
CMPT 409/981: Optimization for Machine Learning

Lecture 2

Sharan Vaswani

September 10, 2024

Recap

Machine learning tasks involve optimizing some (potentially complicated) function of the
model parameters.

Minimizing generic functions is hard, and we need to make assumptions on the structure.

Lipschitz continuous functions: f is G -Lipschitz continuous if ∀x , y ∈ D,
|f (x)− f (y)| ≤ G ∥x − y∥.
Global minimization of Lipschitz continuous functions using a zero-order oracle requires
Ω
((

G
ϵ

)d)
oracle calls. The naive algorithm of forming an ϵ-net is near-optimal.

Smooth functions: f is L-smooth if its gradient is Lipschitz continuous i.e. ∀x , y ∈ D,
∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥.
If f is twice-differentiable and L-smooth, ∇2f (w) ⪯ L Id .

For linear regression, f (w) = 1
2 ∥Xw − y∥2 =

∑
i=n(⟨xi ,w⟩ − yi)

2 is λmax[X
TX]-smooth.

1

Smooth functions

Claim: For an L-smooth function, f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2 for all x , y ∈ D.

Proof:

f (y) = f (x) +

∫ 1

t=0
[∇f (x + t (y − x))] (y − x)T dt (Fundamental theorem of calculus)

= f (x) + ⟨∇f (x), y − x⟩+
∫ 1

t=0
[∇f (x + t (y − x))] (y − x)T dt − [∇f (x)] (y − x)T

= f (x) + ⟨∇f (x), y − x⟩+
∫ 1

t=0
[∇f (x + t (y − x))−∇f (x)] (y − x)T dt

≤ f (x) + ⟨∇f (x), y − x⟩+
∫ 1

t=0
∥∇f (x + t (y − x))−∇f (x)∥ ∥y − x∥ dt

(Cauchy–Schwarz)

≤ f (x) + ⟨∇f (x), y − x⟩+ L

∫ 1

t=0
∥x + t (y − x)− x∥ ∥y − x∥ dt (Lipschitz continuity)

= f (x) + ⟨∇f (x), y − x⟩+ L ∥y − x∥2
∫ 1

t=0
t dt = f (x) + ⟨∇f (x), y − x⟩+ L

2
∥y − x∥2

2

Smooth functions

The inequality f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2 can be interpreted as a global

quadratic upper-bound on f at point x i.e. the bound holds for all y ∈ D.

There are other related ways to state the L-smoothness of f (prove these in Assignment 1).

f (y) ≥ f (x) + ⟨f (x), y − x⟩+ 1
2L

∥∇f (y)−∇f (x)∥2

⟨∇f (x)−∇f (y), x − y⟩ ≤ L ∥x − y∥2

3

Questions?

3

Local Minimization

Smooth functions can include functions with multiple local/global
minimum and stationary points. Eg: f (x) = −x sin(x).

−10 −5 0 5 10

−6

−4

−2

0

2

4

x

f
(x
)

f (x)

Consider minimizing a smooth function over Rd (unconstrained minimization)

min
w∈Rd

f (w)

Since we have seen that global minimization can be impossible (without Lipschitz assumption on
f) or the number of oracle calls can be exponential in d , let us aim to solve an easier problem.

• Access to a first-order oracle – query the oracle at point w and it returns f (w) and ∇f (w).

• Objective: For a target accuracy of ϵ > 0, return a point ŵ s.t. ∥∇f (ŵ)∥2 ≤ ϵ? Characterize
the required number of oracle calls.

We only care about making the gradient small and finding an approximate stationary point.
4

Local Minimization

Recall that L-smoothness of f implies that f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2.

Idea: Since the RHS is a global upper-bound on the true function, instead of minimizing the
function directly, let us minimize the upper-bound at x w.r.t y .

Setting the gradient of the RHS w.r.t y to zero, we obtain ŷ as:

∇f (x) + L [ŷ − x] = 0 =⇒ ŷ = x − 1
L
∇f (x)

This is exactly the gradient descent update at x!

We can do this iteratively i.e. starting at w0, form the upper-bound at w0, minimize it by setting
w1 = w0 − 1

L∇f (w0), then form the quadratic upper-bound at w1 and repeat. Continue to do
this until we find a point ŵ s.t. ∥∇f (ŵ)∥2 ≤ ϵ and terminate.

This is exactly the gradient descent procedure – move in the direction of the negative gradient
(“downhill”) with step-size η equal to to 1/L. Formally, at iteration k , the GD update is:

wk+1 = wk − η∇f (wk).
5

Gradient Descent

Is GD guaranteed to terminate? If so, can we characterize the number of iterations?

Claim: For L-smooth functions lower-bounded by f ∗, gradient descent with η = 1
L returns ŵ

such that ∥∇f (ŵ)∥2 ≤ ϵ and requires T = 2L [f (w0)−f ∗]
ϵ iterations (oracle calls).

Proof:
Using the L-smoothness of f with x = wk and y = wk+1 = wk − 1

L∇f (wk) in the quadratic
bound (also referred to as the descent lemma),

f (wk+1) ≤ f (wk) + ⟨∇f (wk),−
1
L
∇f (wk)⟩+

L

2

∥∥∥∥1
L
∇f (wk)

∥∥∥∥2

=⇒ f (wk+1) ≤ f (wk)−
1
2L

∥∇f (wk)∥2

By moving from wk to wk+1, we have decreased the value of f since f (wk+1) ≤ f (wk).

6

Gradient Descent

Rearranging the inequality from the previous slide, for every iteration k ,
1
2L

∥∇f (wk)∥2 ≤ f (wk)− f (wk+1)

By running GD for T iterations, adding up k = 0 to T − 1,

1
2L

T−1∑
k=0

∥∇f (wk)∥2 ≤
T−1∑
k=0

[f (wk)− f (wk+1)] = f (w0)− f (wT) ≤ [f (w0)− f ∗]

(Since f is lower-bound by f ∗)

=⇒
∑T−1

k=0 ∥∇f (wk)∥2

T
≤ 2L [f (w0)− f ∗]

T

The LHS is the average of the gradient norms over the T iterates. Let
ŵ := argmink∈{0,1,...,T−1} ∥∇f (wk)∥2. Since the minimum is smaller than the average,

∥∇f (ŵ)∥2 ≤ 2L [f (w0)− f ∗]

T
7

Gradient Descent

Since ∥∇f (ŵ)∥2 ≤ 2L [f (w0)−f ∗]
T , the rate of convergence is O(1/T).

If the RHS equal to 2L [f (w0)−f ∗]
T ≤ ϵ, this would guarantee that ∥∇f (ŵ)∥2 ≤ ϵ and we would

achieve our objective.

Hence, we need to run the algorithm for T ≥ 2L [f (w0)−f ∗]
ϵ iterations. This is also referred to as

an O
(1
ϵ

)
convergence rate.

Lower-Bound: When minimizing a smooth function (without additional assumptions), any
first-order algorithm requires Ω

(1
ϵ

)
oracle calls to return a point ŵ such that ∥∇f (ŵ)∥2 ≤ ϵ.

Hence, gradient descent is optimal for minimizing smooth functions!

8

Gradient Descent – Example

minx∈[−10,10] f (x) := −x sin(x). Run GD with η = 1/L ≈ 0.1 and x0 = 4.

−10 −5 0 5 10

−6

−4

−2

0

2

4

x

f
(x
)

f (x)

−10 −5 0 5 10

−5

0

5

x

f
′ (
x
)

f ′(x)

−10 −5 0 5 10

−4

−2

0

2

4

6

8

x

f
′ (
x
)

f ′′(x)

(a) Gradient norm (b) Function value
9

Questions?

9

