by µ.

Alternative condition: Function g(x) = f (x)− µ
2 ∥x∥2 is convex, i.e. if we “remove” a

quadratic (curvature) from f , it still remains convex.

Examples: Quadratics f (x) = xTAx + bx + c are µ-strongly convex if A ⪰ µId . If f is a convex
loss function, then g(x) := f (x) + λ

2 ∥x∥2 (the ℓ2-regularized loss) is λ-strongly convex.
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Strongly-convex functions

Strict-convexity: If f is differentiable, it is strictly-convex iff its domain D is a convex set and
for all x , y ∈ D,

f (y) > f (x) + ⟨∇f (x), y − x⟩
If f is µ strongly-convex, then it is also strictly convex.

Q: For a strictly-convex f , if ∇f (w∗) = 0, then is w∗ a unique minimizer of f ?

Ans: Yes, because for all y ∈ D, f (y) > f (w∗) and hence w∗ is a unique minimizer.

Q: Prove that the ridge regression loss function: f (w) = 1
2 ∥Xw − y∥2 + λ

2 ∥w∥2 is
strongly-convex. Compute µ.

Ans: Recall that ∇2f (w) = XTX + λId . Since ∇2f (w) ⪰ (λmin[X
TX ] + λ) Id , ridge regression

is µ-strongly convex with µ = λmin[X
TX ] + λ.

Q: Is f (w) = 1
2 ∥Xw − y∥2 strongly-convex?

Ans: Not necessarily, because ∇2f (w) = XTX might be low-rank, and have λmin[X
TX ] = 0.
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Strongly-convex functions

Q: Is negative entropy function f (x) = x ln(x) strictly-convex on (0, 1)?

Ans: Yes. f ′′(x) = 1/x > 0 for all x ∈ (0, 1).

Q: Is logistic regression: f (w) =
∑n

i=1 log (1 + exp (−yi ⟨Xi ,w⟩)) strongly-convex?

Ans: For logistic regression, ∇2f (w) = XTDX . Here, D is a diagonal matrix such that
Di,i = pi (1 − pi ) where pi = σ (⟨Xi ,w⟩) equal to Pr[ŷi = 1] (probability of prediction that point
i has label equal to 1) and σ(z) = 1

1+exp(−z) is the sigmoid function.
If XTX is full-rank and pi ∈ (0, 1) (the probability of prediction is bounded away from 0 or 1)
then ∇2f (w) ⪰ µId for µ = λmin[X

TDX ].
This implies that if XTX is full-rank, and the parameters are bounded (lie in a compact set) for
example, for some finite C ≥ 0, ∥w∥ ≤ C , then, logistic regression is strongly-convex.
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Questions?
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GD for Smooth, Strongly-Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer,
and for strongly-convex functions, the minimizer w∗ is unique.

Let us analyze the convergence of GD for smooth, strongly-convex problems: minw∈Rd f (w).

Claim: For L-smooth, µ-strongly convex functions, GD with η = 1
L requires

T ≥ L
µ log

(
∥w0−w∗∥2

ϵ

)
iterations to obtain a point wT that is ϵ-suboptimal in the sense that

∥wT − w∗∥2 ≤ ϵ.

Proof: Bounding the distance of the iterates to w∗,

∥wk+1 − w∗∥2 = ∥wk − η∇f (wk)− w∗∥2 = ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 ∥∇f (wk)∥2

L-smoothness: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1
2L ∥∇f (x)−∇f (y)∥2. Using x = w∗, y = wk ,

=⇒ ∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ 2L η2[f (wk)− f (w∗)] (7)
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GD for Smooth, Strongly-Convex Functions

µ-strong convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ
2 ∥y − x∥2. Using x = wk , y = w∗,

f (w∗) ≥ f (wk) + ⟨∇f (wk),w
∗ − wk⟩+

µ

2
∥wk − w∗∥2

=⇒ ⟨∇f (wk),wk − w∗⟩ ≥ f (wk)− f (w∗) +
µ

2
∥wk − w∗∥2 (8)

Combining Eq. 7 and 8,

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2η
[
f (wk)− f (w∗) +

µ

2
∥wk − w∗∥2

]
+ 2L η2[f (wk)− f (w∗)]

= ∥wk − w∗∥2 (1 − µη) + [f (wk)− f (w∗)]
(
−2η + 2Lη2)

=⇒ ∥wk+1 − w∗∥2 ≤
(
1 − µ

L

)
∥wk − w∗∥2 (Since η = 1

L ,
(
−2η + 2Lη2

)
= 0)

Recursing from k = 0 to T − 1,

=⇒ ∥wT − w∗∥2 ≤
(
1 − µ

L

)T
∥w0 − w∗∥2 ≤ exp

(
−µT

L

)
∥w0 − w∗∥2

(Using 1 − x ≤ exp(−x) for all x)
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GD for Smooth, Strongly-Convex Functions

The suboptimality ∥wT − w∗∥2 decreases at an O (exp(−T )) rate, i.e. the iterate wT

approaches the unique minimizer w∗. In order to obtain an iterate at least ϵ-close to w∗, we
need to make the RHS less than ϵ and quantify the number of required iterations.

exp

(
−µT

L

)
∥w0 − w∗∥2 ≤ ϵ =⇒ T ≥ L

µ
log

(
∥w0 − w∗∥2

ϵ

)
.

Hence, the convergence rate is O (log (1/ϵ)) which is exponentially faster compared to the
convergence rate for smooth, convex functions. This rate of convergence rate is referred to as
the linear rate.

Condition number: κ := L
µ is a problem-dependent constant that quantifies the hardness of the

problem (smaller κ implies that we need fewer iterations of GD).

Q: What κ corresponds to the easiest problem? Ans: 1 since L ≥ µ.

Q: What is the condition number for ridge regression: 1
2 ∥Xw − y∥2 + λ

2 ∥w∥2.

Ans: Recall that ∇2f (w) = XTX + λId . Hence κ = λmax[X
TX ]+λ

λmin[XTX ]+λ 16



GD for Smooth, Strongly-Convex Functions

Q: For L-smooth, µ-strongly convex functions, how many iterations do we need to ensure that
f (wT )− f (w∗) ≤ ϵ?

Ans: Since f is smooth, f (wT )− f (w∗) ≤ L
2 ∥wT − w∗∥2. Hence, if ∥wT − w∗∥2 ≤ 2ϵ

L , this will

guarantee that f (wT )− f (w∗) ≤ ϵ. This requires T ≥ L
µ log

(
L ∥w0−w∗∥2

2ϵ

)
iterations. We can

also directly bound f (wT )− f (w∗) in terms of f (w0)− f (w∗) and obtain the same rate as for
the iterates (In Assignment 2!).

• Gradient Descent is “adaptive” to strong-convexity i.e. it does not need to know µ to converge.

• The algorithm remains the same (use step-size η = 1
L ) regardless of whether we run it on a

convex or strongly-convex function.

• Since GD only requires knowledge of L, we can use the Back-tracking Armijo line-search to
estimate the smoothness, and obtain faster convergence in practice (In Assignment 1!).
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