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Min-Max Optimization

Today’s focus will be on problems of the form

min
w∈W

max
v∈V

f (w , v) .

Example: Two player zero-sum matrix games of the form,

min
w∈∆A

max
v∈∆B

wTMv ,

where A is the set of strategies available to player 1. ∆A = {w ∈ [0, 1]|A||
∑

i wi = 1} is the
distribution over these available strategies and w ∈ ∆A is a possible mixed strategy.

The matrix M ∈ R|A|×|B| is the payoff matrix for player 1 i.e. if player 1 plays strategy i and
player 2 plays strategy j , then player 1 is rewarded −Mi,j whereas player 2 is rewarded Mi,j .
Both players are trying to maximize their respective payoffs.

Since (reward for player 1) = -(reward for player 2), this is a zero-sum game.
Classic example: Rock-Paper-Scissors
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Min-Max Optimization

Example: Generative Adversarial Networks

min
θ

max
ϕ

[
Ex∼preal [logDϕ(x)] + Ez∼N(0,Id )[log (1 − Dϕ(Gθ(z)))]

]
,

where Gθ(z) is the generator parameterized by θ that attempts to generate realistic images from
random noise z . Dϕ(x) is the discriminator parameterized by ϕ that attempts to discriminate
between the real (from preal) and generated (from Gθ(z)) images.

Example: Distributionally Robust Optimization

min
θ

max
P∈P

Eζ∼P [ℓ(θ, ζ)] ,

where P := {P|d(P, P̂) ≤ ρ} is the family of distributions that are “close” (measured by ρ) to
the empirical distribution P̂ according to a distance metric d (Total variation, KL divergence).
We require that the model (parameterized by θ) is robust to distributions close to the empirical
distribution from which can obtain samples.
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Min-Max Optimization

Let us abstract out these problems and consider the following objective,

min
w∈W

max
v∈V

f (w , v)

where W ⊆ Rdw and V ⊆ Rdv are convex sets.

Claim: In general, maxv∈V minw∈W f (w , v) ≤ minw∈W maxv∈V f (w , v)

Proof: Define v∗ := argmaxv∈V minw∈W f (w , v) and w∗ := argminw∈W maxv∈V f (w , v).

max
v∈V

min
w∈W

f (w , v) = min
w∈W

f (w , v∗) ≤ f (w∗, v∗) ≤ max
v∈V

f (w∗, v) = min
w∈W

max
v∈V

f (w , v)

This referred to as the max-min inequality and is true for any f .

Game theoretic interpretation: RHS corresponds to w -player playing first and the v -player
reacting, while the LHS corresponds to the v -player playing first and the w -player reacting. Since
the v -player aims to maximize f , playing second might be beneficial since they can adapt to the
w -player’s strategy. Hence, the RHS ≥ LHS.
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Min-Max Optimization

Convex-Concave Games: f : W ×V → R is convex-concave iff f (·, v) is a convex function for
any v ∈ V, f (w , ·) is a concave function for any w ∈ W and W,V are convex sets.

Von Neumann-Fan Minimax Theorem: If W and V are compact, convex sets, and f is a
convex-concave function, then maxv∈V minw∈W f (w , v) = minw∈W maxv∈V f (w , v).

Example: f (w , v) = minw∈∆A
maxv∈∆B

wTMy is convex-concave and the simplex ∆ is a convex
set. Hence it is a convex-concave game.

• Recall that v∗ := argmaxv∈V minw∈W f (w , v) and w∗ := argminw∈W maxv∈V f (w , v). If f
convex-concave and W and V are convex sets, then,

max
v∈V

min
w∈W

f (w , v) = min
w∈W

f (w , v∗) = f (w∗, v∗) = max
v∈V

f (w∗, v) = min
w∈W

max
v∈V

f (w , v) .

Hence, (w∗, v∗) is a solution to the game iff for all w ∈ W, v ∈ V,

f (w∗, v) ≤ f (w∗, v∗) ≤ f (w , v∗) .

Example: For rock-paper-scissors, the optimal mixed strategy for each player is to play either
rock/paper/scissors with uniform probability. 4



Min-Max Optimization

Recall that for convex-concave games, (w∗, v∗) is a solution iff for all w ∈ W, v ∈ V,
f (w∗, v) ≤ f (w∗, v∗) ≤ f (w , v∗).

Game theoretic interpretation: From the perspective of a game between the w -player and the
v -player, since f (w∗, v∗) = minw∈W f (w , v∗), if the v -player is playing v∗, it is optimal for the
w -player to play w∗. Similarly, if the w -player is playing w∗, it is optimal for the v -player to play
v∗. Hence, (w∗, v∗) is the Nash equilibrium since neither player has an incentive to move away
from their strategy.

• For convex-concave games, the Nash equilibrium is guaranteed to exist, but need not be
unique.

Duality Gap: To characterize the sub-optimality of the point (ŵ , v̂):

Duality Gap((ŵ , v̂)) := max
v∈V

f (ŵ , v)− min
w∈W

f (w , v̂) .

If (ŵ , v̂) is a Nash equilibrium, then maxv∈V f (ŵ , v) = f (ŵ , v̂) = minw∈W f (w , v̂) and hence
the duality gap is 0. Point (ŵ , v̂) is an ϵ-Nash equilibrium, if the Duality Gap((ŵ , v̂)) ≤ ϵ.
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Questions?
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Gradient Descent Ascent

• Gradient Descent Ascent is the simplest algorithm to solve min-max games.

Gradient Descent Ascent: At iteration k , for a step-size η, (simultaneous) projected Gradient
Descent Ascent (GDA) has the following update:

wk+1 = ΠW [wk − ηk∇w f (wk , vk)] ; vk+1 = ΠV [vk + ηk∇v f (wk , vk)] ,

where ΠW and ΠV are Euclidean projections onto W and V respectively.

G -Lipschitz functions: Define z =

[
w

v

]
. The function f : W ×V → R is G -Lipschitz iff,

|f (z1)− f (z2)| ≤ G ∥z1 − z2∥

Similar to convex minimization, this implies bounded gradients, i.e. for all w ∈ W, v ∈ V,

∥∇w f (w , v)∥ ≤ G ; ∥∇v f (w , v)∥ ≤ G

We will also assume that sets W and V have diameter D i.e. for all w1,w2 ∈ W,
∥w1 − w2∥2 ≤ D2. Similarly, for all v1, v2 ∈ V, ∥v1 − v2∥2 ≤ D2.
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Gradient Descent Ascent for Lipschitz, convex-concave games

Claim: For G -Lipschitz convex-concave games where W and V have diameter D, projected GDA
with ηk = D√

2G
√
k

results in the following bound for w̄T :=
∑T

k=1 wk/T and v̄T :=
∑T

k=1 vk/T

Duality Gap((w̄T , v̄T )) ≤
4DG√

T

Proof: For some fixed w̃ ∈ W, using the projected gradient descent update for w ,

∥wk+1 − w̃∥2 = ∥ΠW [wk − η∇w f (wk , vk)]− ΠW [w̃ ]∥2 (Since w̃ ∈ W)

≤ ∥wk − η∇w f (wk , vk)− w̃∥2

(since projections are non-expansive)

= ∥wk − w̃∥2 − 2ηk⟨∇w f (wk , vk),wk − w̃⟩+ η2
k ∥∇w f (wk , vk)∥2

≤ ∥wk − w̃∥2 − 2ηk [f (wk , vk)− f (w̃ , vk)] + η2
kG

2

(Since f (·, vk) is convex and f is G -Lipschitz)

=⇒ [f (wk , vk)− f (w̃ , vk)] ≤
∥wk − w̃∥2 − ∥wk+1 − w̃∥2

2ηk
+

ηk
2
G 2 (1)
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Gradient Descent Ascent for Lipschitz, convex-concave games

Similarly, using the projected gradient ascent update w.r.t ṽ ∈ V,

∥vk+1 − ṽ∥2 ≤ ∥vk − ṽ∥2 + 2ηk⟨∇v f (wk , vk), vk − ṽ⟩+ η2
k ∥∇v f (wk , vk)∥2

≤ ∥vk − ṽ∥2 + 2ηk [f (wk , vk)− f (wk , ṽ)] + η2
kG

2

(Since f (wk , ·) is concave and f is G -Lipschitz)

=⇒ [f (wk , ṽ)− f (wk , vk)] ≤
∥vk − ṽ∥2 − ∥vk+1 − ṽ∥2

2ηk
+

ηk
2
G 2 (2)

Adding eq. (1) and eq. (2),

f (wk , ṽ)− f (w̃ , vk) ≤
∥wk − w∥2 − ∥wk+1 − w∥2

2ηk
+

∥vk − v∥2 − ∥vk+1 − v∥2

2ηk
+ ηkG

2

T∑
k=1

[f (wk , ṽ)− f (w̃ , vk)] ≤
T∑

k=1

[
∥wk − w̃∥2 − ∥wk+1 − w̃∥2

2ηk

]
+

T∑
k=1

[
∥vk − ṽ∥2 − ∥vk+1 − ṽ∥2

2ηk

]

+ G 2
T∑

k=1

ηk
8



Gradient Descent Ascent for Lipschitz, convex-concave games

Simplifying the first term in the equation from the previous slide,
T∑

k=1

[
∥wk − w̃∥2 − ∥wk+1 − w̃∥2

2ηk

]
≤

T∑
k=2

∥wk − w̃∥2
[

1
ηk

− 1
ηk−1

]
+

∥w1 − w∗∥2

2η1

≤ D2

2ηT

Bounding the second term in a similar manner and putting everything together,

T∑
k=1

[f (wk , ṽ)− f (w̃ , vk)] ≤
D2

ηT
+ G 2

T∑
k=1

ηk =
D2

√
T

η
+ G 2η

T∑
k=1

1√
k

(ηk = η/
√
k)

≤ D2
√
T

η
+ 2G 2η

√
T (

∑T
k=1

1/
√
k ≤ 2

√
T )

=⇒ 1
T

[
T∑

k=1

[f (wk , ṽ)− f (w̃ , vk)]

]
≤ D2

√
T

η
+ 2G 2η

√
T =

4DG√
T

(η = D√
2G

)
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Gradient Descent Ascent for Lipschitz, convex-concave games

Recall that 1
T

[∑T
k=1[f (wk , ṽ)− f (w̃ , vk)]

]
≤ 4DG√

T
. Since f (·, ṽ) and −f (w̃ , ·) are convex,

using Jensen’s inequality and by definition of w̄T and v̄T ,

f (w̄T , ṽ)− f (w̃ , v̄T ) ≤
4DG√

T

Since the above statement is true for all ṽ ∈ V and w̃ ∈ W, taking the maximum over ṽ ∈ V
and the minimum over w̃ ∈ W,

max
v∈V

f (w̄T , v)− min
w∈W

f (w , v̄T ) ≤
4DG√

T
=⇒ Duality Gap((w̄T , v̄T )) ≤

4DG√
T

• Recall that GD attains an O(1/
√
T) rate when minimizing convex, Lipschitz functions, and

hence GDA has a similar behaviour when solving convex-concave Lipschitz games.
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Gradient Descent Ascent for smooth, convex-concave games

• Smoothness: f : W ×V → R is L-smooth iff

∥∇w f (w1, v1)−∇w f (w2, v2)∥ ≤ L ∥z1 − z2∥ ; ∥∇v f (w1, v1)−∇v f (w2, v2)∥ ≤ L ∥z1 − z2∥ ,

where z1 =

[
w1

v1

]
and z2 =

[
w2

v2

]
.

Example: The bilinear game f (w , v) = w v is
√

2-smooth since ∇w f (w , v) = v and
|v1 − v2| ≤ |v1 − v2|+ |w1 − w2| ≤

√
2 ∥z1 − z2∥. A similar reasoning works for ∇v f (w , v).

Since f (·, v) is linear w.r.t w , it is convex. By symmetry, f (w , ·) is linear in v and hence concave.

If W = R and V = R, minw∈R maxv∈R wv is a smooth, convex-concave game whose unique
solution is at (0, 0) since f (0, 0) ≤ f (w , 0) for all w and f (0, 0) ≥ f (0, v) for all v .

Game theoretically, if the v -player deviates from 0 such that v = ϵ, the w -player can choose −∞
to make the objective small. Similarly, if the w -player deviates from 0 such w = ϵ, then the
v -player can choose +∞ to make the objective large. Hence, neither play has an incentive to
deviate from (0, 0) which corresponds to the Nash equilibrium.
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Gradient Descent Ascent for smooth, convex-concave games

Let us consider running GDA for minw∈R maxv∈R wv . The update can be given as:

wk+1 = wk − ηk∇w f (wk , vk) = wk − ηkvk ; vk+1 = vk + ηk∇v f (wk , vk) = vk + ηkwk

Calculating the distance from the solution (0, 0) after one iteration,

(wk+1 − 0)2 + (vk+1 − 0)2 = (wk − ηkvk)
2 + (vk + ηkwk)

2 = (1 + η2
k) (w

2
k + v2

k )

• Hence, for any ηk , the last iterate of GDA will move away from the solution, diverging in the
unconstrained setting or hitting the boundary in the constrained setting.

• Compare this to GD for smooth, convex minimization where the sub-optimality corresponding
to the last iterate decreases at an O(1/T ) rate (Lecture 4). However, for the constrained setting,
we can show that the average iterate will converge at an O(1/

√
T ) rate.
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Gradient Descent Ascent for smooth, convex-concave games

Claim: An L-smooth game minw∈W maxv∈V f (w , v) where W and V have diameter D is
G := 2DL+

√
2max{∥∇w f (w0, v0)∥ , ∥∇v f (w0, v0)∥}-Lipschitz. Proof: By the definition of

L-smoothness, for any (w1, v2) and (w2, v2),

∥∇w f (w1, v1)−∇w f (w2, v2)∥ ≤ L ∥z1 − z2∥ ≤ L

√
∥w1 − w2∥2 + ∥v1 − v2∥2 ≤

√
2DL.

For any w , v , ∥∇w f (w , v)∥ = ∥∇w f (w , v)−∇w f (w0, v0) +∇w f (w0, v0)∥ ≤
∥∇w f (w , v)−∇w f (w0, v0)∥+ ∥∇w f (w0, v0)∥ ≤

√
2DL+ ∥∇w f (w0, v0)∥.

Similarly, ∥∇v f (w , v)∥ ≤
√

2DL+ ∥∇v f (w0, v0)∥, and hence
G = 2DL+

√
2max{∥∇w f (w0, v0)∥ , ∥∇v f (w0, v0)∥}.

Claim: For L-smooth, convex-concave games, GDA with ηk = D
G
√
k

where

G =
(
2DL+

√
2max{∥∇w f (w0, v0)∥ , ∥∇v f (w0, v0)∥}

)
results in the following bound for

w̄T :=
∑T

k=1 wk/T and v̄T :=
∑T

k=1 vk/T

Duality Gap((w̄T , v̄T )) ≤
4D G√

T

Proof: Using the result for convex-concave G -Lipschitz games. 13



Strongly-convex strongly-concave games

Strongly-convex strongly-concave games: f : W×V → R is strongly-convex strongly-concave
iff f (·, v) is a strongly-convex function for any v ∈ V, f (w , ·) is a strongly-concave function for
any w ∈ W and the sets W,V are convex sets, i.e. for all w ,w1,w2 ∈ W and v , v1, v2 ∈ V,

f (w2, v) ≥ f (w1, v) + ⟨∇w f (w1, v),w2 − w1⟩+
µw

2
∥w1 − w2∥2

−f (w , v2) ≥ −f (w , v1) + ⟨−∇v f (w , v1), v2 − v1⟩+
µv

2
∥v1 − v2∥2

If W = Rd and V = Rd since w∗ := argminw f (w , v∗), ∇w f (w
∗, v∗) = 0. By the

strong-convexity of f (·, v) with v = v∗, w1 = w∗, w2 = w , f (w∗, v∗) < f (w , v∗) for all w .

Similarly, v∗ := argmaxv f (w
∗, v), ∇v f (w

∗, v∗) = 0. By the strong-concavity of f (w , ·) with
w = w∗, −f (w∗, v) > −f (w∗, v∗). Hence, f (w∗, v∗) > f (w∗, v) for all v .

• Hence, for unconstrained strongly-convex strongly-concave games, (w∗, v∗) is the unique Nash
equilibrium and ∇w f (w

∗, v∗) = ∇v f (w
∗, v∗) = 0.

14



Gradient Descent Ascent for smooth, strongly-convex strongly-concave games

Claim: For L-smooth, µ strongly-convex strongly-concave games, T iterations of GDA with
ηk = µ

4L2 results in the following bound,∥∥∥∥∥
[
wT − w∗

vT − v∗

]∥∥∥∥∥
2

≤ exp

(
−T

4κ2

) ∥∥∥∥∥
[
w0 − w∗

v0 − v∗

]∥∥∥∥∥
2

.

• Hence, for smooth, strongly-convex strongly-concave games with condition number κ, we need
to run GDA for T = O

(
κ2 log

( 1
ϵ

))
in order to get ϵ-close to the Nash equilibrium. The O(κ2)

dependence can not be improved for GDA.

• In contrast, for minimizing smooth, strongly-convex functions GD requires O
(
κ log

( 1
ϵ

))
iterations in order to get ϵ-close to the minimizer.
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Questions?
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Proximal Point Method

• Recall that the last iterate of GDA diverges on bilinear games of the form f (w , v) = wv , and
only the averaged iterate converges at an O(1/

√
T) rate. The proximal point method and its

approximations obtain last-iterate convergence for this class of games.

Proximal Point Method (PPM): At iteration k , PPM has the following update:

wk+1 = wk − η∇w f (wk+1, vk+1) ; vk+1 = vk + η∇v f (wk+1, vk+1)

Has a built in “lookahead” which prevents the diverging behaviour of GDA.

For bilinear games, attains an O(log(1/ϵ)) last-iterate convergence to the Nash equilibrium.

Since computing wk+1 relies on computing ∇w f (wk+1, vk+1), PPM is an implicit method
and implementing it requires a computationally expensive matrix inversion.
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Optimistic GDA and Extra-Gradient Method

Two computationally efficient ways of reproducing the favourable behaviour of PPM:
Extra-Gradient Method (EG): At iteration k , EG has the following update,

wk+1/2 = wk − η∇w f (wk , vk) ; vk+1/2 = vk + η∇v f (wk , vk)

wk+1 = wk − η∇w f (wk+1/2, vk+1/2) ; vk+1 = vk + η∇v f (wk+1/2, vk+1/2)

The (wk+1/2, vk+1/2) iterates approximate the implicit update in PPM.
Each iteration requires computing two gradients (there are recent “single-call” EG methods).

Optimistic GDA (OGDA): At iteration k , OGDA has the following update,

wk+1 = wk − η∇w f (wk , vk)− η [∇w f (wk , vk)−∇w f (wk−1, vk−1)]

vk+1 = vk + η∇v f (wk , vk)− η [∇v f (wk−1, vk−1)−∇v f (wk , vk)]

The second term acts as “negative momentum” preventing the cycling behaviour.
Compared to EG, each iteration of OGDA requires computing only one gradient.
For bilinear games, EG and OGDA result in O(log(1/ϵ)) convergence similar to PPM.
EG and OGDA have been used to train GANs [DISZ17, GBV+18]. 17



Comparing GDA, PPM, EG, OGDA on a bilinear game [MOP20]

Need to implement in Assignment 4!
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Extra-Gradient Method

In the next class, we will prove the following claim:

Claim: For L-smooth, convex-concave games where W and V have diameter D, EG with
ηk = 1

2L results in the following bound for w̄T :=
∑T

k=1 wk+1/2/T and v̄T :=
∑T

k=1 vk+1/2/T ,

Duality Gap((w̄T , v̄T )) ≤
2D2L

T

• Hence, compared to GDA that has an O (1/
√
T) convergence, the average iterate for EG has an

O (1/T) convergence for the duality gap.

• The last iterate for EG has a slower Θ(1/
√
T) convergence for the duality gap [GPDO20].
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