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e Convex-concave games: min,cyy max,cy f(w, v), where W C R% and V C R% are
convex sets and f is convex in w and concave in v.

e For convex-concave games, (w*, v*) is a Nash equilibrium iff for all w e W, v € V,
f(w*,v) < f(w*,v*) < f(w,v*).

@ To characterize the sub-optimality of (W, ¥):
Duality Gap((w, 7)) := max,ey f(W, v) — minyew f(w, 7).

o Gradient Descent Ascent: At iteration k, for a step-size ), (simultaneous) projected
Gradient Descent Ascent (GDA) has the following update:

Witr1 = M [wie — Vi F (Wi, vi)] 5 Vi = My [vie + e Vo F (i, vi)]

where Iy, and Ty, are Euclidean projections onto VW and V respectively



@ G-Lipschitz convex-concave games: Projected GDA has the guarantee that
. = & 4DG 7 = :
Duality Gap((wr, v7)) < T where wt and vt are the average iterates.

@ Smooth, convex-concave games: Last iterate of GDA will move away from the solution,
diverging in the unconstrained setting or hitting the boundary in the constrained setting.
For sets with bounded diameter, the average iterates result in an O (1/v/T) decrease on the
duality gap.

@ Strongly-convex, strongly-concave games: (-, v) is p,, strongly-convex and f(w,-) is
11, strongly-concave. The Nash equilibrium (w*, v*) is unique. GDA converges to (w*, v*)
at an O (k?log (1)) rate.



Extra-Gradient Method

e In order to analyze the convergence of projected EG, we write in the following equivalent way,

Zir1y2 = NzlZ1p2] 0 Ziyrye = 2 — nF(2)
Zikyr = Nz[Zea] 3 2o = 2k — nF(2kq1/2)
wf(w, . .
where z= ||, F(z) = Vuwf(w,v) is an operator from R%+d 5 Rdvtds and Mz is
v -V, f(w,v)

Euclidean projection onto W x V.
o lf z* = [ *] is the solution, then using the definition of optimality, for all w € W and v € V,
v

(Vuf(w*,v),w —w*) >0; (=V,f(w,v*),v—v*") >0

Setting v = v* in the first equation, and w = w* in the second equation, then for all z € Z,

= ([ L[] ze= weremrzo 0




Extra-Gradient Method

Claim: If f is L-smooth, then the operator F is 2L-Lipschitz i.e.
wa(wl, Vl) — wa(wQ, V2)

IF(21) = F(z2)ll <2L [z — 2.
va(W27V2) —va(Wl,V]_) ’

< [Vwf(wi, vi) = Vi f (e, v2) || + [V f(wi, vi) = Vo f(na, va) |
Sllza-z|+L|za-z]| (By definition of L-smoothness)
IF(z1) — F(2)|| <2L ||z — 2|

Proof:

IF(21) = F(z)ll = ‘




Extra-Gradient for smooth, convex-concave games

Claim: For L-smooth, convex-concave games where YV and V have diameter D, EG with

Nk = 57 results in the following bound for wr := Xix Wiea/2/T and V7 := Siea vera/a/T,

2D?L
T

Duality Gap((wr, vr)) <

Proof: Using the property of Euclidean projections onto Z, for z € Z,

(Zry1/2 = Zk41/2,Z2 = Zkg1y2) S0 = (=Zx11/2, Z11/2 — 2) < (~2Zky1/2, 2112 — 2) (2)

<2k+1 — Zk4+1,Z — Zk+1> <0 = (—Zq1,2Zk41 — Z> <A{=Zk41, Zk11 — 2) (3)



Extra-Gradient for smooth, convex-concave games

ForweW, vey,

f(Wig1/2, V) — F(W, Vir1/2)
= f(Wig1/2, V) — F(Wig1/25 Vier1/2) + F(W1/25 Vier1/2) — £(W, Viera/2)

<(Vof (Wiy12, Vir/2)s 7 = Viepry2) + (Vi f (Wip1 /2, Viera/2)s Wiz — W)
(Convexity of f(-,v11/2) and concavity of f(wy1/2,-))

Vuf(Wii1/2, Vir1/2) ] ka+1/2 — VNV] >
= f(Wiq1/2, V) — F(W, vig1/2) < (F(2k1/2)s 212 — 2) (4)

=V f(Wiy1/2, Viy1)2) Vip12 — V

We will bound the (F(zx;1/2), Zk+1/2 — Z) term in order to get a handle on
f(Wiq1/2, V) — f(W, vkj1/2) and hence the duality gap.



Extra-Gradient for smooth, convex-concave games

. Zx — Zk41 = :
(F(zk41/2)s Zk41/2 — 2) = <17+,Z/<+1/2 - Z> (Using the update)
Z — Z Z, — Z 5
_ <knk+1,zk+1/2 - > ; <knk - > (Add/Subtract zs1)
k — Zkt1 Z — Zk .
< < + Zk+1/2—2k+1>+<77+1,2k+1—2>
(Using eq. (3) for the second term)
Zk — Zky1)2 Zky1/2 — Zk1 Zk — Zg
= < / » Zk+1/2 — Zk+1> + < = / » Zk+1/2 — Zk+1> e Zk+1 — Z
(Add/Subtract Ziy1/2)
Zk — Zk+1/2 Zky1/2 — Zkt1 Zk — Z .
< < / zk+1/2zk+1>+< +/ zk+1/22k+1>+<knk+l,zz<+1z

(Using eq. (2) for the first term)



Extra-Gradient for smooth, convex-concave games

Recall that <F(Zk+1/2)7zk+1/2 — 2> S

Zk—Zk41/2 Ziy1/2— 1 2k —2k i1 ~
<T72k+1/2_zk+1>+<ﬁ7zk+l/2_zk+1 + o Zk1 T Z).

= 1 (F(Zk41/2)s Zk41/2 — 2)

< 2k — Zky1/20 Zks1/2 — Zk1) T (Zer1/2 — Zkt1r Zkt1/2 — k1) + {2k — Zkg1, Zkgr — £)

=A =B =C
Let us first simplify term B.

B := (Zki1/2 — Zkt1, Zk41/2 — Zkb1)

= <fk+1/2 = Zky Zk41/2 — Zk+1> + <Zk — Z441, Zpt1/2 — Zk+1> (Add/subtract Zk)
=n <F(Zk+1/2) — F(2k), Zkq1/2 — Zk+1> (Using the updates)
<0 ||F(zks1/2) — F(20)|| [|2ks1/2 — 261 | (Cauchy-Schwarz)
< (2L)n ||zk+1/2 — ZkH HZk+1/2 — Zk+1H (Since F is 2L-Lipschitz)
1 . .
= B< 5 {4L2772 Hz;<+1/2 - Zk“2 T szﬂ/z — zk+1|ﬂ (Young's inequality)



Extra-Gradient for smooth, convex-concave games

Recall that 0 (F(zit1/2), Zk41/2 — Z) < A+ B+ C where

2 2
B<1 [4L2772 | zk1/2 — ze||” + || 2612 — Zeaa || } A= (zk — Zky1/2, Zk+1/2 — Zk41) and
C = <Zk — Zk+1, Zk+1 — f>

214112 2
In order to simplify A, C, we will use (a, b) = M.

1 2 2 2
A= <Zk — Zk+1/25 Zk+1/2 — Zk+1> = 2 [sz — zka|” — sz - Zk+1/2” - sz+1/2 - Zk+1H }

=a =b

A e 2 =12
€= (2 =z, 201 = 2) = 5 |12 = 21 = 120 = 2enal® ~ 1zea — 2
———— —— 2
'=a =
2[A+ B+ (]

< N2k — zesal® = ||z — 2iq 1/2H2 — ||Zk41/2 — Zk+1H2 +4L%0° || zkt1 )2 — ZkH2 + || zks1/2 — Zk+1H2
+llze = 2117 = |2 = zes2 ) = llziess — 2012

— 2[A+ B+ C] < ||z — zesa2||” (822 = 1) + ||z — 2| = [|2ks1 — 2| .



Extra-Gradient for smooth, convex-concave games

Putting everything together,
1 2 2 92 ~112 ~12
M (F(zery2) ez = 2) < 5 |2 = 202 (40207 = 1) + 1z = 217 = flzesn = 2]
(5)
Setting n = 2—11_,
(F(zks1/2) Zevrje = 2 S L [l = 2P = 1260 — 217]

Summing from k =1to T,

-~

)
> (Flzeny2) s =B S LY [z — 21 = 12 = 21%| = L |2 — 2° < 2D°L

k=1 k=1
(Since both W and V have diameter D)
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Extra-Gradient for smooth, convex-concave games

Recall that 3, (F(2k11/2), 2k 1172 — 2) < 2D?L. Using eq. (4) and dividing by T,

ZkT:l[f(WkH/z, V) — f(W, Vir1/2)] - 2D2L
T - T

Since f(+,¥) and —f(w, -) are convex, using Jensen's inequality and by definition of w and vr,

2D%L
T

Since the above statement is true for all ¥ € V and w € W, taking the maximum over V € V

f(wr, V) —f(w,vr) <

and the minimum over w € W,

2D?L 2D?L
max f(wr,v) — ng\DV f(w,vr) < 7 = Duality Gap((wr, v1)) < T

e Hence, compared to GDA that has an O (1/v/T) convergence, the average iterate for EG has an
O (1/7) convergence for the duality gap. The last iterate for EG has a slower © (1/vT)

convergence for the duality gap [GPDO20].
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Extra-Gradient for smooth, strongly-convex strongly-concave games

Claim: For L-smooth, 1 strongly-convex strongly-concave games, T iterations of projected EG

1
wop — w*
vo— v*

with 7y = g7 results in the following bound,
e Hence, compared to GDA that has an O (k?log(1/€)) convergence for strongly-convex

2
— w* -T
vr — v* 8k

strongly-concave games, EG has an O (k log(1/¢)) convergence and matches the rate for smooth,

2

strongly-convex minimization.
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Questions?



Wrapping Up - What we covered

Considered optimizing a taxonomy of functions: (i) non-smooth but G-Lipschitz vs
L-smooth, (ii) non-convex vs convex vs strongly-convex. Identified solution concepts (
(gradient norm and convergence to a stationary point, distance to the minimizer).

Studied and analyzed the convergence of (projected) gradient descent, Polyak momentum,
Nesterov acceleration and the Newton method.
Studied stochastic gradient descent and analyzed its convergence. Considered ideas to make

SGD more robust to the step-size and the concept of variance reduction (E.g. SVRG).

Considered the online convex optimization setting, and studied the notion of regret.
Analyzed the convergence of OGD, FTL and FTRL. Used the online setting to motivate
adaptive gradient methods (AdaGrad, Adam, AMSGrad) and analyzed their convergence.

Considered min-max optimization and identified solution concepts (duality gap and distance
to the Nash equilibrium) for convex-concave games. Analyzed the convergence of Gradient
Descent Ascent and the Extra-Gradient Method.
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Wrapping Up - What we could not cover

@ Proximal Methods (useful for handling non-smooth regularization terms)
[https://www.cs.ubc.ca/ schmidtm/Courses/5XX-S20/S6. pdf]

o (Block) Coordinate Descent (useful for functions that are separable in the coordinates)
[https://www.cs.ubc.ca/ schmidtm/Courses/5XX-S20/58. pdf]

Other important topics in Optimization for ML

o Constrained Optimization

Global Optimization

Multi-objective Optimization
o Distributed Optimization
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https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S6.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S8.pdf
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