CMPT 409/981: Optimization for Machine Learning

Lecture 5

Sharan Vaswani

September 19, 2024

- For *L*-smooth, convex functions, GD with $\eta = 1/L$ requires $T = O\left(\frac{1}{\epsilon}\right)$ iterations to return a point w_T that is ϵ -suboptimal meaning that $f(w_T) \leq f(w^*) + \epsilon$.
- Lower Bound: For any initialization, there exists a smooth, convex function such that any first-order method requires $\Omega\left(\frac{1}{\sqrt{\epsilon}}\right)$ iterations.

Nesterov Acceleration

Gradient Descent: $w_{k+1} = GD(w_k)$ where GD is a function such that $GD(w) := w - \eta \nabla f(w)$. **Nesterov Acceleration**: $w_{k+1} = GD(w_k + \beta_k(w_k - w_{k-1}))$ for $\beta_k \ge 0$ to be determined. Hence,

$$w_{k+1} = [w_k + \beta_k(w_k - w_{k-1})] - \eta \nabla f(w_k + \beta_k(w_k - w_{k-1}))$$

i.e. Nesterov acceleration can be interpreted as doing GD on "extrapolated" points where β_k can be interpreted as the "momentum" in the previous direction $(w_k - w_{k-1})$.

Nesterov Acceleration

By eliminating w_k from the equation on the previous slide,

$$v_{k+1} = v_k - \eta_k \nabla f(v_k) + \beta_{k+1} [v_k - v_{k-1}] - \eta \beta_{k+1} [\nabla f(v_k) - \nabla f(v_{k-1})]$$

i.e. Nesterov acceleration can be interpreted as moving along a combination of three directions – the gradient direction $\nabla f(v_k)$, the momentum direction for the iterates $[v_k - v_{k-1}]$ and the momentum direction for the gradients $[\nabla f(v_k) - \nabla f(v_{k-1})]$.

• Nesterov acceleration does not result in monotonic descent in the function values.

Figure 1: https://francisbach.com/continuized-acceleration/

Analysis: Define $d_k := \beta_k (w_k - w_{k-1})$, set $\eta = \frac{1}{L}$ and define $g_k := -\frac{1}{L} \nabla f(w_k + d_k)$. For simplicity, set $w_1 = w_0$. For $k \ge 1$,

$$w_{k+1} = [w_k + \beta_k (w_k - w_{k-1})] - \eta \nabla f(w_k + \beta_k (w_k - w_{k-1}))$$

$$\implies w_{k+1} = w_k + d_k - \frac{1}{L} \nabla f(w_k + d_k) = w_k + d_k + g_k = GD(w_k + d_k)$$

In order to set the momentum parameter β_k , we define a sequence $\{\lambda_k\}_{k=1}^T$ such that,

$$\lambda_0 = 0$$
 ; $\lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2}$; $\beta_{k+1} = \frac{\lambda_k - 1}{\lambda_{k+1}}$ (2)

Claim: For *L*-smooth, convex functions, Nesterov acceleration with $\eta = \frac{1}{L}$, β_k set according to eq. (2) and $T \ge \frac{\sqrt{2L} \|w_1 - w^*\|}{\sqrt{\epsilon}}$ iterations to obtain point w_{T+1} that is ϵ -suboptimal meaning that $f(w_{T+1}) \le f(w^*) + \epsilon$.

Hence, Nesterov acceleration is optimal for minimizing the class of smooth, convex functions!

In order to prove the claim, we will need the following lemma: **Lemma**: When using Nesterov acceleration with $\eta = \frac{1}{L}$, for any vector y, $f(w_{k+1}) - f(y) \leq \langle \nabla f(w_k + d_k), w_k + d_k - y \rangle - \frac{1}{2L} \| \nabla f(w_k + d_k) \|^2$.

Proof: Using *L*-smoothness, since Nesterov acceleration is equivalent to GD on $w_k + d_k$,

$$\begin{split} f(w_{k+1}) - f(w_k + d_k) &\leq \langle \nabla f(w_k + d_k), w_{k+1} - w_k - d_k \rangle + \frac{L}{2} \|w_{k+1} - w_k - d_k\|^2 \\ &= -\frac{1}{L} \langle \nabla f(w_k + d_k), \nabla f(w_k + d_k) \rangle + \frac{1}{2L} \|\nabla f(w_k + d_k)\|^2 \\ \implies f(w_{k+1}) - f(w_k + d_k) &\leq \frac{-1}{2L} \|\nabla f(w_k + d_k)\|^2 \\ \implies f(w_{k+1}) - f(y) &\leq f(w_k + d_k) - f(y) - \frac{1}{2L} \|\nabla f(w_k + d_k)\|^2 \end{split}$$

Using convexity: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$ with $x = w_k + d_k$ and y = y

$$\implies f(w_{k+1}) - f(y) \le \langle \nabla f(w_k + d_k), w_k + d_k - y \rangle - \frac{1}{2L} \left\| \nabla f(w_k + d_k) \right\|^2$$
(3)

5

For any y,
$$f(w_{k+1}) - f(y) \leq \langle \nabla f(w_k + d_k), w_k + d_k - y \rangle - \frac{1}{2L} \| \nabla f(w_k + d_k) \|^2$$
.
Using the lemma with $y = w^*$, with $f^* := f(w^*)$ and define $\Delta_k := f(w_k) - f^*$,
 $\Delta_{k+1} = f(w_{k+1}) - f^* \leq \langle \nabla f(w_k + d_k), w_k + d_k - w^* \rangle - \frac{1}{2L} \| \nabla f(w_k + d_k) \|^2$
 $= -\frac{L}{2} \left[2 \left\langle \frac{-\nabla f(w_k + d_k)}{L}, (w_k - w^*) + d_k \right\rangle + \frac{1}{L^2} \| \nabla f(w_k + d_k) \|^2 \right]$
 $\implies \Delta_{k+1} \leq -\frac{L}{2} \left[2 \langle g_k, w_k - w^* + d_k \rangle + \|g_k\|^2 \right]$
(4)

Using the lemma with $y = w_k$,

$$[f(w_{k+1}) - f^*] - [f(w_k) - f^*] \leq \langle \nabla f(w_k + d_k), d_k \rangle - \frac{1}{2L} \| \nabla f(w_k + d_k) \|^2$$

$$\implies \Delta_{k+1} - \Delta_k \leq -\frac{L}{2} \left[2 \left\langle \frac{-\nabla f(w_k + d_k)}{L}, d_k \right\rangle + \frac{1}{L^2} \| \nabla f(w_k + d_k) \|^2 \right]$$

$$\implies \Delta_{k+1} - \Delta_k \leq -\frac{L}{2} \left[2 \langle g_k, d_k \rangle + \| g_k \|^2 \right]$$
(5)

• We want to combine equations eq. (4) and eq. (5) in order to get a handle on Δ_T . For $\lambda_k > 1$, let us calculate $(\lambda_k - 1)$ eq. (5) + eq. (4) and also multiply both sides by λ_k ,

$$egin{aligned} &\lambda_k \left[(\lambda_k - 1) \left(\Delta_{k+1} - \Delta_k
ight) + \Delta_{k+1}
ight] \ &\leq -rac{L\lambda_k}{2} \left[(\lambda_k - 1) \left[2 \langle g_k, d_k
angle + \|g_k\|^2
ight] + \left[2 \langle g_k, w_k - w^* + d_k
angle + \|g_k\|^2
ight]
ight] \end{aligned}$$

• Let us first simplify the LHS,

$$\lambda_k \left[(\lambda_k - 1) \left(\Delta_{k+1} - \Delta_k
ight) + \Delta_{k+1}
ight] = \lambda_k^2 \Delta_{k+1} - (\lambda_k^2 - \lambda_k) \Delta_k$$

• We wish to sum from k = 1 to T, and telescope the terms. For the LHS, we want that,

$$\lambda_{k-1}^2 = \lambda_k^2 - \lambda_k \implies \lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2}$$

Simplifying the RHS:
$$-\frac{L\lambda_{k}}{2} \underbrace{\left[(\lambda_{k} - 1) \left[2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} \right] + \left[2\langle g_{k}, w_{k} - w^{*} + d_{k} \rangle + \|g_{k}\|^{2} \right] \right]}_{(*)}$$
$$(*) = \lambda_{k} \left[2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} \right] - \left[2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} - 2\langle g_{k}, w_{k} - w^{*} + d_{k} \rangle - \|g_{k}\|^{2} \right]$$
$$= \frac{1}{\lambda_{k}} \left[\lambda_{k}^{2} \left(2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} \right) + 2\lambda_{k} \langle g_{k}, w_{k} - w^{*} \rangle \right]$$
$$= \frac{1}{\lambda_{k}} \left[\|w_{k} - w^{*} + \lambda_{k} d_{k} + \lambda_{k} g_{k}\|^{2} - \|w_{k} - w^{*} + \lambda_{k} d_{k} \|^{2} \right]$$

We wish to sum from k = 1 to T, and telescope the terms. For the RHS, we want that,

$$\begin{split} w_k - w^* + \lambda_k d_k + \lambda_k g_k &= w_{k+1} - w^* + \lambda_{k+1} d_{k+1} = w_k + d_k + g_k - w^* + \lambda_{k+1} d_{k+1} \\ &= w_k + d_k + g_k - w^* + \lambda_{k+1} \beta_{k+1} [w_{k+1} - w_k] \\ &= w_k + d_k + g_k - w^* + \lambda_{k+1} \beta_{k+1} [w_k + d_k + g_k - w_k] \\ &\implies \text{We want that: } w_k - w^* + \lambda_k (d_k + g_k) = w_k - w^* + (1 + \lambda_{k+1} \beta_{k+1}) [d_k + g_k] \\ \text{This can be achieved if } \beta_{k+1} = \frac{\lambda_k - 1}{\lambda_{k+1}}. \end{split}$$

Recall that:

$$\lambda_k^2 \Delta_{k+1} - \left(\lambda_k^2 - \lambda_k\right) \Delta_k \leq -\frac{L\lambda_k}{2} \left[\left(\lambda_k - 1\right) \left[2 \langle g_k, d_k \rangle + \|g_k\|^2 \right] + \left[2 \langle g_k, w_k - w^* + d_k \rangle + \|g_k\|^2 \right] \right].$$

• By using the sequence $\lambda_k = \frac{1+\sqrt{1+4\lambda_{k-1}^2}}{2}$ and setting $\beta_{k+1} = \frac{\lambda_k - 1}{\lambda_{k+1}}$,

$$\lambda_{k}^{2} \Delta_{k+1} - \lambda_{k-1}^{2} \Delta_{k} \leq \frac{L}{2} \left[\|w_{k} - w^{*} + \lambda_{k} d_{k}\|^{2} - \|w_{k+1} - w^{*} + \lambda_{k+1} d_{k+1}\|^{2} \right]$$

Summing from k = 1 to T, since $\lambda_0 = 0$

$$\lambda_T^2 \Delta_{T+1} \leq \frac{L}{2} \left[\|w_1 - w^* + \lambda_1 d_1\|^2 - \|w_{T+1} - w^* + \lambda_{T+1} d_{T+1}\|^2 \right]$$

$$\leq \frac{L}{2} \|w_1 - w^*\|^2 \quad (\text{Since } w_0 = w_1 \implies d_1 = \beta_1 (w_1 - w_0) = 0)$$

$$\implies \Delta_{T+1} = f(w_{T+1}) - f^* \leq \frac{L}{2\lambda_T^2} \|w_1 - w^*\|^2 \qquad (6)$$

Recall that $f(w_{T+1}) - f^* \leq \frac{L}{2\lambda_T^2} \|w_1 - w^*\|^2$. Let us prove that $\lambda_k \geq \frac{k}{2}$ by induction.

Base case: k = 1, $\lambda_1 = \frac{1 + \sqrt{1 + 4\lambda_0^2}}{2} = 1 \ge \frac{1}{2}$.

Inductive step: Assuming the statement is true for k-1 i.e. $\lambda_{k-1} \geq \frac{k-1}{2}$,

$$\lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2} = \frac{1 + \sqrt{1 + (k-1)^2}}{2} \ge \frac{k}{2}$$

This completes the induction. Hence, $\lambda_k \geq \frac{k}{2}$ and $\lambda_T \geq \frac{T}{2}$.

$$\implies f(w_{T+1}) - f^* \le rac{2L \|w_1 - w^*\|^2}{T^2}$$

Hence, Nesterov acceleration with $\eta = \frac{1}{L}$ and a carefully engineered β_k sequence can obtain the accelerated $O\left(\frac{1}{T^2}\right)$ rate for smooth, convex functions.

Questions?

Strongly convex functions

First-order definition: If *f* is differentiable, it is μ -strongly convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$ and $\mu > 0$,

$$f(y) \geq f(x) + \langle
abla f(x), y - x
angle + rac{\mu}{2} \left\|y - x
ight\|^2$$

i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.

Second-order definition: If f is twice differentiable, it is strongly-convex iff its domain \mathcal{D} is a convex set and for all $x \in \mathcal{D}$,

$$\nabla^2 f(x) \succeq \mu I_d$$

i.e. for all x, the eigenvalues of the Hessian are lower-bounded by μ .

Alternative condition: Function $g(x) = f(x) - \frac{\mu}{2} ||x||^2$ is convex, i.e. if we "remove" a quadratic (curvature) from f, it still remains convex.

Examples: Quadratics $f(x) = x^{T}Ax + bx + c$ are μ -strongly convex if $A \succeq \mu I_d$. If f is a convex loss function, then $g(x) := f(x) + \frac{\lambda}{2} ||x||^2$ (the ℓ_2 -regularized loss) is λ -strongly convex.

Strongly-convex functions

Strict-convexity: If *f* is differentiable, it is strictly-convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$,

 $f(y) > f(x) + \langle \nabla f(x), y - x \rangle$

If f is μ strongly-convex, then it is also strictly convex.

Q: For a strictly-convex f, if $\nabla f(w^*) = 0$, then is w^* a unique minimizer of f?

Ans: Yes, because for all $y \in D$, $f(y) > f(w^*)$ and hence w^* is a unique minimizer.

Q: Prove that the ridge regression loss function: $f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$ is strongly-convex. Compute μ .

Ans: Recall that $\nabla^2 f(w) = X^{\mathsf{T}} X + \lambda I_d$. Since $\nabla^2 f(w) \succeq (\lambda_{\min}[X^{\mathsf{T}}X] + \lambda) I_d$, ridge regression is μ -strongly convex with $\mu = \lambda_{\min}[X^{\mathsf{T}}X] + \lambda$.

Q: Is $f(w) = \frac{1}{2} ||Xw - y||^2$ strongly-convex?

Ans: Not necessarily, because $\nabla^2 f(w) = X^T X$ might be low-rank, and have $\lambda_{\min}[X^T X] = 0$.

Q: Is negative entropy function $f(x) = x \ln(x)$ strictly-convex on (0, 1)?

Ans: Yes. f''(x) = 1/x > 0 for all $x \in (0, 1)$.

Q: Is logistic regression: $f(w) = \sum_{i=1}^{n} \log (1 + \exp(-y_i \langle X_i, w \rangle))$ strongly-convex?

Ans: For logistic regression, $\nabla^2 f(w) = X^{\mathsf{T}} D X$. Here, D is a diagonal matrix such that $D_{i,i} = p_i (1 - p_i)$ where $p_i = \sigma (\langle X_i, w \rangle)$ equal to $\Pr[\hat{y}_i = 1]$ (probability of prediction that point i has label equal to 1) and $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function. If $X^{\mathsf{T}} X$ is full-rank and $p_i \in (0, 1)$ (the probability of prediction is bounded away from 0 or 1) then $\nabla^2 f(w) \succeq \mu I_d$ for $\mu = \lambda_{\min}[X^{\mathsf{T}} D X]$.

This implies that if $X^{T}X$ is full-rank, and the parameters are bounded (lie in a compact set) for example, for some finite $C \ge 0$, $||w|| \le C$, then, logistic regression is strongly-convex.

Questions?

GD for Smooth, Strongly-Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer, and for strongly-convex functions, the minimizer w^* is unique.

Let us analyze the convergence of GD for smooth, strongly-convex problems: $\min_{w \in \mathbb{R}^d} f(w)$.

Claim: For *L*-smooth, μ -strongly convex functions, GD with $\eta = \frac{1}{L}$ requires $T \ge \frac{L}{\mu} \log \left(\frac{\|w_0 - w^*\|^2}{\epsilon} \right)$ iterations to obtain a point w_T that is ϵ -suboptimal in the sense that $\|w_T - w^*\|^2 \le \epsilon$.

Proof: Bounding the distance of the iterates to w^* ,

$$\|w_{k+1} - w^*\|^2 = \|w_k - \eta \nabla f(w_k) - w^*\|^2 = \|w_k - w^*\|^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + \eta^2 \|\nabla f(w_k)\|^2$$

L-smoothness: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|^2$. Using $x = w^*$, $y = w_k$,

$$\implies \|w_{k+1} - w^*\|^2 \le \|w_k - w^*\|^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + 2L\eta^2 [f(w_k) - f(w^*)]$$
(7)

GD for Smooth, Strongly-Convex Functions

$$\mu\text{-strong convexity: } f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2. \text{ Using } x = w_k, \ y = w^*, f(w^*) \ge f(w_k) + \langle \nabla f(w_k), w^* - w_k \rangle + \frac{\mu}{2} \|w_k - w^*\|^2 \implies \langle \nabla f(w_k), w_k - w^* \rangle \ge f(w_k) - f(w^*) + \frac{\mu}{2} \|w_k - w^*\|^2$$
(8)

Combining Eq. 7 and 8,

$$\begin{split} \|w_{k+1} - w^*\|^2 &\leq \|w_k - w^*\|^2 - 2\eta \left[f(w_k) - f(w^*) + \frac{\mu}{2} \|w_k - w^*\|^2 \right] + 2L \eta^2 [f(w_k) - f(w^*)] \\ &= \|w_k - w^*\|^2 \left(1 - \mu\eta\right) + [f(w_k) - f(w^*)] \left(-2\eta + 2L\eta^2\right) \\ \implies \|w_{k+1} - w^*\|^2 &\leq \left(1 - \frac{\mu}{L}\right) \|w_k - w^*\|^2 \qquad (\text{Since } \eta = \frac{1}{L}, \left(-2\eta + 2L\eta^2\right) = 0) \end{split}$$

Recursing from k = 0 to T - 1,

$$\implies \|w_T - w^*\|^2 \le \left(1 - \frac{\mu}{L}\right)^T \|w_0 - w^*\|^2 \le \exp\left(-\frac{\mu}{L}\right) \|w_0 - w^*\|^2$$

$$(\text{Using } 1 - x \le \exp(-x) \text{ for all } x)$$

GD for Smooth, Strongly-Convex Functions

The suboptimality $||w_T - w^*||^2$ decreases at an $O(\exp(-T))$ rate, i.e. the iterate w_T approaches the unique minimizer w^* . In order to obtain an iterate at least ϵ -close to w^* , we need to make the RHS less than ϵ and quantify the number of required iterations.

$$\exp\left(-\frac{\mu T}{L}\right) \left\|w_0 - w^*\right\|^2 \le \epsilon \implies T \ge \frac{L}{\mu} \log\left(\frac{\left\|w_0 - w^*\right\|^2}{\epsilon}\right)$$

Hence, the convergence rate is $O(\log(1/\epsilon))$ which is exponentially faster compared to the convergence rate for smooth, convex functions. This rate of convergence rate is referred to as the **linear rate**.

Condition number: $\kappa := \frac{L}{\mu}$ is a problem-dependent constant that quantifies the hardness of the problem (smaller κ implies that we need fewer iterations of GD).

Q: What κ corresponds to the easiest problem? Ans: 1 since $L \ge \mu$.

Q: What is the condition number for ridge regression: $\frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$.

Ans: Recall that
$$\nabla^2 f(w) = X^T X + \lambda I_d$$
. Hence $\kappa = \frac{\lambda_{\max}[X^T X] + \lambda}{\lambda_{\min}[X^T X] + \lambda}$ 16

Q: For L-smooth, μ -strongly convex functions, how many iterations do we need to ensure that $f(w_T) - f(w^*) \le \epsilon$?

Ans: Since f is smooth, $f(w_T) - f(w^*) \le \frac{L}{2} ||w_T - w^*||^2$. Hence, if $||w_T - w^*||^2 \le \frac{2\epsilon}{L}$, this will guarantee that $f(w_T) - f(w^*) \le \epsilon$. This requires $T \ge \frac{L}{\mu} \log \left(\frac{L ||w_0 - w^*||^2}{2\epsilon}\right)$ iterations. We can also directly bound $f(w_T) - f(w^*)$ in terms of $f(w_0) - f(w^*)$ and obtain the same rate as for the iterates (In Assignment 2!).

- \bullet Gradient Descent is "adaptive" to strong-convexity i.e. it does not need to know μ to converge.
- The algorithm remains the same (use step-size $\eta = \frac{1}{L}$) regardless of whether we run it on a convex or strongly-convex function.

• Since GD only requires knowledge of *L*, we can use the Back-tracking Armijo line-search to estimate the smoothness, and obtain faster convergence in practice (In Assignment 1!).