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e For an L-smooth function, f(y) < f(x) + (VFf(x),y — x) + 5 [ly — x||? for all x,y € D.

@ For L-smooth functions lower-bounded by f*, gradient descent with = % returns w such
that | V£ (W) < € and requires T > M iterations (oracle calls).

Importantly, the GD rate does not depend on the dimension of w.

o Lower-Bound: When minimizing a smooth function (without additional assumptions), any
first-order algorithm requires Q (%) oracle calls to return a point W such that
IVF(W)[? < e.

Hence, GD is optimal for minimizing smooth functions.



Gradient Descent

@ The above results require setting the step-size to % In fact, GD with any 7 € (0, %) will
result in convergence to the stationary point (prove in Assignment 1).

@ However, estimating L can be difficult as the functions get more complicated.

@ Even for simple functions, the theoretically computed L is global (the “local” L might be
much smaller) and often loose in practice. Typically we tend to overestimate L resulting in a
smaller step-size.

@ Instead of setting 1 according to L, we can “search” for a good step-size 7 in each iteration
k. We will study 2 ways to do so:
e Exact Line-search
o Backtracking Armijo Line-search



Exact Line-search

(v =neV0n)
Exact line-search: At iteration k, solve the
following sub-problem:

Nk = argmin f(wx — nVF(wy)). o
n

Mk
After computing 7k, do the usual GD update: w11 = wix — 9 VI (wy).

@ Can adapt to the “local” L, resulting in larger step-sizes and better performance.

@ Can solve the sub-problem approximately by doing gradient descent w.r.t  (known as
hyper-gradient descent [BCR*17]). This is computationally expensive.

@ Can compute 7, analytically. This can only be done in special cases such as for quadratics.



Exact Line-search for Linear Regression

Recall linear regression: for X € R"*? and y € R", we aim to solve:
minwers F(w) i= 3 [ Xw = yI* = § [w"(X"X)w — 2(XTy, w) + |lyI]°]
For the exact line-search, we need to min, h(n) := f(wx — nVf(w)).

Since f is a quadratic, we can directly use the second-order Taylor series:

F(wi = nVE(wi)) = f(wi) + (VF(wi), =nVF(wi)) + %[—an(Wk)]TV2f(Wk)[—an(Wk)]
—> Vh(nk) = = [VF(wi)|* + i [V F(wi)] V2 F (W) [V (wi)] = 0

. IV F(we))?
IV F (W) 132 ()

For linear regression, V2f(wy) = XTX and VF(wx) = XT(Xwx — y).
R e §
n

k= IXTOwWe—y) ey

. (Implement in Assignment 1)



Armijo Condition

Usually, the cost of doing an exact line-search is not worth the computational effort.
Armijo condition for a prospective step-size 7j:

F(wi — iV F(we)) < F(wi) = ik [V F(wi)|®
where ¢ € (0,1) is a hyper-parameter.

I (Wi = m V)

L fow) = e |1V fonp |12

L Mk



Gradient Descent with Backtracking Armijo Line-search

Algorithm GD with Armijo Line-search
1: function GD with Armijo line-search(f, wo, 7max, ¢ € (0,1), 8 € (0,1))
2: for k=0,...,T—1do

3: Mk < TNmax

4 while f(wy — i VF(wy)) > f(wi) — ¢ - 7k | VF(wi)||* do
5 ik < ik

6: end while

T Mk Tk

8 Wiy1 = wix — Nk VF(wy)

9: end for

10: return wr




Backtracking Armijo Line-search

Simplification for analysis: Assume that the backtracking line-search procedure returns the
largest 7 that satisfies the Armijo condition. Will be referred to as exact backtracking line-search.

Claim: For L-smooth functions, the exact backtracking line-search procedure terminates and

returns 7, > min {2(17[6), Umax}.

Proof: For a prospective step-size 7jx, we will use the following two inequalities:

L~2
Fwi — iV F(wi)) < F(wie) — |V F(wi)||? (ﬁk - g") (Quadratic bound using smoothness)
ha (k)
F(wi — iV F(wi)) < F(wie) — IV F(wi) |1 (<) (Armijo condition)
ha (i)



Backtracking Armijo Line-search

) . . ) A f(wi) Smoothness:
Recall that if the Armijo condition is satis- y ha(ii) = F(wi) + (57 = 1) |V F(wi) |
fied, the back-tracking line-search procedure Line seorch
terminates. o) = F(wi) = el VF (wi) |
=0 i, = 20=)

Case (i) Nmax < (1 ). From smoothness, F(Wk — Dmax VI (Wk)) < h1(Nmax)- FOr Nmax < 2(17[6)

we know that hl(nmax) < ha(nmax)- Hence, f(wk — Nmax VI (wk)) < ha()max), meaning that the
2(1 c)

Armijo condition is satisfied for Nmax. == if Jmax < , then the line-search terminates

immediately and 7x = Nmax-

Case (ii): If Pmax > (1 ). While backtracking, if 7, = M, then

f(wi — ik VE(wy)) < h1(77k) = hy(jk), the line-search terminates immediately and 7, =
If the Armijo condition is satisfied for a step-size 7y s.t. h2£77k) < hi(nk), then

f(wk — e VE(wk)) < ha(ne) < hi(nk) = cne > ke — Lﬂ = N > 2(17[5)

2(1—¢)
e

Putting everything together, the step-size 7, returned by the Armijo line-search satisfies
nkzmin{Q(ll__c)vnmax . 8




Gradient Descent with Backtracking Armijo Line-search

Claim: For L-smooth functions lower-bounded by f*, gradient descent with exact backtracking

Armijo line-search (with ¢ = 1/2) returns point W such that ||[V£(#)||* < ¢ and requires

T> max{ﬂzﬂmax}[f(wo) mins F(W)] terations.

Proof: Since 7y satlsfles the Armijo condition and wyi1 = wix — NV (wy),

F(wis1) < F(wi) = e [VF(wi)
< F(wi) - (mln{zlL ”';}) IV F (wi) 1>

(Result from previous slide with ¢ = 1/2)

Continuing the proof as before,

max{2L, 2/nm.. } [f(wo) — F*]
T

= |[VFW)I* <

The claim can be proved by the same reasoning as in Lecture 2.



Gradient Descent with Backtracking Armijo Line-search — Example

min,e[—10,10] f (x) := —x sin(x). Compare GD (with xo = 4) with (i)
n=1/L~0.1 and (ii) Armijo line-search (Nmax = 10,c =1/2,3 = 0.9).

)

Iterations Iterations

(a) Gradient norm (b) Function value

—n
— armijo

- /\/\/\/\A/\/\
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(c) lterate (d) Stepsize
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Questions?



Convex Optimization

For smooth functions, GD requires ©(1/¢) iterations to converge to an e-approximate stationary
point. Alternatively, if we care about global optimization (reach the vicinity of the true
minimizer), any algorithm requires Q(1/¢9) iterations.

Convex functions: Class of functions where local optimization can result in convergence to the
global minimizer of the function.

In general, convex optimization involves minimizing a convex function over a convex set C.

Examples of convex optimization in ML
Ridge regression: min,,cgs L || Xw — y|* + 3 [|w|*.

Logistic regression: min,,cgs » ;- log (1 + exp (—yi(Xi, w)))
Support vector machines: min,cgs > ; max{0,1 — y;(X;, w)} + 3 | w]?

Planning in MDPs in RL: max,c 7, (i1, r) where F, is the flow-polytope.
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A set C is convex if every point along the line joining two points in C also lies in the set.
For points x, y, the convex combination of x,y is zg := Ox + (1 — 0)y for 6 € [0, 1].
A set C is convex iff Vx,y € C, the convex combination z, € C for all € [0, 1].

Examples of convex sets:

e Positive orthant RY : {x|x > 0}.

Hyper-plane: {x|Ax = b}.
Half-space: {x|Ax < b}.
Norm-ball: {x||[|x|[, < r} for p > 1.

Norm-cone: {(x,r)|[Ix||, < r} for p > 1.
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Q: Prove that the hyper-plane (set of linear equations): H := {x|Ax = b} is a convex set.

If x,y € H, then, Ax = b and Ay = b. Consider a point zy := 6x + (1 — 8)y for 6 € [0,1].
Azg = AlOx + (1 — 0)y] = 0Ax+ (1 — §)Ay = b.

Hence, zg € H for all 6 € [0,1] and H is a convex set.

Q: Prove that the ball of radius r centered at point xc: B(xc,r) := {x|[[x — x[[, < r} for p>1
is convex.

If x,y € B(xc, r), then, ||x — xc||, < rand ||y — xc||,, < r. Consider a point zg := 0x + (1 —0)y
P P

for 6 € [0, 1].
o A el = 100 = x) + (1 )y — ),

< N0(x = x)l, + 11 = 0)(y — x)l, (Triangle inequality for norms)
<0 (x— XC)HP +(1-0)|(y — XC)HP (Homogeneity of norms)
=i ||Z—XC||p <r

Hence, zyp € B(xc, r) for all # € [0,1] and B(xc, r) is a convex set. 13



Q: Prove that the set of symmetric PSD matrices: S7 = {X € R"*"|X = 0, X = X"} is convex.

Ans: If X € ST, for any vector v, vTXv > 0. Consider X,Y € S7, and let Zy = 0X + (1 —-0)Y,
then, vTZgv = 0 vTXv + (1 —0) vTYv > 0, hence Z € S! for all § € [0,1] and S is a convex
set.

e Intersection of convex sets is convex = can prove the convexity of a set by showing that it
is an intersection of convex sets.

Example: We know that a half-space: (a;, x) < b; is a convex set. The set of inequalities
Ax < b is an intersection of half-spaces and is hence convex.
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Questions?



Convex Functions

Zero-order definition: A function f is convex iff its domain D is a convex set, and for all
x,y € D and 6 €[0,1],

fOx+(1—0)y) <O0f(x)+(1—0)f(y)
i.e. the function is below the chord between two points.
e Alternatively, f is convex iff the set formed by the area above the function is a convex set.
Examples of convex functions:

o All p-norms x|, with p > 1.

F(x) = 1/V, F(x) = — log(x), (x) = exp(—x)

o Negative entropy: f(x) = x log(x)

Logistic loss: f(x) = log(1 + exp(—x))

@ Linear functions f(x) = (a, x)
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Convex Functions

First-order condition: If f is differentiable, it is convex iff its domain D is a convex set and for
all x,y € D,

fly) = f(x) + (VF(x),y — x)
i.e. the function is above the tangent to the function at any point x.

For a convex f, consider w* such that Vf(w*) = 0, then using convexity, for all y € D,
f(y) > f(w*). If w* is a stationary point i.e. |[Vf(w*)||* =0, then it is a global minimum.
Hence, local optimization to make the gradient zero results in convergence to a global minimum!

Q: For a convex f, if Vf(w*) =0, then is w* a unique minimizer of 7
Ans: No, there might many minimizers that all have the same function value

Second-order condition: If f is twice differentiable, it is convex iff its domain D is a convex set
and for all x € D,
V2f(x) =0

i.e. the Hessian is positive semi-definite (“curved upwards”) for all x.
16



Convex Functions

Q: Prove that f(x) = max; x; is a convex function.

f(Ox+(1—0)y)=max[fx; + (1 —0)y;] < Omaxx; + (1 — 0)maxy; = 0f(x) + (1 — 0)f(y)
Hence, by using the zero-order definition of convexity, f(x) is convex.
Q: Prove that f(x) = 1x? is a convex function.

) — )~ (VFy — ) = 5 = 5 —xly—x) = 5 [ 42— 29] = B 5 0

Hence, by using the first-order definition of convexity, f(x) is convex.
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Convex Functions

Q: Prove that f(x) = log(1 + exp(—x)) is a convex function.

iy —ee(=x) _ —1
Fila) = 1+exp(—x) 1+ exp(x)
F1(x) = exp(x)

(1+exp(x))?

Hence, by using the second-order definition of convexity, f(x) is convex.

Q: Prove that the ridge regression loss function: f(w) = | Xw — y[|* + 3 ||w||* is convex

Recall that V2f(w) = XTX + Aly. For vector v, let us consider vTV?f(w)v,

VIV2F(w)v = vI[XTX + Mglv = vTIXTX]v + AvTv = [XV]T[XV] + A v? = IXv])? + A ||v]?
— VTV3f(w)v >0 = V?f(w) > 0.

Hence, by using the second-order definition of convexity, f(w) is convex.
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Convex Functions

Operations that preserve convexity: if f(x) and g(x) are convex functions, then h(x) is convex if,

@ h(x) = af(x) for « >0 (Non-negative scaling)
E.g: For w € R?, f(w) = ||w||® is convex, and hence h(w) = 3 ||w||* for A > 0 is convex.
@ h(x) = max{f(x),g(x)} (Point-wise maximum)
E.g: f(w) =0 and g(w) =1 — w are convex functions, and hence h(w) = max{0,1 — w} is
convex.
@ h(x) = f(Ax + b) (Composition with affine map)
E.g.: f(w) = max{0,1 — w} is convex, and hence h(w) = max{0,1 — yi(w, x;)} for x; € RY and
yi € R is convex
o h(x) = F(x) + g(x) (Sum)
E.g.: f(w) =max{0,1 — y;j{w,x)} is convex, and hence
h(w) =37 max{0,1 — y;(w,x)} + 3 |wl? is convex.

Hence, the SVM loss function: f(w) := Y7 max{0,1— y;(X;, w)} + % | wl[® is convex.
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Q: Prove that /;-regularized logistic regression:
f(w):=>""_log (14 exp(—yi(Xi,w))) + X||w]|; is convex.

We have proved that the logistic loss f(x) = log(1 + exp(—x)) is convex. Since composition
with an affine map is convex, and the sum of convex functions is convex, the first term is convex.
Since all norms are convex, and a non-negative scaling of a convex function is convex, the second

term is convex. Hence, f(w) is convex.

Another way to prove convexity for logistic regression is to compute the Hessian and show that it

is positive semi-definite (In Assignment 1)

20



Questions?
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