CMPT 409/981: Optimization for Machine Learning

Lecture 19

Sharan Vaswani
November 14, 2024

e Scalar AdaGrad:
n

Nk = p 5
VI V(W)

W1 = Newe — e Vi(wi)]

e We proved that if the convex set C has diameter D i.e. for all x,y € C,

|x —y|| < D, for an
arbitrary sequence of losses such that each f; is convex, differentiable and G-Lipschitz, scalar

AdaGradiwithine = recmss
aGrad with 7, S LIV E(ws)?
2

Rr(u) < (g} +77> GVT

and wy € C has the following regret for all v € C,

e Unlike OGD, scalar AdaGrad does not require the knowledge of G.

e Scalar AdaGrad uses one step-size for each coordinate. In practice, using one step-size per
coordinate results in better empirical performance.

e Let us consider the more practical variants of AdaGrad.

e The corresponding update is similar to preconditioned GD with the preconditioner A;l:

_ o1
Vg1 = Wk — AL 1ka(wk) P Wiyl = rlé[Vk+]_] = arg n(wjln 5 lw — vk+1||f\k .
we

VL IVEM)IP ls (Scalar AdaGrad)
Ax = diag(Gk%) (Diagonal AdaGrad)
G (Full-Matrix AdaGrad)
where G, € R%*9 .= K [V (ws)VE(ws)T].

e For the commonly-used diagonal variant, AdaGrad results in a per-coordinate update, i.e.
Vi e [d], if 8k,i = [ka(Wk)],', then,

d
. . k,i . . .
Vir1[i] = wi[il —n % . Wiy1 = argmin E (Wil = viesa[i)?
1 g527,- wee |21 \s=1)

e We will assume that Ay is invertible (a small ey can be added to ensure invertibility).

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f;
is convex and differentiable, AdaGrad with the general update wiy1 = N&[wi — nA,lefk(wk)]
and wy € C has the following regret for u € C,

Rr(u) < (’j; +?7> TH{Ar]

Proof: Starting from the update, vxy11 = wy — nA,lefk(wk),

Vipr — U = wx — A V(W) — u = Agfviy1 — u] = Ax[wi — u] — nVHi(wk)
Multiplying the above equations,

[Vitr = u]"A[virr — u] = [wi — u = ATV (W)™ [Acwic — u] = 1V fi(wy)]

Iviepr — ulla, = llwi — ull%, — 20(V fi(wi), wic — u) + 2 [A* V(w7 [V Fie(wic)]

2 2 2
= |[virr — ull, = llwic = ully, = 20{V (i), wic — u) + 0? | Vfie(wie) 3

Recall that ||vks+1 — uHi\k = ||wy — uHik — 20(Vfi(wi), wi — u) + 1? vak(Wk)Hik—l. Using the
update wiy1 = M&[vi+1], u € C with the non-expansiveness of projections,

2 2 2
[wira — ulla, = INelviga] = Ne[ulla, < v — ully,
2 2 2
= |wisr — ully, < llwi = ull, = 20(VE(we), wic = u) + 1% |V Fic(wie) [y

< Jlwic — ul3, — 2nlfilwi) — ()] + 172 [Vh(wi) |3+ (Convexity)

2 2
Wi — u — || —u
o) —) < 128~
n

n 2
+ 2V (w5

Summing from k=1to T,

T T
1 2 21,1 2
= Rr(u) < 2 S {|Wk — ully, — [Iwks1 — UHAJ +5 PACA]
e k=1

Term (i)

Let us now bound Term (i).

i
Term (i) = > [Iwi — ull3, — Iwisa = wl;,|
k=1
T
2
= " [(wie — u)"[Ac = Arcal(wie —)] + lwa — ull, — wrea — ull%,
k=2
T T
< Ik — ull® Amaxl Ak — Aca] + lwa — w3, D7 D Amax[Ak — Aca] + [lwr — ulf3,
k=2 k=2
(Since A1 = Ak, AmaxAx — Ak—1] > 0 and ||wy — u|®> < D)
T T
— > [lwe— ully, — lwers — wly, | < D D7 TrlAw = Accal + lwa = ul,
k=1 k=2

(For any PSD matrix B, Amax[B] < Tr[B])

Continuing the proof from the previous slide,

T T
Term (i) = [||Wk — ull, = Wit — U||3\J <D? Y Tr[Ax — A + wa — ulf},
k=1 k=2
T
=D Tr | > [Ac— Al | + llwa — ull2, (Linearity of Trace)
k=2

= D? Tr[A7 — Ad] + [lwy — u]|3, < D? Tr[Ar — A1l + Amax[A1] [|w1 — ul|?
= Term (i) < D? Tr[A7] — D? Tr[A1] + D? Tr[A;] = D? Tr[A7]

Putting everything together,

D2 Tr A u
Rr() < 2T 4 1S 9w
k=1

Term (i)

Let us now bound Term (ii).

Claim: Term (i) = Y., _, Hwk(wk)uj;l < 2Tr[A7]

Proof: Let us prove by induction. For convenience, define gi := Vi (wy).

Base case: For k = 1, LHS = Tr[gT A; 'a1] = Tr[A7 'gug] = Tr[AT 1AL Ar] < 2 Tr[A;] = RHS.
Here, we used the cyclic property of trace i.e. Tr[ABC| = Tr[BCA].

Inductive Hypothesis: If the statement is true for T — 1, we need to prove it for T.

T-1

1/2 B
Y lgklas + llgrlias < 2TrlAr—a] + llgrlla-s = 2Tr[(AT — greT)] + TrlAT greT]
k=1

For any X > Y = 0, we have [DHS11, Lemma 8], 2 Tr[(X — Y)"?] + Tr[X~*2Y] < 2 Tr[X"/2].
Using this for X = A%, Y = grgT, ZkT:1 |\ngi;1 < 2Tr[A7], which completes the proof.

Putting everything together,

Diagonal AdaGrad vs OGD

@ We have proved that for both the diagonal and full-matrix variants of AdaGrad,
Rr(u) < (% +n) TrlAr].

@ By doing a tighter analysis for the diagonal variant, we can prove that the corresponding
regret bound is: Ry(u) < (+ 77) Tr[A7] where Do = max, yec ||x — y|| . Setting

777\[1 ()<\[D Z:l\/Zk lgk:

e Compare the above bound to the regret for OGD (with n = D/v26),

Rr(u) <v2D \ 27:1 Zszl ng,i where D = max, yec [|x = yl[,.

e If C is the unit hypercube, then, D = \/d and D, = 1. If the gradients are sparse (e.g.
corresponding to one-hot features for logistic regression), diagonal AdaGrad will result in a
better regret bound than OGD.

@ For other convex sets, such as the Euclidean ball, and when the gradients are dense, the
regret of OGD can be better than that of diagonal AdaGrad.

Recall that Ry (u) < (2r1 —|—7]) Tr[A7]. In the worst-case, Tr[A7] < \F\/Zk . Hka(Wk)H :

THA7] = Tr[GrH] = Z G = dw < gy| ZimMlGT]

d
(Jensen's inequality for /x)

d T
=Vd,| > N[Gr] = Vd\/Tr[Gr] = \fd\lTr Zka(Wk)ka(Wk)T]

j=1 k=1

T T
Tr[A7] < \/H\l lz Tr ka(wk)ka(wk)T] =Vd Z | Vf(wi)||* (Linearity of Trace)
k=1 k=1

Putting everything together, in the worst-case, the regret can be bounded as:

Rr(u) < (+n) a, ank)

AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f;
is convex, differentiable and G-Lipschitz, AdaGrad with the general update
Wii1 = I'Ié[w;< — HAZIka(Wk)] with n = % and w; € C has the following regret for u € C,

Rr(u) < V2DGVdVT
Proof: Using the general result for AdaGrad and that each f; is G-Lipschitz,
2

Rr(u) < <D+n> Vd ZHka w)|” < ([2); +n> VdGVT

Rr(u) < V2DG Vd VT (Setting 1 = %)

@ Unlike scalar AdaGrad, when using the diagonal or full-matrix variant, the worst-case regret
has a dimension dependence.

@ Similar to scalar AdaGrad, we can derive regret bounds for the strongly-convex Lipschitz
and smooth convex losses.

10

Questions?

Adaptive Gradient Methods

Update for a generic method: For kK > 1 with mg :=0, 5 >0,
Wil = né[Wk — Nk A;lmk]; my = fmyg_1+ (1 = B)ka(wk)

1
where, M§[v] := argmin = ||w — V”ik :
wel 2

Instantiating the generic method:

e SGD: A = I4, 8 =0. Resulting update: wyy1 = wix — 7V i(wy).

@ Stochastic Heavy-Ball Momentum: A, = I,;. For ay =1, (1 —) and v, = fiﬁ,
Resulting update: wyy1 = wi — axVii(wi) + vi(wk — wi—1) (Prove in Assignment 4!)

o AdaGrad: A, = Gk% where Go = 0 and G, = Gx_1 + ka(Wk)ka(Wk)T, B=0, nx=n.
Resulting update: wyy 1 = wy — nA;1ka(wk).

e Adam: Ak = Gk% where Go =0 and Gk = ﬁQkal + (1 — Bg)ka(Wk)ka(Wk)T, ﬁ = ﬁl
for 81, B2 € (0,1). Resulting update: wy1 = wyx — 1 A;lmk where
my = Bimg—1 + (1 — B1) Vi (wi).

11

e Recall the update: wy 1 = I'Ié[wk — Nk A;lmk] s mg = Bmy_1 + (1 — B)Vii(wg).
o For Adam, Gy = (1—) 31y B5/[VA(wi)VHi(wi)T] and mi = (1— 81) 1, B/ [VAi(wi)].

Hence, the influence of the past gradients is decayed exponentially which ensures that G, and
my, are both primarily influenced by the most recent gradient Vfx(wy). This results in better
empirical performance.

e Consider scalar Adam for which G, = (1 — f32) E,’k:1 BE=1||Vfi(w;)||. Unlike scalar AdaGrad
(for which Gy = ZLI IV £(w;)||?), G is not guaranteed to increase monotonically (i.e.

Gk+1 > Gi). Hence the “effective step-size” i equal to \/LGT is not guaranteed to decrease.

Hence, to ensure convergence, Adam requires 7y = 1jkx for some decreasing sequence k. The
original paper [KB14] claimed convergence for 1, = O(1/v/k), B2 € [0,1) and f; € [0, 1).

e However, the non-monotonic behaviour of Gi can result in non-convergence of Adam even
with an explicitly decreasing sequence of 7, constant 82 € (0,1) and 51 = 0 (no momentum).

12

Non-convergence of Adam

e For C > 2, run Adam with 5; = 0 (no momentum), 3, = H% and 7, = # such that
1 < /1 — B2 on the following problem:

e Consider C = [—1, 1] and the following sequence of linear functions.

fu(w) Cw forkmod3=1
k(W) =
—w otherwise

In the next class, we will prove that Adam results in linear regret for the above example [RKK19].

e The example can be modified [RKK19] to consider:

— _ Tk
@ Updates of the form wy 1 = wy T for € > 0.
o Constant 7y (rather than O(1/vk)).
@ Stochastic setting (rather than the more general online convex optimization setup).
@ Decreasing, non-zero 31 (the momentum parameter).

13

AMSGrad — fixing the convergence of Adam

e Since the non-decreasing step-size for Adam is problematic, AMSGrad [RKK19] fixes this issue
by making a small modification (in red) to Adam. It has the following update — for

B1, 82 € (0,1),
G = B2Gi_1 + (1 — B2) diag [VA(wi) VW) 5 A = max{Gi, Ac_1}
Wisr = NEwie — e A mids + mic= Bumi—r + (1 — B1) Vi(wi)
o1
rlé[Vk+]_] = arg min o lw — Vk+1||/24k ,
wel

where C = max{A, B} for diagonal matrices A and B implies that for all i € [d],
C,'7,' = max{A,-7,-, B,’_y,’}.

e The AMSGrad update ensures that A > Ax_1 and hence the step-sizes 7, are non-increasing,

which guarantees convergence.

14

References i

@ John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.

[4 Diederik P Kingma and Jimmy Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

@ Sashank J Reddi, Satyen Kale, and Sanjiv Kumar, On the convergence of adam and beyond,
arXiv preprint arXiv:1904.09237 (2019).

15

