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Recap

For an L-smooth function, f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2 for all x , y ∈ D.

For L-smooth functions lower-bounded by f ∗, gradient descent with η = 1
L returns ŵ such

that ∥∇f (ŵ)∥2 ≤ ϵ and requires T ≥ 2L [f (w0)−f ∗]
ϵ iterations (oracle calls).

Importantly, the GD rate does not depend on the dimension of w .

Lower-Bound : When minimizing a smooth function (without additional assumptions), any
first-order algorithm requires Ω

( 1
ϵ

)
oracle calls to return a point ŵ such that

∥∇f (ŵ)∥2 ≤ ϵ.

Hence, GD is optimal for minimizing smooth functions.
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Gradient Descent

The above results require setting the step-size to 1
L . In fact, GD with any η ∈

(
0, 2

L

)
will

result in convergence to the stationary point (prove in Assignment 1).

However, estimating L can be difficult as the functions get more complicated.

Even for simple functions, the theoretically computed L is global (the “local” L might be
much smaller) and often loose in practice. Typically we tend to overestimate L resulting in a
smaller step-size.

Instead of setting η according to L, we can “search” for a good step-size ηk in each iteration
k . We will study 2 ways to do so:

Exact Line-search
Backtracking Armijo Line-search
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Exact Line-search

Exact line-search: At iteration k , solve the
following sub-problem:

ηk = argmin
η

f (wk − η∇f (wk)).

After computing ηk , do the usual GD update: wk+1 = wk − ηk∇f (wk).

Can adapt to the “local” L, resulting in larger step-sizes and better performance.

Can solve the sub-problem approximately by doing gradient descent w.r.t η (known as
hyper-gradient descent [BCR+17]). This is computationally expensive.

Can compute ηk analytically. This can only be done in special cases such as for quadratics.
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Exact Line-search for Linear Regression

Recall linear regression: for X ∈ Rn×d and y ∈ Rn, we aim to solve:
minw∈Rd f (w) := 1

2 ∥Xw − y∥2 = 1
2

[
wT(XTX )w − 2⟨XTy ,w⟩+ ∥y∥2

]
.

For the exact line-search, we need to minη h(η) := f (wk − η∇f (wk)).

Since f is a quadratic, we can directly use the second-order Taylor series:

f (wk − η∇f (wk)) = f (wk) + ⟨∇f (wk),−η∇f (wk)⟩+
1
2
[−η∇f (wk)]

T∇2f (wk)[−η∇f (wk)]

=⇒ ∇h(ηk) = −∥∇f (wk)∥2 + ηk [∇f (wk)]
T∇2f (wk)[∇f (wk)] = 0

=⇒ ηk =
∥∇f (wk)∥2

∥∇f (wk)∥2∇2f (wk )

For linear regression, ∇2f (wk) = XTX and ∇f (wk) = XT(Xwk − y).

=⇒ ηk =
∥XT(Xwk−y)∥2

∥XT(Xwk−y)∥2
XTX

. (Implement in Assignment 1)
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Armijo Condition

Usually, the cost of doing an exact line-search is not worth the computational effort.

Armijo condition for a prospective step-size η̃k :

f (wk − η̃k∇f (wk)) ≤ f (wk)− c η̃k ∥∇f (wk)∥2

where c ∈ (0, 1) is a hyper-parameter.
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Gradient Descent with Backtracking Armijo Line-search

Algorithm GD with Armijo Line-search
1: function GD with Armijo line-search(f , w0, ηmax, c ∈ (0, 1), β ∈ (0, 1))
2: for k = 0, . . . ,T − 1 do
3: η̃k ← ηmax

4: while f (wk − η̃k∇f (wk)) > f (wk)− c · η̃k ∥∇f (wk)∥2 do
5: η̃k ← η̃kβ

6: end while
7: ηk ← η̃k
8: wk+1 = wk − ηk∇f (wk)

9: end for
10: return wT
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Backtracking Armijo Line-search

Simplification for analysis: Assume that the backtracking line-search procedure returns the
largest η that satisfies the Armijo condition. Will be referred to as exact backtracking line-search.

Claim: For L-smooth functions, the exact backtracking line-search procedure terminates and
returns ηk ≥ min

{
2 (1−c)

L , ηmax

}
.

Proof: For a prospective step-size η̃k , we will use the following two inequalities:

f (wk − η̃k∇f (wk)) ≤ f (wk)− ∥∇f (wk)∥2
(
η̃k −

Lη̃2
k

2

)
︸ ︷︷ ︸

h1(η̃k )

(Quadratic bound using smoothness)

f (wk − η̃k∇f (wk)) ≤ f (wk)− ∥∇f (wk)∥2 (c η̃k)︸ ︷︷ ︸
h2(η̃k )

(Armijo condition)
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Backtracking Armijo Line-search

Recall that if the Armijo condition is satis-
fied, the back-tracking line-search procedure
terminates.

Smoothness:
h1(η̃k) = f (wk) + (L2 η̃

2
k − η̃k)∥∇f (wk)∥2

Line search:
h2(η̃k) = f (wk)− c η̃k∥∇f (wk)∥2

η̃k = 0 η̃k = 2(1−c)
L

f (wk)•

Case (i) ηmax ≤ 2(1−c)
L : From smoothness, f (wk − ηmax∇f (wk)) ≤ h1(ηmax). For ηmax ≤ 2(1−c)

L ,
we know that h1(ηmax) ≤ h2(ηmax). Hence, f (wk − ηmax∇f (wk)) ≤ h2(ηmax), meaning that the
Armijo condition is satisfied for ηmax. =⇒ if ηmax ≤ 2(1−c)

L , then the line-search terminates
immediately and ηk = ηmax.

Case (ii): If ηmax >
2 (1−c)

L : While backtracking, if η̃k = 2 (1−c)
L , then

f (wk − η̃k∇f (wk)) ≤ h1(η̃k) = h2(η̃k), the line-search terminates immediately and ηk = 2 (1−c)
L .

If the Armijo condition is satisfied for a step-size ηk s.t. h2(ηk) < h1(ηk), then
f (wk − ηk∇f (wk)) ≤ h2(ηk) < h1(ηk) =⇒ cηk ≥ ηk − Lη2

k

2 =⇒ ηk ≥ 2(1−c)
L .

Putting everything together, the step-size ηk returned by the Armijo line-search satisfies
ηk ≥ min

{
2 (1−c)

L , ηmax

}
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Gradient Descent with Backtracking Armijo Line-search

Claim: For L-smooth functions lower-bounded by f ∗, gradient descent with exact backtracking
Armijo line-search (with c = 1/2) returns point ŵ such that ∥∇f (ŵ)∥2 ≤ ϵ and requires
T ≥ max{2L,2/ηmax} [f (w0)−minw f (w)]

ϵ iterations.
Proof: Since ηk satisfies the Armijo condition and wk+1 = wk − ηk∇f (wk),

f (wk+1) ≤ f (wk)− c ηk ∥∇f (wk)∥2

≤ f (wk)−
(
min

{
1
2L

,
ηmax

2

})
∥∇f (wk)∥2

(Result from previous slide with c = 1/2)

Continuing the proof as before,

=⇒ ∥∇f (ŵ)∥2 ≤ max{2L, 2/ηmax} [f (w0)− f ∗]

T

The claim can be proved by the same reasoning as in Lecture 2.
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Gradient Descent with Backtracking Armijo Line-search – Example

minx∈[−10,10] f (x) := −x sin(x). Compare GD (with x0 = 4) with (i)
η = 1/L ≈ 0.1 and (ii) Armijo line-search (ηmax = 10, c = 1/2, β = 0.9).
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Questions?

10



Convex Optimization

For smooth functions, GD requires Θ(1/ϵ) iterations to converge to an ϵ-approximate stationary
point. Alternatively, if we care about global optimization (reach the vicinity of the true
minimizer), any algorithm requires Ω(1/ϵd) iterations.

Convex functions: Class of functions where local optimization can result in convergence to the
global minimizer of the function.

In general, convex optimization involves minimizing a convex function over a convex set C.

Examples of convex optimization in ML
Ridge regression: minw∈Rd

1
2 ∥Xw − y∥2 + λ

2 ∥w∥
2.

Logistic regression: minw∈Rd

∑n
i=1 log (1 + exp (−yi ⟨Xi ,w⟩))

Support vector machines: minw∈Rd

∑n
i=1 max {0, 1− yi ⟨Xi ,w⟩}+ λ

2 ∥w∥
2

Planning in MDPs in RL: maxµ∈Fρ
⟨µ, r⟩ where Fρ is the flow-polytope.
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Convex Sets

A set C is convex if every point along the line joining two points in C also lies in the set.

For points x , y , the convex combination of x , y is zθ := θx + (1− θ)y for θ ∈ [0, 1].

A set C is convex iff ∀x , y ∈ C, the convex combination zθ ∈ C for all θ ∈ [0, 1].

Examples of convex sets:

Positive orthant Rd
+ : {x |x ≥ 0}.

Hyper-plane: {x |Ax = b}.
Half-space: {x |Ax ≤ b}.
Norm-ball: {x | ∥x∥p ≤ r} for p ≥ 1.

Norm-cone: {(x , r)| ∥x∥p ≤ r} for p ≥ 1.

12



Convex Sets

Q: Prove that the hyper-plane (set of linear equations): H := {x |Ax = b} is a convex set.

If x , y ∈ H, then, Ax = b and Ay = b. Consider a point zθ := θx + (1− θ)y for θ ∈ [0, 1].

Azθ = A[θx + (1− θ)y ] = θAx + (1− θ)Ay = b.

Hence, zθ ∈ H for all θ ∈ [0, 1] and H is a convex set.

Q: Prove that the ball of radius r centered at point xc : B(xc , r) := {x | ∥x − xc∥p ≤ r} for p ≥ 1
is convex.

If x , y ∈ B(xc , r), then, ∥x − xc∥p ≤ r and ∥y − xc∥p ≤ r . Consider a point zθ := θx + (1− θ)y

for θ ∈ [0, 1].
∥zθ − xc∥p = ∥θ(x − xc) + (1− θ)(y − xc)∥p

≤ ∥θ(x − xc)∥p + ∥(1− θ)(y − xc)∥p (Triangle inequality for norms)

≤ θ ∥(x − xc)∥p + (1− θ) ∥(y − xc)∥p (Homogeneity of norms)

=⇒ ∥z − xc∥p ≤ r

Hence, zθ ∈ B(xc , r) for all θ ∈ [0, 1] and B(xc , r) is a convex set. 13



Convex Sets

Q: Prove that the set of symmetric PSD matrices: Sn
+ = {X ∈ Rn×n|X ⪰ 0,X = XT} is convex.

Ans: If X ∈ Sn
+, for any vector v , vTXv ≥ 0. Consider X ,Y ∈ Sn

+, and let Zθ = θX + (1− θ)Y ,
then, vTZθv = θ vTXv + (1− θ) vTYv ≥ 0, hence Z ∈ Sn

+ for all θ ∈ [0, 1] and Sn
+ is a convex

set.

• Intersection of convex sets is convex =⇒ can prove the convexity of a set by showing that it
is an intersection of convex sets.

Example: We know that a half-space: ⟨ai , x⟩ ≤ bi is a convex set. The set of inequalities
Ax ≤ b is an intersection of half-spaces and is hence convex.
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Questions?
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Convex Functions

Zero-order definition: A function f is convex iff its domain D is a convex set, and for all
x , y ∈ D and θ ∈ [0, 1],

f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y)

i.e. the function is below the chord between two points.

• Alternatively, f is convex iff the set formed by the area above the function is a convex set.

Examples of convex functions:

All p-norms ∥x∥p with p ≥ 1.

f (x) = 1/
√
x , f (x) = − log(x), f (x) = exp(−x)

Negative entropy: f (x) = x log(x)

Logistic loss: f (x) = log(1 + exp(−x))
Linear functions f (x) = ⟨a, x⟩
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Convex Functions

First-order condition: If f is differentiable, it is convex iff its domain D is a convex set and for
all x , y ∈ D,

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩
i.e. the function is above the tangent to the function at any point x .

For a convex f , consider w∗ such that ∇f (w∗) = 0, then using convexity, for all y ∈ D,
f (y) ≥ f (w∗). If w∗ is a stationary point i.e. ∥∇f (w∗)∥2 = 0, then it is a global minimum.
Hence, local optimization to make the gradient zero results in convergence to a global minimum!

Q: For a convex f , if ∇f (w∗) = 0, then is w∗ a unique minimizer of f ?

Ans: No, there might many minimizers that all have the same function value

Second-order condition: If f is twice differentiable, it is convex iff its domain D is a convex set
and for all x ∈ D,

∇2f (x) ⪰ 0

i.e. the Hessian is positive semi-definite (“curved upwards”) for all x .
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Convex Functions

Q: Prove that f (x) = maxi xi is a convex function.

f (θx + (1− θ)y) = max
i
[θxi + (1− θ)yi ] ≤ θmax

i
xi + (1− θ)max

i
yi = θf (x) + (1− θ)f (y)

Hence, by using the zero-order definition of convexity, f (x) is convex.

Q: Prove that f (x) = 1
2x

2 is a convex function.

f (y)− f (x)− ⟨∇f (x), y − x⟩ = y2

2
− x2

2
− x(y − x) =

1
2
[
y2 + x2 − 2xy

]
=

(x − y)2

2
≥ 0

Hence, by using the first-order definition of convexity, f (x) is convex.
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Convex Functions

Q: Prove that f (x) = log(1 + exp(−x)) is a convex function.

f ′(x) =
− exp(−x)

1 + exp(−x)
=

−1
1 + exp(x)

f ′′(x) =
exp(x)

(1 + exp(x))2
> 0

Hence, by using the second-order definition of convexity, f (x) is convex.

Q: Prove that the ridge regression loss function: f (w) = 1
2 ∥Xw − y∥2 + λ

2 ∥w∥
2 is convex

Recall that ∇2f (w) = XTX + λId . For vector v , let us consider vT∇2f (w)v ,

vT∇2f (w)v = vT[XTX + λId ]v = vT[XTX ]v + λvTv = [Xv ]T[Xv ] + λ ∥v∥2 = ∥Xv∥2 + λ ∥v∥2

=⇒ vT∇2f (w)v ≥ 0 =⇒ ∇2f (w) ⪰ 0.

Hence, by using the second-order definition of convexity, f (w) is convex.
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Convex Functions

Operations that preserve convexity: if f (x) and g(x) are convex functions, then h(x) is convex if,

h(x) = αf (x) for α ≥ 0 (Non-negative scaling)
E.g: For w ∈ Rd , f (w) = ∥w∥2 is convex, and hence h(w) = λ

2 ∥w∥2 for λ ≥ 0 is convex.

h(x) = max{f (x), g(x)} (Point-wise maximum)
E.g: f (w) = 0 and g(w) = 1 − w are convex functions, and hence h(w) = max{0, 1 − w} is
convex.

h(x) = f (Ax + b) (Composition with affine map)
E.g.: f (w) = max{0, 1 − w} is convex, and hence h(w) = max{0, 1 − yi ⟨w , xi ⟩} for xi ∈ Rd and
yi ∈ R is convex

h(x) = f (x) + g(x) (Sum)
E.g.: f (w) = max{0, 1 − yi ⟨w , xi ⟩} is convex, and hence
h(w) =

∑n
i=1 max{0, 1 − yi ⟨w , xi ⟩}+ λ

2 ∥w∥2 is convex.

Hence, the SVM loss function: f (w) :=
∑n

i=1 max {0, 1− yi ⟨Xi ,w⟩}+ λ
2 ∥w∥

2 is convex.
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Convex Functions

Q: Prove that ℓ1-regularized logistic regression:
f (w) :=

∑n
i=1 log (1 + exp (−yi ⟨Xi ,w⟩)) + λ ∥w∥1 is convex.

We have proved that the logistic loss f (x) = log(1 + exp(−x)) is convex. Since composition
with an affine map is convex, and the sum of convex functions is convex, the first term is convex.
Since all norms are convex, and a non-negative scaling of a convex function is convex, the second
term is convex. Hence, f (w) is convex.

Another way to prove convexity for logistic regression is to compute the Hessian and show that it
is positive semi-definite (In Assignment 1)
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Questions?
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