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e For L-smooth, convex functions, GD with i = /1 requires T = O (1) iterations to return a
point wr that is e-suboptimal meaning that f(wr) < f(w*) +e.

e Lower Bound: For any initialization, there exists a smooth, convex function such that any

first-order method requires Q (%) iterations.



Nesterov Acceleration

Gradient Descent: w1 = GD(wy) where GD is a function such that GD(w) := w — nVf(w).
Nesterov Acceleration: wy1 = GD(wy + Sx(wkx — wi—1)) for Bx > 0 to be determined. Hence,
Wit1 = [Wk + Bi(wi — wi—1)] — VI (wie + Bre(wie — wi—1))

i.e. Nesterov acceleration can be interpreted as doing GD on “extrapolated” points where 3 can
be interpreted as the “momentum” in the previous direction (wy — wx_1).
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If we define sequence vk := wi + Bk(wk — wk—1), and initialize j Ve
wo = Vo, then, for k > 1, - U
B W — Wiy)

Vie = Wi+ Bi(Wie — wi—1) 5 Wik = vie —nVF(vie) . (1)
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Nesterov Acceleration

By eliminating wy from the equation on the previous slide,

Vierr = Vk — mkVF(vie) + Bria[vie = vie—1] = 7 Bia [VF(vie) — VF(vi—1)]

i.e. Nesterov acceleration can be interpreted as moving along a combination of three directions —
the gradient direction Vf(vx), the momentum direction for the iterates [vx — vx_1] and the
momentum direction for the gradients [Vf(vk) — Vf(vk_1)].
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Figure 1: nhttps://francisbach.com/continuized-acceleration/
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Nesterov Acceleration for Smooth, Convex Functions

Analysis: Define di := Sx(wx — wik—_1), set n = % and define gy := —%Vf(wk + dy). For
simplicity, set wy = wy. For k > 1,
Wit = [wi + Bi(wk — wi—1)] = nVF(wic + Br(wik — wi—1))

1
= Wkp1 = Wk +di — ZVf(Wk + dk) = wx + di + gk = GD(wy + di)

In order to set the momentum parameter x, we define a sequence {\«}]_; such that,

1+ /1+4X2 | A — 1
=0 @ ps—AL_— —— k

: = 2
3 Br+1 e (2)

Claim: For L-smooth, convex functions, Nesterov acceleration with p = 1, S« set according
toeq. (2) and T > w iterations to obtain point wr, that is e-suboptimal meaning
that f(WT+1) < f(W*) + €.

Hence, Nesterov acceleration is optimal for minimizing the class of smooth, convex functions!



Nesterov Acceleration for Smooth, Convex Functions

In order to prove the claim, we will need the following lemma:
Lemma: When using Nesterov acceleration with = 7, for any vector y,
f(wir1) — F(y) < (VF(wk + di), wk + dk — y) — 57 |V F(wi + di)|I>.

Proof: Using L-smoothness, since Nesterov acceleration is equivalent to GD on wy + d,
f(Wir1) — F(wi + di) < (VF(Wi + di), Wip1 — wi — di) + g Iwies1 — wi — die||?
= (T (s + d), V1w + o)) + o7 (97w + )|
— Flwker) — F(wi+ o) < o7 [F(wi+ )|
= fwier) — Fly) < Flwe + ok) = Fy) = o [VF(we + R
Using convexity: f(y) > f(x) + (Vf(x),y — x) with x = wy + dx and y = y
1

= (W) = F(y) < (VE(wic + di)s wic + dic = y) = o7 [V (e + di)|I? (3)
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Nesterov Acceleration for Smooth, Convex Functions

For any y, f(wir1) — f(y) < (VF(wi + di), wi + di — ) — 57 [IVF (e + di)|*.
Using the lemma with y = w*, with * := f(w*) and define Ay := f(wy) — f*,

1
A1 = F(Wies1) — F* < (VF(wi + die), wi + dic — w*) — o IV F(wi + di)||?
L |:2< 7Vf(Wk + dk)

1
(= W)+ )+ 5 [+ )

2 L
L
—> e < —3 (200w — w* + di) + ] *)

Using the lemma with y = w,

[f(wi1) = £7] = [F(wi) — £7]

IA

1
(VF(wic+ dh), di) = o [V F(wie + )|
75 |:2< 7Vf(Wk + dk)

N

= Apqp1 — Ay
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. 29 )+ 45 19w+ P

= [2(ew de) + lail] ©)

= App1 — Dy >
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Nesterov Acceleration for Smooth, Convex Functions

e \We want to combine equations eq. (4) and eq. (5) in order to get a handle on At. For
Ak > 1, let us calculate (Ax — 1) eq. (5) + eq. (4) and also multiply both sides by A,

Ak [(Ae = 1) (Akgr — Ak) + Dsqa]

< _% [o‘k - 1) [z(gkvdﬁ + ||gk|ﬂ + [2<gk’ Wi =W+ di) + IngIIZH

e Let us first simplify the LHS,
M [ = 1) (Bkgr = A) + Dipa] = A% Digr — (AF — M) Ax

e We wish to sum from k =1 to T, and telescope the terms. For the LHS, we want that,

14 ,/1+4X2

N1 =M = A= 5



Nesterov Acceleration for Smooth, Convex Functions

Simplifying the RHS: — 53¢ [(\k — 1) [2(gk, di) + llgell*] + [2(g, i — w* + i) + llgil?] |
()
2 2 * 2
() = A |20 i) + llgil*] = 281 de) + llll® — 2(gic we = w* + ) — l1gil?]

_ L
-5

1
= )\—k {HW’( —w* + \edi + /\kgk||2 — ||Wk —w"+ )\kdkuz}

2 (266 dl) + llgwl?) + 2e (i, wic — w*)]

We wish to sum from k =1 to T, and telescope the terms. For the RHS, we want that,
Wk — W" + Aedie + A8k = Wip1 — W' + Myadirs = Wi + di + 8k — W + Aep1ditr
= Wk + dk + 8k — W + A1 Biera [Wi 1 — wi]
= Wk + dk + 8k — W + A1 Brpa[wi + di + gk — wi]

= We want that: wx — w* + \e(di + gk) = wk — w* + (1 + A1 Brr1) [di + gk

N N . — Ak_l
This can be achieved if Bxi11 = SR .




Nesterov Acceleration for Smooth, Convex Functions

Recall that:

X Akrr — (OF = M) Ak < =555 [k — 1) [2(gk, de) + llgell®] + [2(gi, wie — w* + di) + [l &l*]]-
. 1+4/ A2 .

e By using the sequence )\ = * and setting Bxi1 = k;k:ll,

L * *
Ao Diy1 — Ap_ Ay < 3 {”Wk — W Ml |P — ([ Wapr — W+ /\k+1dk+1||2}

Summing from k =1to T, since \g =0

IN

L
AFATL > {||W1 —w'+ Ady | = flwra — w4+ )\T+1dT+1||2}

IN

L .
5 |lwy — W*H2 (Since wo = w; = di = SB1(ws — wp) = 0)

L
= Aty = f(wr) = < = [wn — w*|)? (6)
202
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Nesterov Acceleration for Smooth, Convex Functions

Recall that f(wry1) — F* < ﬁ lwi — w*||°. Let us prove that A, > X by induction.

1+4/1+402 1

Base case: k=1, \; = —5—=12>

N—=

Inductive step: Assuming the statement is true for k — 1 i.e. A1 > %

L+ 1+40 1 14 I (k_12 _k
=2

M= 2 - 2

This completes the induction. Hence, A\, > g and A\r > g

L 2L wa—w?
— f(WT+1) — < # ]
1

Hence, Nesterov acceleration with 7 = ; and a carefully engineered j3x sequence can obtain the

accelerated O (%) rate for smooth, convex functions.
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Questions?



Strongly convex functions

First-order definition: If f is differentiable, it is p-strongly convex iff its domain D is a convex
set and for all x,y € D and i > 0,

F(y) 2 F(x) + (VF(,y = x) + 5 lly = x|
i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.

Second-order definition: If f is twice differentiable, it is strongly-convex iff its domain D is a
convex set and for all x € D,
V2f(x) = ply

i.e. for all x, the eigenvalues of the Hessian are lower-bounded by .

Alternative condition: Function g(x) = f(x) — 5 || is convex, i.e. if we “remove” a
quadratic (curvature) from f, it still remains convex.

Examples: Quadratics f(x) = xTAx + bx + ¢ are p-strongly convex if A = ply. If fis a convex
loss function, then g(x) := f(x) + % ||x||> (the £>-regularized loss) is A-strongly convex.
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Strongly-convex functions

Strict-convexity: If f is differentiable, it is strictly-convex iff its domain D is a convex set and
for all x,y € D,
Fly) > F(x) +(VF(x),y = x)

If £ is p strongly-convex, then it is also strictly convex.
Q: For a strictly-convex f, if Vf(w*) =0, then is w* a unique minimizer of f?
Ans: Yes, because for all y € D, f(y) > f(w*) and hence w* is a unique minimizer.

. . . 2 o
Q: Prove that the ridge regression loss function: f(w) =1 | Xw — y||* + 5 [|w||” is
strongly-convex. Compute .
Ans: Recall that V2f(w) = XTX + My. Since V2f(w) = (Amin[XTX] + ) Iy, ridge regression
is u-strongly convex with 1 = Amin[XTX] + .
Q: s f(w) = 3 || Xw — y||? strongly-convex?
Ans: Not necessarily, because V2f(w) = XTX might be low-rank, and have \pin[XTX] = 0.
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Strongly-convex functions

Q: Is negative entropy function f(x) = x In(x) strictly-convex on (0,1)7
Ans: Yes. f(x) =1/x > 0 for all x € (0,1).
Q: Is logistic regression: f(w) = >""_, log (1 + exp (—y;(Xi, w))) strongly-convex?

Ans:  For logistic regression, V2f(w) = XTDX. Here, D is a diagonal matrix such that

D; i = pi (1 — p;) where p; = o ((Xi, w)) equal to Pr[y; = 1] (probability of prediction that point
i has label equal to 1) and o(z) = m is the sigmoid function.

If X™X is full-rank and p; € (0,1) (the probability of prediction is bounded away from 0 or 1)
then V2f(w) = uly for g1 = Amin[XTDX].

This implies that if X™X is full-rank, and the parameters are bounded (lie in a compact set) for
example, for some finite C > 0, |w|| < C, then, logistic regression is strongly-convex.
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Questions?



GD for Smooth, Strongly-Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer,
and for strongly-convex functions, the minimizer w* is unique.

Let us analyze the convergence of GD for smooth, strongly-convex problems: min,, cgd f(w).

Claim: For L-smooth, p-strongly convex functions, GD with n = % requires
%12
T > ﬁ log (M) iterations to obtain a point wt that is e-suboptimal in the sense that

lwr —w*|* <e.

Proof: Bounding the distance of the iterates to w*,

Wi = w*[|* = lwe =V (wie) = w*||* = llwi — w*[|* = 2n(VF (), we — w*) + 177 |V (wi) |
L-smoothness: f(y) > f(x) + (Vf(x),y — x) + 57 || VF(x) — Vi(y)|?. Using x = w*, y = wj,

= lwicrs = w™|1* < Jlwic — w¥l|* = 20(VF (wi), i — w”) + 2L [F (wie) — F(w")] (7)
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GD for Smooth, Strongly-Convex Functions

p-strong convexity: f(y) > f(x) + (VFf(x),y —x)+ 5 |ly — XH2. Using x = wy, y = w*,
F(w*) 2 F(w) + (VF(wi), w* = wid) + 5 [|wic = w
—> (VF(w), we = w) > F(w) = F(w*) + 5w — w | (8)
Combining Eq. 7 and 8,
Iwicsa = wI < llwe = w1 =20 [ F(wi) = F(w) + 5 llw = w || + 2Ln2[F(w) = F(w)
= [lwk — w*[|* (1 = ) + [F(wie) = F(w")] (=21 + 2Ln?)

— [lwesz —wIP < (1= 5) flwe —we? (Since n = L, (=25 + 2Ln?) = 0)

Recursing from k=0to T — 1,

T T .
— Jlwr —w' P < (1= 7)o — w*|* < exp (’Q) lwo — w1

(Using 1 — x < exp(—x) for all x)
15



GD for Smooth ngly-Convex Functions

The suboptimality ||wr — w*||* decreases at an O (exp(—T)) rate, i.e. the iterate wr
approaches the unique minimizer w*. In order to obtain an iterate at least e-close to w*, we
need to make the RHS less than e and quantify the number of required iterations.

uT 2 L lwo — w|?
exp|——)[wo—w'|"<e = T>—log| —— | .
L I €

Hence, the convergence rate is O (log (1/¢)) which is exponentially faster compared to the
convergence rate for smooth, convex functions. This rate of convergence rate is referred to as
the linear rate.

Condition number: « := ﬁ is a problem-dependent constant that quantifies the hardness of the
problem (smaller x implies that we need fewer iterations of GD).
Q: What k corresponds to the easiest problem?  Ans: 1 since L > pu.

. o . . 2 2
Q: What is the condition number for ridge regression: 3 | Xw — y||° + 5 [[w|".

Ans: Recall that V2f(w) = XTX + Aly. Hence k = % %



GD for Smooth, Strongly-Convex Functions

Q: For L-smooth, p-strongly convex functions, how many iterations do we need to ensure that
f(wr) — f(w*) <e€?

Ans: Since f is smooth, f(wr) — f(w*) < £ |jwr — w*||°. Hence, if |wr — w*|* < 2¢, this will

* L|wo—w"|?
€

guarantee that f(wy) — f(w*) < e. This requires T > ﬁlog( ) iterations. We can
also directly bound f(wy) — f(w*) in terms of f(wy) — f(w*) and obtain the same rate as for
)-

the iterates (In Assignment 2!
e Gradient Descent is “adaptive” to strong-convexity i.e. it does not need to know f to converge.

e The algorithm remains the same (use step-size ) = 1) regardless of whether we run it on a
convex or strongly-convex function.

e Since GD only requires knowledge of L, we can use the Back-tracking Armijo line-search to
estimate the smoothness, and obtain faster convergence in practice (In Assignment 1!).
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