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Recap

For L-smooth functions lower-bounded by f ∗, GD with backtracking Armijo line-search
returns an ϵ stationary-point in O

( 1
ϵ

)
iterations without requiring the knowledge of L.

Convex sets: Set C is convex iff ∀x , y ∈ C, the convex combination zθ := θx + (1− θ)y for
θ ∈ [0, 1] is also in C.

Examples: Half-space: {x |Ax ≤ b}, Norm-ball: {x | ∥x∥p ≤ r}.

Convex functions: A function f is convex iff its domain D is a convex set, and for all
x , y ∈ D and θ ∈ [0, 1],f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y).

First-order definition: If f is differentiable, it is convex iff its domain D is a convex set and for
all x , y ∈ D, f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.
Second-order definition: If f is twice differentiable, it is convex iff its domain D is a convex set
and for all x ∈ D, ∇2f (x) ⪰ 0.
Examples: All norms ∥x∥p, Negative entropy: f (x) = x log(x), Logistic regression:∑n

i=1 log (1 + exp (−yi ⟨Xi ,w⟩)), Ridge regression: 1
2 ∥Xw − y∥2 + λ

2 ∥w∥2.
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Jensen’s Inequality

Recall the zero-order definition of convexity: ∀x , y ∈ D and θ ∈ [0, 1],
f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y).
This can be generalized to n points {x1, x2, . . . , xn}, i.e. for pi ≥ 0 and

∑
i pi = 1,

f (p1 x1+p2 x2+. . .+pn xn) ≤ p1 f (x1)+p2 f (x2)+. . .+pn f (xn) =⇒ f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pi f (xi )

If X is a discrete r.v. that can take value xi with probability pi , and f is convex, then,

f (E[X ]) ≤ E [f (X )] . (Jensen’s inequality)

Jensen’s inequality can be used to prove inequalities like the AM-GM inequality:√
ab ≤ a+b

2 .
Proof : Choose f (x) = − log(x) as the convex function, and consider two points a and b

with θ = 1/2. By Jensen’s inequality,

− log

(
a+ b

2

)
≤ − log(a)− log(b)

2
=⇒ log

(
a+ b

2

)
≥ log(

√
ab) =⇒ a+ b

2
≥

√
ab.
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Holder’s Inequality

Q: Prove Holder’s inequality, for p, q ≥ 1 s.t. 1
p + 1

q = 1 and x , y ∈ Rn, |⟨x , y⟩| ≤ ∥x∥p ∥y∥q.

Proof : By repeating the AM-GM proof, but for a general θ ∈ [0, 1], for a, b ≥ 0, we can prove

aθb1−θ ≤ θa+ (1 − θ)b

Use a = |xi |p∑n
j=1 |xj |p , b = |yi |q∑n

j=1 |yj |q , θ = 1/p, and using the fact that 1 − θ = 1 − 1/p = 1/q

(
|xi |p∑n
j=1 |xj |p

)1/p (
|yi |q∑n
j=1 |yj |q

)1/q

≤ 1
p

|xi |p∑n
j=1 |xj |p

+
1
q

|yi |p∑n
j=1 |yj |p

Summing both sides from i = 1 to n and using the fact that 1
p + 1

q = 1

n∑
i=1

|xi |(∑n
j=1 |xj |p

)1/p

|yi |(∑n
j=1 |yj |q

)1/q ≤ 1 =⇒
∑
i

|xiyi | ≤

(
n∑

i=1

|xi |p
)1/p ( n∑

i=1

|yi |q
)1/q

=⇒ |⟨x , y⟩| ≤ ∥x∥p ∥y∥q (Triangle inequality)
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GD for Smooth, Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer.
Let us analyze the convergence of GD for smooth, convex problems: minw∈Rd f (w).

Claim: For L-smooth, convex functions s.t. for any w∗ ∈ argmin f (w), GD with η = 1
L requires

T ≥ 2L ∥w0−w∗∥2

ϵ iterations to obtain point wT that is ϵ-suboptimal meaning that
f (wT ) ≤ f (w∗) + ϵ.

Proof: For L-smooth functions, ∀x , y ∈ D, f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2. Similar

to Lecture 2, using GD: wk+1 = wk − 1
L∇f (wk) yields

f (wk+1)− f (w∗) ≤ f (wk)− f (w∗)− 1
2L

∥∇f (wk)∥2 (1)

Using y = w∗, x = wk in the first-order condition for convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩,

f (wk)− f (w∗) ≤ ⟨∇f (wk),wk − w∗⟩ ≤ ∥∇f (wk)∥ ∥wk − w∗∥ (Cauchy Schwarz)

=⇒ ∥∇f (wk)∥ ≥ f (wk)− f (w∗)

∥wk − w∗∥
(2)
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GD for Smooth, Convex Functions

In addition to descent on the function, when minimizing smooth, convex functions, GD decreases
the distance to a minimizer w∗.

Claim: For GD with η = 1
L , ∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 ≤ ∥w0 − w∗∥2.

Proof:

∥wk+1 − w∗∥2 = ∥wk − η∇f (wk)− w∗∥2 = ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 ∥∇f (wk)∥2

Using y = w∗, x = wk in the first-order condition for convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩,

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2η[f (wk)− f (w∗)] + η2 ∥∇f (wk)∥2

For convex functions, L-smoothness is equivalent to
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1

2L ∥∇f (x)−∇f (y)∥2. Using x = w∗, y = wk in this equation,

≤ ∥wk − w∗∥2 − 2η[f (wk)− f (w∗)] + 2L η2[f (wk)− f (w∗)]

=⇒ ∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 (By setting η = 1
L
)
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GD for Smooth, Convex Functions

Combining Eq. 2 with the result of the previous claim,

∥∇f (wk)∥ ≥ f (wk)− f (w∗)

∥wk − w∗∥
≥ f (wk)− f (w∗)

∥w0 − w∗∥

Combining the above inequality with Eq. 1,

f (wk+1)− f (w∗) ≤ f (wk)− f (w∗)− 1
2L

∥∇f (wk)∥2 ≤ f (wk)− f (w∗)− 1
2L

[f (wk)− f (w∗)]2

∥w0 − w∗∥2

Dividing by [f (wk)− f (w∗)] [f (wk+1)− f (w∗)]

1
f (wk)− f (w∗)

≤ 1
f (wk+1)− f (w∗)

− 1
2L

f (wk)− f (w∗)

∥w0 − w∗∥2
1

f (wk+1)− f (w∗)

=⇒ 1

2L ∥w0 − w∗∥2
f (wk)− f (w∗)

f (wk+1)− f (w∗)︸ ︷︷ ︸
≥1

≤
[

1
f (wk+1)− f (w∗)

− 1
f (wk)− f (w∗)

]
(3)
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GD for Smooth, Convex Functions

Summing Eq. 3 from k = 0 to T − 1,

T−1∑
k=0

[
1

2L ∥w0 − w∗∥2

]
≤

T−1∑
k=0

[
1

f (wk+1)− f (w∗)
− 1

f (wk)− f (w∗)

]
T

2L ∥w0 − w∗∥2 ≤ 1
f (wT )− f (w∗)

− 1
f (w0)− f (w∗)

≤ 1
f (wT )− f (w∗)

=⇒ f (wT )− f (w∗) ≤ 2L ∥w0 − w∗∥2

T

The suboptimality f (wT )− f (w∗) decreases at an O
( 1
T

)
rate, i.e. the function value at iterate

wT approaches the minimum function value f (w∗).

In order to obtain a function value at least ϵ-close to the optimal function value, GD requires
T ≥ 2L ∥w0−w∗∥2

ϵ iterations.
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Minimizing Smooth, Convex Functions

Recall that GD was optimal (amongst first-order methods with no dependence on the dimension)
when minimizing smooth (possibly non-convex) functions.

Is GD also optimal when minimizing smooth, convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, convex function such that any
first-order method requires Ω

(
1√
ϵ

)
iterations.

Possible reasons for the discrepancy between the O(1/ϵ) upper-bound for GD, and the Ω(1/
√
ϵ)

lower-bound:

(1) Our upper-bound analysis of GD is loose, and GD actually matches the lower-bound.
(2) The lower-bound is loose, and there is a function that requires Ω(1/ϵ) iterations to optimize.
(3) Both the upper and lower-bounds are tight, and GD is sub-optimal. There exists another

algorithm that has an O(1/
√
ϵ) upper-bound and is hence optimal.

Option (3) is correct – GD is sub-optimal for minimizing smooth, convex functions. Using
Nesterov acceleration is optimal and requires Θ(1/

√
ϵ) iterations.
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Questions?
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