CMPT 409/981: Optimization for Machine Learning Lecture 20

Sharan Vaswani

November 19, 2024

• Adam: $w_{k+1} = \prod_{C}^{k} [w_k - \eta_k A_k^{-1} m_k]$ where $A_k = G_k^{\frac{1}{2}}$, $G_0 = 0$ and $G_k = \beta_2 G_{k-1} + (1 - \beta_2) \nabla f_k(w_k) \nabla f_k(w_k)^{\mathsf{T}}$, $m_k = \beta_1 m_{k-1} + (1 - \beta_1) \nabla f_k(w_k)$, for $\beta_1, \beta_2 \in (0, 1)$.

• Scalar Adam: $v_k = \prod_{\mathcal{C}} \left[w_k - \frac{\eta_k m_k}{\sqrt{2 \cdot 2 \cdot (1 - \rho_k)^2}} \right]$ $\beta_2 G_{k-1} + (1-\beta_2) \|\nabla f_k(w_k)\|^2$ $\Big]$, $w_{k+1} = \mathsf{\Pi}_{\mathcal{C}}[v_k]$, where $\mathcal{G}_0 = 0$ and $m_k = \beta_1 m_{k-1} + (1 - \beta_1) \nabla f_k(w_k).$

 \bullet For $C>2$, run scalar Adam with $\beta_1=0$ (no momentum), $\beta_2=\frac{1}{1+C^2}$ and $\eta_k=\frac{\eta_k}{\sqrt{k}}$ $\frac{1}{\overline{k}}$ such that $\eta < \sqrt{1-\beta_2}$ on the following problem:

• Consider $C = [-1, 1]$ and the following sequence of linear functions.

$$
f_k(w) = \begin{cases} C & \text{for } k \text{ mod } 3 = 1 \\ -w & \text{otherwise} \end{cases}
$$

We will prove that Adam results in linear regret for the above example.

• Update: $w_1 = 1$ and for $k \ge 1$.

$$
v_{k+1} := w_k - \frac{\eta_k}{\sqrt{\beta_2 G_{k-1} + (1 - \beta_2) ||\nabla f_k(w_k)||^2}} \nabla f_k(w_k) \text{ and } w_{k+1} = \Pi_{[-1,1]}[v_{k+1}]
$$

 \bullet We will compare Adam to the "best" fixed decision (w^*) that minimizes the regret. To compute w^{*}, consider the sequence of 3 functions from iteration 3k to 3k + 2 for $k \ge 0$. In this case,

$$
w^* := \underset{[-1,1]}{\arg\min} \left[f_{3k}(w) + f_{3k+1}(w) + f_{3k+2}(w) \right] = \underset{[-1,1]}{\arg\min} \left[(C-2)w \right] = -1 \quad \text{(Since } C > 2\text{)}
$$

Claim: For Adam's iterates, for $k \ge 0$, for all $i \le [3k+1]$, $w_i > 0$ and $w_{3k+1} = 1$.

Proof: Let us prove the statement by induction. **Base case:** For $k = 0$, $w_{3k+1} = w_1 = 1$.

Inductive hypothesis: Assume that for $i \leq [3k+1]$, $w_i > 0$ and $w_{3k+1} = 1$. We need to prove that (a) $w_{3k+2} > 0$, (b) $w_{3k+3} > 0$ and (c) $w_{3k+4} = 1$.

In order to show this, note that $\nabla f_i(w) = C$ for i mod 3 = 1 and $\nabla f_i(w) = -1$ otherwise.

Consider the update at iteration $(3k + 1)$. By the induction hypothesis, we know that $w_{3k+1} = 1$.

$$
v_{3k+2} = w_{3k+1} - \left[\frac{\eta_{3k+1}}{\sqrt{\beta_2 G_{3k} + (1 - \beta_2) || \nabla f_{3k+1}(w_{3k+1}) ||^2}} \nabla f_{3k+1}(w_{3k+1}) \right]
$$

\n
$$
= 1 - \left[\frac{C\eta}{\sqrt{(3k+1)(\beta_2 G_{3k} + (1 - \beta_2)C^2)}} \right] \qquad \text{(Using the value of } \eta_{3k+1}\text{)}
$$

\n
$$
\geq 1 - \left[\frac{C\eta}{\sqrt{(3k+1)(1 - \beta_2)C^2}} \right] = 1 - \left[\frac{\eta}{\sqrt{(3k+1)(1 - \beta_2)}} \right] \qquad \text{(Since } G_{3k} \geq 0\text{)}
$$

\n
$$
\Rightarrow v_{3k+2} > 1 - \frac{1}{\sqrt{3k+1}} > 0 \qquad \text{(Since } \eta < \sqrt{1 - \beta_2} \text{ and } k \geq 0\text{)}
$$

\nSince $\left[\frac{C\eta}{\sqrt{(3k+1)(\beta_2 G_{3k} + (1 - \beta_2)C^2)}} \right] > 0, v_{3k+2} < 1$. Since $v_{3k+2} \in (0, 1)$, $w_{3k+2} = v_{3k+2} < 1$
\nwhich proves (a).

• For the update at iteration $(3k + 2)$, since $\nabla f_{3k+2}(w) = -1$ for all w,

$$
v_{3k+3} = w_{3k+2} + \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1} + (1-\beta_2))}} \right]
$$

Since $w_{3k+2} \in (0,1)$ and $\frac{\eta}{\sqrt{(3k+3)(2k+3)}}$ $\frac{\eta}{(3k+2)(\beta_2\ G_{3k+1}+(1-\beta_2))} > 0$, $v_{3k+3} > 0$ and hence $w_{3k+3} > 0$ which proves (b).

• In order to prove (c), consider iteration $3k + 3$. Since $\nabla f_{3k+3}(w) = -1$ for all w,

$$
v_{3k+4} = w_{3k+3} + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}} \right]
$$

From the above update, we can conclude that $v_{3k+4} > w_{3k+3}$.

To prove (c), we will show that $v_{3k+4} \ge 1$ and hence $w_{3k+4} = \prod_{i=1,1} v_{3k+4} = 1$. For this, we consider two cases – when $v_{3k+3} \ge 1$ or when $v_{3k+3} < 1$.

Case 1: When
$$
v_{3k+3} \geq 1 \implies w_{3k+3} = 1 \implies v_{3k+4} \geq 1 \implies w_{3k+4} = 1
$$
.

Case 2: When $v_{3k+3} < 1 \implies w_{3k+3} = v_{3k+3} < 1$. Combining iterations $(3k+4)$ and $(3k+3)$,

$$
v_{3k+4} = v_{3k+3} + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}}\right]
$$

= $w_{3k+2} + \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1} + (1-\beta_2))}}\right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}}\right]$
= $1 - \left[\frac{C\eta}{\sqrt{(3k+1)(\beta_2 G_{3k} + (1-\beta_2)C^2)}}\right]$ (Since $v_{3k+2} = w_{3k+2}$ and $w_{3k+1} = 1$)
+ $\left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1} + (1-\beta_2))}}\right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}}\right]$

In order to show that $v_{3k+4} \ge 1$, it is sufficient to show that $T_1 \le T_2$.

Recall from Side 3,
$$
T_1 \le \left[\frac{\eta}{\sqrt{(3k+1)(1-\beta_2)}}\right]
$$
. Let us lower-bound T_2 .
\n
$$
T_2 := \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1} + (1-\beta_2))}}\right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}}\right]
$$
\n
$$
\ge \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 C^2 + (1-\beta_2))}}\right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 C^2 + (1-\beta_2))}}\right]
$$
\n(Since $G_k \le C^2$ for all k)
\n
$$
= \frac{\eta}{\sqrt{(\beta_2 C^2 + (1-\beta_2))}} \left[\sqrt{\frac{1}{3k+2}} + \sqrt{\frac{1}{3k+3}}\right]
$$
\n
$$
\ge \frac{\eta}{\sqrt{(\beta_2 C^2 + (1-\beta_2))}} \left[\sqrt{\frac{1}{2(3k+1)}} + \sqrt{\frac{1}{2(3k+1)}}\right] = \frac{\sqrt{2}\eta}{\sqrt{(\beta_2 C^2 + (1-\beta_2))}} \left[\frac{1}{\sqrt{3k+1}}\right]
$$
\n
$$
\Rightarrow T_2 \ge \left[\frac{\eta}{\sqrt{(3k+1)(1-\beta_2)}}\right] \ge T_1 \quad \text{(Since } \beta_2 = \frac{1}{1+C^2} \implies \frac{\beta_2 C^2 + (1-\beta_2)}{2} = 1 - \beta_2)
$$

Since we have proved that $T_2 \geq T_1$, $v_{3k+4} = 1 - T_1 + T_2 \geq 1 \implies w_{3k+4} = 1$. This completes the induction proof.

Hence, for the Adam iterates, for $k > 0$, for all $i < [3k + 1]$, $w_i > 0$ and $w_{3k+1} = 1$. Now that we have bounds on the Adam iterates, let us compute its regret $R_{[3k\to 3k+2]}(w^*)$ w.r.t $w^*=-1$ for iterations $3k$ to $3k + 2$.

$$
R_{[3k\rightarrow 3k+2]}(w^*) = [f_{3k}(w_{3k}) - f_{3k}(-1)] + [f_{3k+1}(w_{3k+1}) - f_{3k+1}(-1)] + [f_{3k+2}(w_{3k+2}) - f_{3k+2}(-1)]
$$

= $[-w_{3k} - 1] + [C w_{3k+1} + C] + [-w_{3k+2} - 1] > 2C - 4 > 0$
(Since w_{3k} and w_{3k+2} are in (0, 1), $w_{3k+1} = 1$ and $C > 2$)

• Hence for every three functions, Adam has a regret $>$ 2C $-$ 4 and hence $R_T(w^*) = O(T)$.

• Both OGD and AdaGrad achieve sublinear regret when run on this example.

- The example takes advantage of the non-monotonicity in the Adam step-sizes resulting in smaller updates for $k = 1$ mod 3 (when the gradient is positive and will push the iterates towards -1) and larger updates for the other k (when the gradient is negative and will push the iterates towards 1).
- In the example, as $C > 2$ increases, the regret increases, $\beta_2 = \frac{1}{1+C^2} \to 0$. [\[ZCS](#page-9-0)⁺22] show that using a "large" β_2 and ensuring that $\beta_1 \le \sqrt{\beta_2}$ (often the choice in practice) can bypass the lower-bound resulting in convergence for Adam (without modifying the update).

F Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo, Adam can converge without any modification on update rules, arXiv preprint arXiv:2208.09632 (2022).