CMPT 409/981: Optimization for Machine Learning Lecture 4

Sharan Vaswani

September 17, 2024

- For L-smooth functions lower-bounded by f^* , GD with backtracking Armijo line-search returns an ϵ stationary-point in $O\left(\frac{1}{\epsilon}\right)$ iterations without requiring the knowledge of L.
- **Convex sets**: Set C is convex iff $\forall x, y \in C$, the convex combination $z_{\theta} := \theta x + (1 \theta)y$ for $\theta \in [0, 1]$ is also in C.
	- Examples: Half-space: $\{x | Ax \leq b\}$, Norm-ball: $\{x | ||x||_p \leq r\}$.
- **Convex functions**: A function f is convex iff its domain D is a convex set, and for all $x, y \in \mathcal{D}$ and $\theta \in [0, 1]$, $f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$.
	- First-order definition: If f is differentiable, it is convex iff its domain D is a convex set and for all $x, y \in \mathcal{D}$, $f(y) > f(x) + \langle \nabla f(x), y - x \rangle$.
	- Second-order definition: If f is twice differentiable, it is convex iff its domain D is a convex set and for all $x \in \mathcal{D}$, $\nabla^2 f(x) \succeq 0$.
	- Examples: All norms $||x||_p$, Negative entropy: $f(x) = x \log(x)$, Logistic regression: $\sum_{i=1}^n \log \left(1 + \exp \left(-y_i \langle X_i, w \rangle \right) \right)$, Ridge regression: $\frac{1}{2} \left\|Xw - y \right\|^2 + \frac{\lambda}{2} \left\|w\right\|^2$.

Jensen's Inequality

• Recall the zero-order definition of convexity: $\forall x, y \in \mathcal{D}$ and $\theta \in [0, 1]$, $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$ This can be generalized to *n* points $\{x_1, x_2, \ldots, x_n\}$, i.e. for $p_i \geq 0$ and $\sum_i p_i = 1$,

$$
f(p_1 x_1 + p_2 x_2 + \ldots + p_n x_n) \leq p_1 f(x_1) + p_2 f(x_2) + \ldots + p_n f(x_n) \implies f\left(\sum_{i=1}^n p_i x_i\right) \leq \sum_{i=1}^n p_i f(x_i)
$$

If X is a discrete r.v. that can take value x_i with probability p_i , and f is convex, then,

$$
f\left(\mathbb{E}[X]\right) \leq \mathbb{E}\left[f(X)\right].
$$
 (Jensen's inequality)

- Jensen's inequality can be used to prove inequalities like the AM-GM inequality: √ $\overline{ab} \leq \frac{a+b}{2}$.
- Proof: Choose $f(x) = -\log(x)$ as the convex function, and consider two points a and b with $\theta = 1/2$. By Jensen's inequality,

$$
-\log\left(\frac{a+b}{2}\right) \le \frac{-\log(a)-\log(b)}{2} \implies \log\left(\frac{a+b}{2}\right) \ge \log(\sqrt{ab}) \implies \frac{a+b}{2} \ge \sqrt{ab}.
$$

Holder's Inequality

Q: Prove Holder's inequality, for $p, q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$ and $x, y \in R^n$, $|\langle x, y \rangle| \le ||x||_p ||y||_q$. *Proof*: By repeating the AM-GM proof, but for a general $\theta \in [0, 1]$, for a, $b > 0$, we can prove $a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta)b$

Use $a = \frac{|x_i|^p}{\sum_{i=1}^n x_i}$ $\frac{|{\sf x}_i|^{\rho}}{\sum_{j=1}^n |{\sf x}_j|^{\rho}}, \ b=\frac{|{\sf y}_i|^q}{\sum_{j=1}^n |{\sf x}_j|}$ $\frac{|y_i|^2}{\sum_{j=1}^n |y_j|^q}, \ \theta = 1/p,$ and using the fact that $1 - \theta = 1 - 1/p = 1/q$ $\int |x_i|^p$ $\sum_{j=1}^n |x_j|^p$ $\int^{1/p}$ \int $|y_i|^q$ $\sum_{j=1}^n |y_j|^q$ \setminus ^{1/q} $\leq \frac{1}{2}$ p $|x_i|^p$ $\frac{|x_i|^p}{\sum_{j=1}^n |x_j|^p} + \frac{1}{q}$ q $|y_i|^p$ $\sum_{j=1}^n |y_j|^p$

Summing both sides from $i=1$ to n and using the fact that $\frac{1}{p}+\frac{1}{q}=1$

$$
\sum_{i=1}^{n} \frac{|x_i|}{\left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p}} \frac{|y_i|}{\left(\sum_{j=1}^{n} |y_j|^q\right)^{1/q}} \le 1 \implies \sum_{i} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}
$$

$$
\implies |\langle x, y \rangle| \le ||x||_p ||y||_q \qquad \text{(Triangle inequality)}
$$

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer. Let us analyze the convergence of GD for smooth, convex problems: $\min_{w \in \mathbb{R}^d} f(w)$.

Claim: For L-smooth, convex functions s.t. for any $w^* \in \arg \min f(w)$, GD with $\eta = \frac{1}{L}$ requires $T \geq \frac{2L \|\mathsf{w}_0 - \mathsf{w}^*\|^2}{\epsilon}$ $\frac{1-\omega}{\epsilon}$ iterations to obtain point $w_\mathcal{T}$ that is ϵ -suboptimal meaning that $f(w_{\mathcal{T}}) \leq f(w^*) + \epsilon.$

Proof: For L-smooth functions, $\forall x, y \in \mathcal{D}$, $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$. Similar to Lecture 2, using GD: $w_{k+1} = w_k - \frac{1}{L} \nabla f(w_k)$ yields

$$
f(w_{k+1}) - f(w^*) \le f(w_k) - f(w^*) - \frac{1}{2L} ||\nabla f(w_k)||^2
$$
\n(1)

Using $y = w^*$, $x = w_k$ in the first-order condition for convexity: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$,

$$
f(w_k) - f(w^*) \le \langle \nabla f(w_k), w_k - w^* \rangle \le ||\nabla f(w_k)|| \, ||w_k - w^*|| \qquad \text{(Cauchy Schwarz)}
$$
\n
$$
\implies ||\nabla f(w_k)|| \ge \frac{f(w_k) - f(w^*)}{||w_k - w^*||} \qquad (2)
$$

In addition to descent on the function, when minimizing smooth, convex functions, GD decreases the distance to a minimizer w^* .

Claim: For GD with
$$
\eta = \frac{1}{L}
$$
, $||w_{k+1} - w^*||^2 \le ||w_k - w^*||^2 \le ||w_0 - w^*||^2$.
Proof:

$$
||w_{k+1} - w^*||^2 = ||w_k - \eta \nabla f(w_k) - w^*||^2 = ||w_k - w^*||^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + \eta^2 ||\nabla f(w_k)||^2
$$

Using $y = w^*$, $x = w_k$ in the first-order condition for convexity: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$,

$$
||w_{k+1} - w^*||^2 \le ||w_k - w^*||^2 - 2\eta [f(w_k) - f(w^*)] + \eta^2 ||\nabla f(w_k)||^2
$$

For convex functions, L-smoothness is equivalent to $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} ||\nabla f(x) - \nabla f(y)||^2$. Using $x = w^*$, $y = w_k$ in this equation, $\leq ||w_k - w^*||^2 - 2\eta [f(w_k) - f(w^*)] + 2L\eta^2 [f(w_k) - f(w^*)]$ \implies $\left\|w_{k+1}-w^*\right\|^2 \leq \left\|w_k-w^*\right\|^2$ (By setting $\eta = \frac{1}{L}$)

Combining Eq. [2](#page-4-0) with the result of the previous claim,

$$
\|\nabla f(w_k)\| \geq \frac{f(w_k) - f(w^*)}{\|w_k - w^*\|} \geq \frac{f(w_k) - f(w^*)}{\|w_0 - w^*\|}
$$

Combining the above inequality with Eq. [1,](#page-4-1)

$$
f(w_{k+1}) - f(w^*) \le f(w_k) - f(w^*) - \frac{1}{2L} \|\nabla f(w_k)\|^2 \le f(w_k) - f(w^*) - \frac{1}{2L} \frac{[f(w_k) - f(w^*)]^2}{\|w_0 - w^*\|^2}
$$

\nDividing by $[f(w_k) - f(w^*)] [f(w_{k+1}) - f(w^*)]$
\n
$$
\frac{1}{f(w_k) - f(w^*)} \le \frac{1}{f(w_{k+1}) - f(w^*)} - \frac{1}{2L} \frac{f(w_k) - f(w^*)}{\|w_0 - w^*\|^2} \frac{1}{f(w_{k+1}) - f(w^*)}
$$
\n
$$
\implies \frac{1}{2L \|\omega_0 - w^*\|^2} \frac{f(w_k) - f(w^*)}{\frac{f(w_{k+1}) - f(w^*)}{\ge 1}} \le \left[\frac{1}{f(w_{k+1}) - f(w^*)} - \frac{1}{f(w_k) - f(w^*)}\right] \tag{3}
$$

Summing Eq. [3](#page-6-0) from $k = 0$ to $T - 1$,

$$
\sum_{k=0}^{T-1} \left[\frac{1}{2L \, \|w_0 - w^*\|^2} \right] \le \sum_{k=0}^{T-1} \left[\frac{1}{f(w_{k+1}) - f(w^*)} - \frac{1}{f(w_k) - f(w^*)} \right]
$$

$$
\frac{T}{2L \, \|w_0 - w^*\|^2} \le \frac{1}{f(w_T) - f(w^*)} - \frac{1}{f(w_0) - f(w^*)} \le \frac{1}{f(w_T) - f(w^*)}
$$

$$
\implies f(w_T) - f(w^*) \le \frac{2L \, \|w_0 - w^*\|^2}{T}
$$

The suboptimality $f(w_\mathcal{T}) - f(w^*)$ decreases at an $O\left(\frac{1}{\mathcal{T}}\right)$ rate, i.e. the function value at iterate w_T approaches the minimum function value $f(w^*)$.

In order to obtain a function value at least ϵ -close to the optimal function value, GD requires $T \geq \frac{2L \|\mathsf{w}_0 - \mathsf{w}^*\|^2}{\epsilon}$ $\frac{e^{-w}}{e}$ iterations.

Minimizing Smooth, Convex Functions

Recall that GD was optimal (amongst first-order methods with no dependence on the dimension) when minimizing smooth (possibly non-convex) functions.

Is GD also optimal when minimizing smooth, convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, convex function such that any first-order method requires $\Omega\left(\frac{1}{\sqrt{\epsilon}}\right)$ iterations.

Possible reasons for the discrepancy between the $O(1/\epsilon)$ upper-bound for GD, and the $\Omega(1/\sqrt{\epsilon})$ lower-bound:

- (1) Our upper-bound analysis of GD is loose, and GD actually matches the lower-bound.
- (2) The lower-bound is loose, and there is a function that requires $\Omega(1/\epsilon)$ iterations to optimize.
- (3) Both the upper and lower-bounds are tight, and GD is sub-optimal. There exists another algorithm that has an $O(1/\sqrt{\epsilon})$ upper-bound and is hence optimal.

Option (3) is correct – GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is optimal and requires $\Theta(1/\sqrt{\epsilon})$ iterations.

Questions?