CMPT 409/981: Optimization for Machine Learning Lecture 3

Sharan Vaswani

September 12, 2024

- For an *L*-smooth function, $f(y) \leq f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||y x||^2$ for all $x, y \in \mathcal{D}$.
- For L-smooth functions lower-bounded by f^* , gradient descent with $\eta = \frac{1}{I}$ returns \hat{w} such that $||\nabla f(\hat{w})||^2 \leq \epsilon$ and requires $T \geq \frac{2L[f(w_0)-f^*]}{2}$ iterations (oracle calls). $\frac{\sqrt{6}-1}{6}$ iterations (oracle calls).
- \bullet Importantly, the GD rate does not depend on the dimension of w .
- Lower-Bound: When minimizing a smooth function (without additional assumptions), any first-order algorithm requires $\Omega\left(\frac{1}{\epsilon}\right)$ oracle calls to return a point \hat{w} such that $\|\nabla f(\hat{w})\|^2 \leq \epsilon.$
- Hence, GD is optimal for minimizing smooth functions.
- The above results require setting the step-size to $\frac{1}{L}$. In fact, GD with any $\eta \in \left(0, \frac{2}{L}\right)$ will result in convergence to the stationary point (prove in Assignment 1).
- \bullet However, estimating L can be difficult as the functions get more complicated.
- \bullet Even for simple functions, the theoretically computed L is global (the "local" L might be much smaller) and often loose in practice. Typically we tend to overestimate L resulting in a smaller step-size.
- **Instead of setting η according to L, we can "search" for a good step-size** η_k **in each iteration** k. We will study 2 ways to do so:
	- **•** Exact Line-search
	- **•** Backtracking Armijo Line-search

After computing η_k , do the usual GD update: $w_{k+1} = w_k - \eta_k \nabla f(w_k)$.

- Can adapt to the "local" L, resulting in larger step-sizes and better performance.
- Can solve the sub-problem approximately by doing gradient descent w.r.t η (known as hyper-gradient descent $[BCR^+17]$ $[BCR^+17]$. This is computationally expensive.
- Can compute η_k analytically. This can only be done in special cases such as for quadratics.

Exact Line-search for Linear Regression

Recall linear regression: for $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$, we aim to solve: $\min_{w \in \mathbb{R}^d} f(w) := \frac{1}{2} ||Xw - y||^2 = \frac{1}{2} \left[w^{\mathsf{T}} (X^{\mathsf{T}} X) w - 2 \langle X^{\mathsf{T}} y, w \rangle + ||y||^2 \right].$

For the exact line-search, we need to min_n $h(\eta) := f(w_k - \eta \nabla f(w_k))$.

Since f is a quadratic, we can directly use the second-order Taylor series:

$$
f(w_k - \eta \nabla f(w_k)) = f(w_k) + \langle \nabla f(w_k), -\eta \nabla f(w_k) \rangle + \frac{1}{2} [-\eta \nabla f(w_k)]^{\mathsf{T}} \nabla^2 f(w_k) [-\eta \nabla f(w_k)]
$$

\n
$$
\implies \nabla h(\eta_k) = -\|\nabla f(w_k)\|^2 + \eta_k [\nabla f(w_k)]^{\mathsf{T}} \nabla^2 f(w_k) [\nabla f(w_k)] = 0
$$

\n
$$
\implies \eta_k = \frac{\|\nabla f(w_k)\|^2}{\|\nabla f(w_k)\|^2_{\nabla^2 f(w_k)}}
$$

For linear regression, $\nabla^2 f(w_k) = X^{\mathsf{T}} X$ and $\nabla f(w_k) = X^{\mathsf{T}} (Xw_k - y)$. $\implies \eta_k = \frac{\left\|X^{\mathsf{T}}(X_{W_k-y})\right\|^2}{\|X^{\mathsf{T}}(X_{W_k-y})\|^2}$ $\frac{||X| \cdot (Xw_k - y)||}{||X^{\mathsf{T}}(Xw_k - y)||_{X^{\mathsf{T}}X}}$. (Implement in Assignment 1)

Armijo Condition

Usually, the cost of doing an exact line-search is not worth the computational effort. **Armijo condition** for a prospective step-size $\tilde{\eta_k}$:

$$
f(w_k - \tilde{\eta}_k \nabla f(w_k)) \leq f(w_k) - c \, \tilde{\eta}_k \, \left\| \nabla f(w_k) \right\|^2
$$

where $c \in (0, 1)$ is a hyper-parameter.

Algorithm GD with Armijo Line-search

- 1: function GD with Armijo line-search(f, w_0 , η_{max} , $c \in (0,1)$, $\beta \in (0,1)$)
- 2: for $k = 0, ..., T 1$ do
- 3: $\tilde{\eta}_k \leftarrow \eta_{\text{max}}$
- 4: while $f(w_k \tilde{\eta}_k \nabla f(w_k)) > f(w_k) c \cdot \tilde{\eta}_k \left\| \nabla f(w_k) \right\|^2$ do
- 5: $\tilde{\eta}_k \leftarrow \tilde{\eta}_k \beta$
- 6: end while
- 7: $\eta_k \leftarrow \tilde{\eta}_k$
- 8: $w_{k+1} = w_k \eta_k \nabla f(w_k)$
- 9: end for

10: return W_T

Simplification for analysis: Assume that the backtracking line-search procedure returns the largest η that satisfies the Armijo condition. Will be referred to as exact backtracking line-search.

Claim: For L-smooth functions, the exact backtracking line-search procedure terminates and returns $\eta_k \geq \min \left\{ \frac{2(1-c)}{L} \right\}$ $\frac{(1-c)}{L}, \eta_{\text{max}}\bigg\}$.

Proof: For a prospective step-size $\tilde{\eta}_k$, we will use the following two inequalities:

$$
f(w_k - \tilde{\eta}_k \nabla f(w_k)) \leq \underbrace{f(w_k) - \|\nabla f(w_k)\|^2 \left(\tilde{\eta}_k - \frac{L\tilde{\eta}_k^2}{2}\right)}_{h_1(\tilde{\eta}_k)}
$$
 (Quadratic bound using smoothness)

$$
f(w_k - \tilde{\eta}_k \nabla f(w_k)) \leq \underbrace{f(w_k) - \|\nabla f(w_k)\|^2 \left(c\tilde{\eta}_k\right)}_{h_2(\tilde{\eta}_k)}
$$
 (Armijo condition)

Backtracking Armijo Line-search

Recall that if the Armijo condition is satisfied, the back-tracking line-search procedure terminates.

Case (i) $\eta_{\sf max} \leq \frac{2(1-c)}{L}$ $\frac{(-c)}{L}$: From smoothness, $f(w_k - \eta_{\text{max}} \nabla f(w_k)) \leq h_1(\eta_{\text{max}})$. For $\eta_{\text{max}} \leq \frac{2(1-c)}{L}$ $\frac{1-\epsilon}{L}$, we know that $h_1(\eta_{\text{max}}) \leq h_2(\eta_{\text{max}})$. Hence, $f(w_k - \eta_{\text{max}} \nabla f(w_k)) \leq h_2(\eta_{\text{max}})$, meaning that the Armijo condition is satisfied for $\eta_{\sf max.} \implies$ if $\eta_{\sf max} \leq \frac{2(1-c)}{L}$ $\frac{1-e}{L}$, then the line-search terminates immediately and $\eta_k = \eta_{\text{max}}$.

Case (ii): If $\eta_{\text{max}} > \frac{2(1-c)}{L}$ $\frac{L-c}{L}$: While backtracking, if $\tilde{\eta}_k = \frac{2(1-c)}{L}$ $\frac{L - Cj}{L}$, then $f(w_k-\tilde\eta_k\nabla f(w_k))\le h_1(\tilde\eta_k)=h_2(\tilde\eta_k)$, the line-search terminates immediately and $\eta_k=\frac{2(1-c)}{L}$ $\frac{L - C}{L}$. If the Armijo condition is satisfied for a step-size η_k s.t. $h_2(\eta_k) < h_1(\eta_k)$, then $f(w_k - \eta_k \nabla f(w_k)) \leq h_2(\eta_k) < h_1(\eta_k) \implies c\eta_k \geq \eta_k - \frac{L\eta_k^2}{2} \implies \eta_k \geq \frac{2(1-c)}{L}$ $\frac{(-c)}{L}$.

Putting everything together, the step-size η_k returned by the Armijo line-search satisfies $\eta_k \geq \min \left\{ \frac{2(1-c)}{L} \right\}$ $\left\{\frac{1-c}{L}, \eta_{\text{max}}\right\}$.
8 November - Andre Stein, amerikansk politiker († 1888)
18 November - Andre Stein, amerikansk politiker († 1888)
18 November - Andre Stein, amerikansk politiker († 1888)

Gradient Descent with Backtracking Armijo Line-search

Claim: For L-smooth functions lower-bounded by f^* , gradient descent with exact backtracking Armijo line-search (with $c=1/2)$ returns point \hat{w} such that $\left\|\nabla f(\hat{w})\right\|^2 \leq \epsilon$ and requires $T \geq \frac{\max\{2L,2/\eta_{\max}\}\left[f(w_0) - \min_w f(w)\right]}{\epsilon}$ iterations.

Proof: Since n_k satisfies the Armijo condition and $w_{k+1} = w_k - n_k \nabla f(w_k)$.

$$
f(w_{k+1}) \leq f(w_k) - c \eta_k \|\nabla f(w_k)\|^2
$$

$$
\leq f(w_k) - \left(\min\left\{\frac{1}{2L}, \frac{\eta_{\max}}{2}\right\}\right) \|\nabla f(w_k)\|^2
$$

(Result from previous slide with $c = 1/2$)

Continuing the proof as before,

$$
\implies \|\nabla f(\hat{w})\|^2 \leq \frac{\max\{2L, 2/\eta_{\max}\}[f(w_0) - f^*]}{T}
$$

The claim can be proved by the same reasoning as in Lecture 2.

Gradient Descent with Backtracking Armijo Line-search – Example

Questions?

For smooth functions, GD requires $\Theta(1/\epsilon)$ iterations to converge to an ϵ -approximate stationary point. Alternatively, if we care about global optimization (reach the vicinity of the true minimizer), any algorithm requires $\Omega(1/\epsilon^d)$ iterations.

Convex functions: Class of functions where local optimization can result in convergence to the global minimizer of the function.

In general, convex optimization involves minimizing a convex function over a convex set C .

Examples of convex optimization in ML Ridge regression: $\min_{w \in \mathbb{R}^d} \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$. Logistic regression: $\min_{w \in \mathbb{R}^d} \sum_{i=1}^n \log \left(1 + \exp \left(-y_i \langle X_i, w \rangle \right) \right)$ Support vector machines: $\min_{w \in \mathbb{R}^d} \sum_{i=1}^n \max\left\{0, 1 - y_i\langle X_i, w \rangle\right\} + \frac{\lambda}{2} \left\|w\right\|^2$ **Planning in MDPs in RL**: max $_{\mu\in\mathcal{F}_{\rho}}\langle\mu,r\rangle$ where \mathcal{F}_{ρ} is the flow-polytope.

A set C is convex if every point along the line joining two points in C also lies in the set. For points x, y, the convex combination of x, y is $z_\theta := \theta x + (1 - \theta)y$ for $\theta \in [0, 1]$. A set C is convex iff $\forall x, y \in C$, the convex combination $z_{\theta} \in C$ for all $\theta \in [0, 1]$. Examples of convex sets:

- Positive orthant \mathbb{R}^d_+ : $\{x | x \ge 0\}$.
- Hyper-plane: $\{x | Ax = b\}$.
- Half-space: $\{x | Ax \leq b\}$.
- Norm-ball: $\{x \mid ||x||_p \le r\}$ for $p \ge 1$.
- Norm-cone: $\{(x, r) | ||x||_p \le r\}$ for $p \ge 1$.

Convex Sets

Q: Prove that the hyper-plane (set of linear equations): $\mathcal{H} := \{x | Ax = b\}$ is a convex set. If $x, y \in \mathcal{H}$, then, $Ax = b$ and $Ay = b$. Consider a point $z_{\theta} := \theta x + (1 - \theta)y$ for $\theta \in [0, 1]$. $A z_θ = A[\theta x + (1 - \theta)y] = \theta Ax + (1 - \theta)Av = b.$

Hence, $z_{\theta} \in \mathcal{H}$ for all $\theta \in [0,1]$ and \mathcal{H} is a convex set.

Q: Prove that the ball of radius r centered at point x_c : $\mathcal{B}(x_c, r) := \{x | ||x - x_c||_n \le r\}$ for $p \ge 1$ is convex.

If $x, y \in \mathcal{B}(x_c, r)$, then, $||x - x_c||_p \le r$ and $||y - x_c||_p \le r$. Consider a point $z_\theta := \theta x + (1 - \theta)y$ for $\theta \in [0,1]$. $\left\| z_\theta - x_c \right\|_\rho = \left\| \theta(x-x_c) + (1-\theta)(y-x_c) \right\|_\rho$ $\leq ||\theta(x - x_c)||_p + ||(1 - \theta)(y - x_c)||_p$ (Triangle inequality for norms) $\leq \theta ||(x-x_c)||_p + (1-\theta) ||(y-x_c)||_p$ (Homogeneity of norms)

 \implies $\|z - x_c\|_p \leq r$

Hence, $z_{\theta} \in \mathcal{B}(x_c, r)$ for all $\theta \in [0, 1]$ and $\mathcal{B}(x_c, r)$ is a convex set. 13

Q: Prove that the set of symmetric PSD matrices: $S_+^n = \{X \in \mathbb{R}^{n \times n} | X \succeq 0, X = X^T\}$ is convex. Ans: If $X \in S^n_+$, for any vector v, $v^{\top}Xv \ge 0$. Consider $X, Y \in S^n_+$, and let $Z_\theta = \theta X + (1-\theta)Y$, then, $v^T Z_\theta v = \theta v^T X v + (1 - \theta) v^T Y v \ge 0$, hence $Z \in S^n_+$ for all $\theta \in [0,1]$ and S^n_+ is a convex set.

• Intersection of convex sets is convex \implies can prove the convexity of a set by showing that it is an intersection of convex sets.

Example: We know that a half-space: $\langle a_i, x \rangle \leq b_i$ is a convex set. The set of inequalities $Ax < b$ is an intersection of half-spaces and is hence convex.

Questions?

Convex Functions

Zero-order definition: A function f is convex iff its domain \mathcal{D} is a convex set, and for all $x, y \in \mathcal{D}$ and $\theta \in [0, 1]$,

$$
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
$$

i.e. the function is below the chord between two points.

• Alternatively, f is convex iff the set formed by the area above the function is a convex set.

Examples of convex functions:

- All *p*-norms $||x||_p$ with $p \ge 1$.
- $f(x) = 1/\sqrt{x}, f(x) = -\log(x), f(x) = \exp(-x)$
- Negative entropy: $f(x) = x \log(x)$
- Logistic loss: $f(x) = log(1 + exp(-x))$
- Linear functions $f(x) = \langle a, x \rangle$

Convex Functions

First-order condition: If f is differentiable, it is convex iff its domain D is a convex set and for all $x, y \in \mathcal{D}$,

$$
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle
$$

i.e. the function is above the tangent to the function at any point x .

For a convex f, consider w^* such that $\nabla f(w^*) = 0$, then using convexity, for all $y \in \mathcal{D}$, $f(y)\geq f(w^*).$ If w^* is a stationary point i.e. $\left\|\nabla f(w^*)\right\|^2=0,$ then it is a global minimum. Hence, local optimization to make the gradient zero results in convergence to a global minimum!

Q: For a convex f, if $\nabla f(w^*) = 0$, then is w^{*} a unique minimizer of f?

Ans: No, there might many minimizers that all have the same function value

Second-order condition: If f is twice differentiable, it is convex iff its domain D is a convex set and for all $x \in \mathcal{D}$,

$$
\nabla^2 f(x) \succeq 0
$$

i.e. the Hessian is positive semi-definite ("curved upwards") for all x .

Q: Prove that $f(x) = \max_i x_i$ is a convex function.

$$
f(\theta x + (1-\theta)y) = \max_i[\theta x_i + (1-\theta)y_i] \leq \theta \max_i x_i + (1-\theta) \max_i y_i = \theta f(x) + (1-\theta)f(y)
$$

Hence, by using the zero-order definition of convexity, $f(x)$ is convex.

Q: Prove that $f(x) = \frac{1}{2}x^2$ is a convex function.

$$
f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \frac{y^2}{2} - \frac{x^2}{2} - x(y - x) = \frac{1}{2} [y^2 + x^2 - 2xy] = \frac{(x - y)^2}{2} \ge 0
$$

Hence, by using the first-order definition of convexity, $f(x)$ is convex.

Convex Functions

Q: Prove that $f(x) = \log(1 + \exp(-x))$ is a convex function.

$$
f'(x) = \frac{-\exp(-x)}{1 + \exp(-x)} = \frac{-1}{1 + \exp(x)}
$$

$$
f''(x) = \frac{\exp(x)}{(1 + \exp(x))^2} > 0
$$

Hence, by using the second-order definition of convexity, $f(x)$ is convex.

Q: Prove that the ridge regression loss function: $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$ is convex Recall that $\nabla^2 f(w) = X^{\mathsf{T}} X + \lambda I_d$. For vector v, let us consider $v^{\mathsf{T}} \nabla^2 f(w) v$,

 $v^{\mathsf{T}}\nabla^2 f(w)v = v^{\mathsf{T}}[X^{\mathsf{T}}X + \lambda I_d]v = v^{\mathsf{T}}[X^{\mathsf{T}}X]v + \lambda v^{\mathsf{T}}v = [Xv]^{\mathsf{T}}[Xv] + \lambda ||v||^2 = ||Xv||^2 + \lambda ||v||^2$ $\implies v^{\mathsf{T}}\nabla^2 f(w)v\geq 0 \implies \nabla^2 f(w)\succeq 0.$

Hence, by using the second-order definition of convexity, $f(w)$ is convex.

Convex Functions

Operations that preserve convexity: if $f(x)$ and $g(x)$ are convex functions, then $h(x)$ is convex if,

- $h(x) = \alpha f(x)$ for $\alpha > 0$ (Non-negative scaling) E.g: For $w \in R^d$, $f(w) = ||w||^2$ is convex, and hence $h(w) = \frac{\lambda}{2} ||w||^2$ for $\lambda \ge 0$ is convex.
- $h(x) = \max\{f(x), g(x)\}$ (Point-wise maximum) E.g: $f(w) = 0$ and $g(w) = 1 - w$ are convex functions, and hence $h(w) = \max\{0, 1 - w\}$ is convex.
- $h(x) = f(Ax + b)$ (Composition with affine map) E.g.: $f(w) = \max\{0, 1 - w\}$ is convex, and hence $h(w) = \max\{0, 1 - y_i\langle w, x_i \rangle\}$ for $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ is convex
- $h(x) = f(x) + g(x)$ (Sum) E.g.: $f(w) = \max\{0, 1 - y_i \langle w, x_i \rangle\}$ is convex, and hence $h(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i \langle w, x_i \rangle\} + \frac{\lambda}{2} ||w||^2$ is convex.

Hence, the SVM loss function: $f(w):=\sum_{i=1}^n \max\left\{0,1-y_i\langle X_i,w\rangle\right\}+\frac{\lambda}{2}\left\|w\right\|^2$ is convex.

 Q : Prove that ℓ_1 -regularized logistic regression:

 $f(w) := \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \langle X_i, w \rangle \right) \right) + \lambda \left\| w \right\|_1$ is convex.

We have proved that the logistic loss $f(x) = \log(1 + \exp(-x))$ is convex. Since composition with an affine map is convex, and the sum of convex functions is convex, the first term is convex. Since all norms are convex, and a non-negative scaling of a convex function is convex, the second term is convex. Hence, $f(w)$ is convex.

Another way to prove convexity for logistic regression is to compute the Hessian and show that it is positive semi-definite (In Assignment 1)

Questions?

F Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood, Online learning rate adaptation with hypergradient descent, arXiv preprint arXiv:1703.04782 (2017).