CMPT 409/981: Optimization for Machine Learning Lecture 3

Sharan Vaswani

September 12, 2024

- For an *L*-smooth function, $f(y) \leq f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} \|y x\|^2$ for all $x, y \in D$.
- For *L*-smooth functions lower-bounded by f^* , gradient descent with $\eta = \frac{1}{L}$ returns \hat{w} such that $\|\nabla f(\hat{w})\|^2 \le \epsilon$ and requires $T \ge \frac{2L[f(w_0) f^*]}{\epsilon}$ iterations (oracle calls).
- Importantly, the GD rate does not depend on the dimension of w.
- Lower-Bound: When minimizing a smooth function (without additional assumptions), any first-order algorithm requires $\Omega\left(\frac{1}{\epsilon}\right)$ oracle calls to return a point \hat{w} such that $\|\nabla f(\hat{w})\|^2 \leq \epsilon$.
- Hence, GD is optimal for minimizing smooth functions.

- The above results require setting the step-size to $\frac{1}{L}$. In fact, GD with any $\eta \in (0, \frac{2}{L})$ will result in convergence to the stationary point (prove in Assignment 1).
- However, estimating L can be difficult as the functions get more complicated.
- Even for simple functions, the theoretically computed *L* is global (the "local" *L* might be much smaller) and often loose in practice. Typically we tend to overestimate *L* resulting in a smaller step-size.
- Instead of setting η according to *L*, we can "search" for a good step-size η_k in each iteration *k*. We will study 2 ways to do so:
 - Exact Line-search
 - Backtracking Armijo Line-search

After computing η_k , do the usual GD update: $w_{k+1} = w_k - \eta_k \nabla f(w_k)$.

- Can adapt to the "local" L, resulting in larger step-sizes and better performance.
- Can solve the sub-problem approximately by doing gradient descent w.r.t η (known as *hyper-gradient descent* [BCR⁺17]). This is computationally expensive.
- Can compute η_k analytically. This can only be done in special cases such as for quadratics.

Exact Line-search for Linear Regression

Recall linear regression: for $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^{n}$, we aim to solve: $\min_{w \in \mathbb{R}^{d}} f(w) := \frac{1}{2} \|Xw - y\|^{2} = \frac{1}{2} \left[w^{\mathsf{T}}(X^{\mathsf{T}}X)w - 2\langle X^{\mathsf{T}}y, w \rangle + \|y\|^{2} \right].$

For the exact line-search, we need to $\min_{\eta} h(\eta) := f(w_k - \eta \nabla f(w_k)).$

Since f is a quadratic, we can directly use the second-order Taylor series:

$$f(w_{k} - \eta \nabla f(w_{k})) = f(w_{k}) + \langle \nabla f(w_{k}), -\eta \nabla f(w_{k}) \rangle + \frac{1}{2} [-\eta \nabla f(w_{k})]^{\mathsf{T}} \nabla^{2} f(w_{k}) [-\eta \nabla f(w_{k})]$$

$$\implies \nabla h(\eta_{k}) = - \| \nabla f(w_{k}) \|^{2} + \eta_{k} [\nabla f(w_{k})]^{\mathsf{T}} \nabla^{2} f(w_{k}) [\nabla f(w_{k})] = 0$$

$$\implies \eta_{k} = \frac{\| \nabla f(w_{k}) \|^{2}}{\| \nabla f(w_{k}) \|^{2}_{\nabla^{2} f(w_{k})}}$$

For linear regression, $\nabla^2 f(w_k) = X^{\mathsf{T}} X$ and $\nabla f(w_k) = X^{\mathsf{T}} (Xw_k - y)$. $\implies \eta_k = \frac{\|X^{\mathsf{T}}(Xw_k - y)\|^2}{\|X^{\mathsf{T}}(Xw_k - y)\|_{X^{\mathsf{T}} X}^2}$. (Implement in Assignment 1)

Armijo Condition

Usually, the cost of doing an exact line-search is not worth the computational effort.

Armijo condition for a prospective step-size $\tilde{\eta_k}$:

$$f(w_k - ilde\eta_k
abla f(w_k)) \leq f(w_k) - c \, ilde\eta_k \, \left\|
abla f(w_k)
ight\|^2$$

where $c \in (0, 1)$ is a hyper-parameter.

Algorithm GD with Armijo Line-search

- 1: function GD with Armijo line-search(f, w_0 , η_{max} , $c \in (0, 1)$, $\beta \in (0, 1)$)
- 2: for k = 0, ..., T 1 do
- 3: $\tilde{\eta}_k \leftarrow \eta_{\max}$
- 4: while $f(w_k \tilde{\eta}_k \nabla f(w_k)) > f(w_k) c \cdot \tilde{\eta}_k \|\nabla f(w_k)\|^2$ do
- 5: $\tilde{\eta}_k \leftarrow \tilde{\eta}_k \beta$
- 6: end while
- 7: $\eta_k \leftarrow \tilde{\eta}_k$
- 8: $w_{k+1} = w_k \eta_k \nabla f(w_k)$
- 9: end for
- 10: **return** *w*_T

Simplification for analysis: Assume that the backtracking line-search procedure returns the largest η that satisfies the Armijo condition. Will be referred to as *exact backtracking line-search*.

Claim: For *L*-smooth functions, the exact backtracking line-search procedure terminates and returns $\eta_k \ge \min \left\{ \frac{2(1-c)}{L}, \eta_{\max} \right\}$.

Proof: For a prospective step-size $\tilde{\eta}_k$, we will use the following two inequalities:

$$f(w_{k} - \tilde{\eta}_{k}\nabla f(w_{k})) \leq \underbrace{f(w_{k}) - \|\nabla f(w_{k})\|^{2} \left(\tilde{\eta}_{k} - \frac{L\tilde{\eta}_{k}^{2}}{2}\right)}_{h_{1}(\tilde{\eta}_{k})}$$
(Quadratic bound using smoothness)
$$f(w_{k} - \tilde{\eta}_{k}\nabla f(w_{k})) \leq \underbrace{f(w_{k}) - \|\nabla f(w_{k})\|^{2} (c\tilde{\eta}_{k})}_{h_{2}(\tilde{\eta}_{k})}$$
(Armijo condition)

Backtracking Armijo Line-search

Recall that if the Armijo condition is satisfied, the back-tracking line-search procedure terminates.

Case (i) $\eta_{\max} \leq \frac{2(1-c)}{L}$: From smoothness, $f(w_k - \eta_{\max} \nabla f(w_k)) \leq h_1(\eta_{\max})$. For $\eta_{\max} \leq \frac{2(1-c)}{L}$, we know that $h_1(\eta_{\max}) \leq h_2(\eta_{\max})$. Hence, $f(w_k - \eta_{\max} \nabla f(w_k)) \leq h_2(\eta_{\max})$, meaning that the Armijo condition is satisfied for η_{\max} . \implies if $\eta_{\max} \leq \frac{2(1-c)}{L}$, then the line-search terminates immediately and $\eta_k = \eta_{\max}$.

Case (ii): If $\eta_{\max} > \frac{2(1-c)}{L}$: While backtracking, if $\tilde{\eta}_k = \frac{2(1-c)}{L}$, then $f(w_k - \tilde{\eta}_k \nabla f(w_k)) \le h_1(\tilde{\eta}_k) = h_2(\tilde{\eta}_k)$, the line-search terminates immediately and $\eta_k = \frac{2(1-c)}{L}$. If the Armijo condition is satisfied for a step-size η_k s.t. $h_2(\eta_k) < h_1(\eta_k)$, then $f(w_k - \eta_k \nabla f(w_k)) \le h_2(\eta_k) < h_1(\eta_k) \implies c\eta_k \ge \eta_k - \frac{L\eta_k^2}{2} \implies \eta_k \ge \frac{2(1-c)}{L}$.

Putting everything together, the step-size η_k returned by the Armijo line-search satisfies $\eta_k \geq \min\left\{\frac{2(1-c)}{L}, \eta_{\max}\right\}$.

Gradient Descent with Backtracking Armijo Line-search

Claim: For *L*-smooth functions lower-bounded by f^* , gradient descent with exact backtracking Armijo line-search (with c = 1/2) returns point \hat{w} such that $\|\nabla f(\hat{w})\|^2 \leq \epsilon$ and requires $T \geq \frac{\max\{2L, 2/\eta_{\max}\} [f(w_0) - \min_w f(w)]}{\epsilon}$ iterations.

Proof: Since η_k satisfies the Armijo condition and $w_{k+1} = w_k - \eta_k \nabla f(w_k)$,

$$egin{aligned} f(w_{k+1}) &\leq f(w_k) - c \, \eta_k \, \|
abla f(w_k) \|^2 \ &\leq f(w_k) - \left(\min\left\{ rac{1}{2L}, rac{\eta_{\max}}{2}
ight\}
ight) \, \|
abla f(w_k) \|^2 \ & (ext{Particle} k ext{ form any invariant slide } k) \end{aligned}$$

(Result from previous slide with c=1/2)

Continuing the proof as before,

$$\implies \left\|\nabla f(\hat{w})\right\|^2 \leq \frac{\max\{2L, 2/\eta_{\max}\}\left[f(w_0) - f^*\right]}{T}$$

The claim can be proved by the same reasoning as in Lecture 2.

Gradient Descent with Backtracking Armijo Line-search – Example

Questions?

For smooth functions, GD requires $\Theta(1/\epsilon)$ iterations to converge to an ϵ -approximate stationary point. Alternatively, if we care about global optimization (reach the vicinity of the true minimizer), any algorithm requires $\Omega(1/\epsilon^d)$ iterations.

Convex functions: Class of functions where local optimization can result in convergence to the global minimizer of the function.

In general, convex optimization involves minimizing a convex function over a convex set \mathcal{C} .

Examples of convex optimization in ML Ridge regression: $\min_{w \in \mathbb{R}^d} \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$. Logistic regression: $\min_{w \in \mathbb{R}^d} \sum_{i=1}^n \log (1 + \exp(-y_i \langle X_i, w \rangle))$ Support vector machines: $\min_{w \in \mathbb{R}^d} \sum_{i=1}^n \max\{0, 1 - y_i \langle X_i, w \rangle\} + \frac{\lambda}{2} \|w\|^2$ Planning in MDPs in RL: $\max_{\mu \in \mathcal{F}_o} \langle \mu, r \rangle$ where \mathcal{F}_o is the flow-polytope. A set C is convex if every point along the line joining two points in C also lies in the set. For points x, y, the *convex combination* of x, y is $z_{\theta} := \theta x + (1 - \theta)y$ for $\theta \in [0, 1]$. A set C is convex iff $\forall x, y \in C$, the convex combination $z_{\theta} \in C$ for all $\theta \in [0, 1]$. *Examples of convex sets*:

- Positive orthant $\mathbb{R}^d_+ : \{x | x \ge 0\}.$
- Hyper-plane: $\{x|Ax = b\}$.
- Half-space: $\{x | Ax \leq b\}$.
- Norm-ball: $\{x \mid ||x||_p \leq r\}$ for $p \geq 1$.
- Norm-cone: $\{(x,r) | \|x\|_p \leq r\}$ for $p \geq 1$.

Convex Sets

Q: Prove that the hyper-plane (set of linear equations): $\mathcal{H} := \{x | Ax = b\}$ is a convex set. If $x, y \in \mathcal{H}$, then, Ax = b and Ay = b. Consider a point $z_{\theta} := \theta x + (1 - \theta)y$ for $\theta \in [0, 1]$. $Az_{\theta} = A[\theta x + (1 - \theta)y] = \theta Ax + (1 - \theta)Ay = b$.

Hence, $z_{\theta} \in \mathcal{H}$ for all $\theta \in [0, 1]$ and \mathcal{H} is a convex set.

Q: Prove that the ball of radius r centered at point x_c : $\mathcal{B}(x_c, r) := \{x | ||x - x_c||_p \le r\}$ for $p \ge 1$ is convex.

If $x, y \in \mathcal{B}(x_c, r)$, then, $||x - x_c||_p \le r$ and $||y - x_c||_p \le r$. Consider a point $z_\theta := \theta x + (1 - \theta)y$ for $\theta \in [0, 1]$. $||z_\theta - x_c||_p = ||\theta(x - x_c) + (1 - \theta)(y - x_c)||_p$ $\le ||\theta(x - x_c)||_p + ||(1 - \theta)(y - x_c)||_p$ (Triangle inequality for norms) $\le \theta ||(x - x_c)||_p + (1 - \theta) ||(y - x_c)||_p$ (Homogeneity of norms)

 $\implies ||z - x_c||_p \leq r$

Hence, $z_{\theta} \in \mathcal{B}(x_c, r)$ for all $\theta \in [0, 1]$ and $\mathcal{B}(x_c, r)$ is a convex set.

Q: Prove that the set of symmetric PSD matrices: $S_{+}^{n} = \{X \in \mathbb{R}^{n \times n} | X \succeq 0, X = X^{\mathsf{T}}\}$ is convex. Ans: If $X \in S_{+}^{n}$, for any vector v, $v^{\mathsf{T}}Xv \ge 0$. Consider $X, Y \in S_{+}^{n}$, and let $Z_{\theta} = \theta X + (1 - \theta)Y$, then, $v^{\mathsf{T}}Z_{\theta}v = \theta v^{\mathsf{T}}Xv + (1 - \theta)v^{\mathsf{T}}Yv \ge 0$, hence $Z \in S_{+}^{n}$ for all $\theta \in [0, 1]$ and S_{+}^{n} is a convex set.

• Intersection of convex sets is convex \implies can prove the convexity of a set by showing that it is an intersection of convex sets.

Example: We know that a half-space: $\langle a_i, x \rangle \leq b_i$ is a convex set. The set of inequalities $Ax \leq b$ is an intersection of half-spaces and is hence convex.

Questions?

Convex Functions

Zero-order definition: A function f is convex iff its domain \mathcal{D} is a convex set, and for all $x, y \in \mathcal{D}$ and $\theta \in [0, 1]$,

$$f(heta x + (1 - heta)y) \le heta f(x) + (1 - heta) f(y)$$

i.e. the function is below the chord between two points.

• Alternatively, f is convex iff the set formed by the area above the function is a convex set.

Examples of convex functions:

- All *p*-norms $||x||_p$ with $p \ge 1$.
- $f(x) = 1/\sqrt{x}$, $f(x) = -\log(x)$, $f(x) = \exp(-x)$
- Negative entropy: $f(x) = x \log(x)$
- Logistic loss: $f(x) = \log(1 + \exp(-x))$
- Linear functions $f(x) = \langle a, x \rangle$

Convex Functions

First-order condition: If *f* is differentiable, it is convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$,

$$f(y) \geq f(x) + \langle
abla f(x), y - x
angle$$

i.e. the function is above the tangent to the function at any point x.

For a convex f, consider w^* such that $\nabla f(w^*) = 0$, then using convexity, for all $y \in D$, $f(y) \ge f(w^*)$. If w^* is a stationary point i.e. $\|\nabla f(w^*)\|^2 = 0$, then it is a global minimum. Hence, local optimization to make the gradient zero results in convergence to a global minimum!

Q: For a convex f, if $\nabla f(w^*) = 0$, then is w^* a unique minimizer of f?

Ans: No, there might many minimizers that all have the same function value

Second-order condition: If f is twice differentiable, it is convex iff its domain \mathcal{D} is a convex set and for all $x \in \mathcal{D}$,

$$\nabla^2 f(x) \succeq 0$$

i.e. the Hessian is positive semi-definite ("curved upwards") for all x.

Q: Prove that $f(x) = \max_i x_i$ is a convex function.

$$f\left(\theta x + (1-\theta)y\right) = \max_{i} [\theta x_i + (1-\theta)y_i] \leq \theta \max_{i} x_i + (1-\theta) \max_{i} y_i = \theta f(x) + (1-\theta)f(y)$$

Hence, by using the zero-order definition of convexity, f(x) is convex.

Q: Prove that $f(x) = \frac{1}{2}x^2$ is a convex function.

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \frac{y^2}{2} - \frac{x^2}{2} - x(y - x) = \frac{1}{2} \left[y^2 + x^2 - 2xy \right] = \frac{(x - y)^2}{2} \ge 0$$

Hence, by using the first-order definition of convexity, f(x) is convex.

Convex Functions

Q: Prove that $f(x) = \log(1 + \exp(-x))$ is a convex function.

$$f'(x) = \frac{-\exp(-x)}{1 + \exp(-x)} = \frac{-1}{1 + \exp(x)}$$
$$f''(x) = \frac{\exp(x)}{(1 + \exp(x))^2} > 0$$

Hence, by using the second-order definition of convexity, f(x) is convex.

Q: Prove that the ridge regression loss function: $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$ is convex Recall that $\nabla^2 f(w) = X^T X + \lambda I_d$. For vector v, let us consider $v^T \nabla^2 f(w)v$,

$$v^{\mathsf{T}}\nabla^2 f(w)v = v^{\mathsf{T}}[X^{\mathsf{T}}X + \lambda I_d]v = v^{\mathsf{T}}[X^{\mathsf{T}}X]v + \lambda v^{\mathsf{T}}v = [Xv]^{\mathsf{T}}[Xv] + \lambda \|v\|^2 = \|Xv\|^2 + \lambda \|v\|^2$$
$$\implies v^{\mathsf{T}}\nabla^2 f(w)v \ge 0 \implies \nabla^2 f(w) \succeq 0.$$

Hence, by using the second-order definition of convexity, f(w) is convex.

Convex Functions

Operations that preserve convexity: if f(x) and g(x) are convex functions, then h(x) is convex if,

- $h(x) = \alpha f(x)$ for $\alpha \ge 0$ (Non-negative scaling) E.g: For $w \in R^d$, $f(w) = ||w||^2$ is convex, and hence $h(w) = \frac{\lambda}{2} ||w||^2$ for $\lambda \ge 0$ is convex.
- h(x) = max{f(x), g(x)} (Point-wise maximum)
 E.g: f(w) = 0 and g(w) = 1 w are convex functions, and hence h(w) = max{0, 1 w} is convex.
- h(x) = f(Ax + b) (Composition with affine map) E.g.: $f(w) = \max\{0, 1 - w\}$ is convex, and hence $h(w) = \max\{0, 1 - y_i \langle w, x_i \rangle\}$ for $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ is convex
- h(x) = f(x) + g(x) (Sum) E.g.: $f(w) = \max\{0, 1 - y_i \langle w, x_i \rangle\}$ is convex, and hence $h(w) = \sum_{i=1}^n \max\{0, 1 - y_i \langle w, x_i \rangle\} + \frac{\lambda}{2} ||w||^2$ is convex.

Hence, the SVM loss function: $f(w) := \sum_{i=1}^{n} \max \{0, 1 - y_i \langle X_i, w \rangle\} + \frac{\lambda}{2} \|w\|^2$ is convex.

Q: Prove that ℓ_1 -regularized logistic regression:

 $f(w) := \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \langle X_i, w \rangle \right)\right) + \lambda \left\|w\right\|_1$ is convex.

We have proved that the logistic loss $f(x) = \log(1 + \exp(-x))$ is convex. Since composition with an affine map is convex, and the sum of convex functions is convex, the first term is convex. Since all norms are convex, and a non-negative scaling of a convex function is convex, the second term is convex. Hence, f(w) is convex.

Another way to prove convexity for logistic regression is to compute the Hessian and show that it is positive semi-definite (In Assignment 1)

Questions?

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood, *Online learning rate adaptation with hypergradient descent*, arXiv preprint arXiv:1703.04782 (2017).