
CMPT 409/981: Optimization for Machine Learning

Lecture 19

Sharan Vaswani

November 14, 2024



Recap

• Scalar AdaGrad:

wk+1 = ΠC [wk − ηk∇fk(wk)] ; ηk =
η√∑k

s=1 ∥∇fs(ws)∥2

• We proved that if the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an
arbitrary sequence of losses such that each fk is convex, differentiable and G -Lipschitz, scalar
AdaGrad with ηk = η√∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)
G
√
T

• Unlike OGD, scalar AdaGrad does not require the knowledge of G .

• Scalar AdaGrad uses one step-size for each coordinate. In practice, using one step-size per
coordinate results in better empirical performance.

1



AdaGrad

• Let us consider the more practical variants of AdaGrad.

• The corresponding update is similar to preconditioned GD with the preconditioner A−1
k :

vk+1 = wk − η A−1
k ∇fk(wk) ; wk+1 = Πk

C[vk+1] := argmin
w∈C

1
2
∥w − vk+1∥2

Ak
.

Ak =


√∑k

s=1 ∥∇fs(ws)∥2 Id (Scalar AdaGrad)

diag(Gk
1
2 ) (Diagonal AdaGrad)

Gk
1
2 (Full-Matrix AdaGrad)

where Gk ∈ Rd×d :=
∑k

s=1 [∇fs(ws)∇fs(ws)
T].

• For the commonly-used diagonal variant, AdaGrad results in a per-coordinate update, i.e.
∀i ∈ [d ], if gk,i := [∇fk(wk)]i , then,

vk+1[i ] = wk [i ]− η
gk,i√∑k
s=1 g

2
s,i

; wk+1 = argmin
w∈C

 d∑
i=1

√√√√ k∑
s=1

g2
s,i (w [i ]− vk+1[i ])

2


2



AdaGrad

• We will assume that Ak is invertible (a small ϵId can be added to ensure invertibility).

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is convex and differentiable, AdaGrad with the general update wk+1 = Πk

C[wk − ηA−1
k ∇fk(wk)]

and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)
Tr[AT ]

Proof: Starting from the update, vk+1 = wk − ηA−1
k ∇fk(wk),

vk+1 − u = wk − ηA−1
k ∇fk(wk)− u =⇒ Ak [vk+1 − u] = Ak [wk − u]− η∇fk(wk)

Multiplying the above equations,

[vk+1 − u]TAk [vk+1 − u] = [wk − u − ηA−1
k ∇fk(wk)]

T [Ak [wk − u]− η∇fk(wk)]

∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2[A−1
k ∇fk(wk)]

T[∇fk(wk)]

=⇒ ∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

3



AdaGrad

Recall that ∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

. Using the
update wk+1 = Πk

C[vk+1], u ∈ C with the non-expansiveness of projections,

∥wk+1 − u∥2
Ak

= ∥ΠC[vk+1]− ΠC[u]∥2
Ak

≤ ∥vk+1 − u∥2
Ak

=⇒ ∥wk+1 − u∥2
Ak

≤ ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

≤ ∥wk − u∥2
Ak

− 2η[fk(wk)− fk(u)] + η2 ∥∇fk(wk)∥2
A−1
k

(Convexity)

=⇒ fk(wk)− fk(u) ≤
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

2η
+

η

2
∥∇fk(wk)∥2

A−1
k

Summing from k = 1 to T ,

=⇒ RT (u) ≤
1
2η

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
︸ ︷︷ ︸

Term (i)

+
η

2

T∑
k=1

∥∇fk(wk)∥2
A−1
k

Let us now bound Term (i).
4



AdaGrad

Term (i) =
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
=

T∑
k=2

[(wk − u)T[Ak − Ak−1](wk − u)] + ∥w1 − u∥2
A1

− ∥wT+1 − u∥2
AT

≤
T∑

k=2

∥wk − u∥2
λmax[Ak − Ak−1] + ∥w1 − u∥2

A1
≤

T∑
k=2

D2 λmax[Ak − Ak−1] + ∥w1 − u∥2
A1

(Since Ak−1 ⪯ Ak , λmax[Ak − Ak−1] ≥ 0 and ∥wk − u∥2 ≤ D)

=⇒
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2

T∑
k=2

Tr[Ak − Ak−1] + ∥w1 − u∥2
A1

(For any PSD matrix B, λmax[B] ≤ Tr[B])

5



AdaGrad

Continuing the proof from the previous slide,

Term (i) =
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2

T∑
k=2

Tr[Ak − Ak−1] + ∥w1 − u∥2
A1

= D2 Tr

[
T∑

k=2

[Ak − Ak−1]

]
+ ∥w1 − u∥2

A1
(Linearity of Trace)

= D2 Tr [AT − A1] + ∥w1 − u∥2
A1

≤ D2 Tr [AT − A1] + λmax[A1] ∥w1 − u∥2

=⇒ Term (i) ≤ D2 Tr[AT ]− D2 Tr[A1] + D2 Tr[A1] = D2 Tr[AT ]

Putting everything together,

RT (u) ≤
D2 Tr[AT ]

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2
A−1
k︸ ︷︷ ︸

Term (ii)

Let us now bound Term (ii).
6



AdaGrad

Claim: Term (ii) =
∑T

k=1 ∥∇fk(wk)∥2
A−1
k

≤ 2Tr[AT ]

Proof: Let us prove by induction. For convenience, define gk := ∇fk(wk).
Base case: For k = 1, LHS = Tr[gT

1 A
−1
1 g1] = Tr[A−1

1 g1g
T
1 ] = Tr[A−1

1 A1A1] ≤ 2Tr[A1] = RHS.
Here, we used the cyclic property of trace i.e. Tr[ABC ] = Tr[BCA].

Inductive Hypothesis: If the statement is true for T − 1, we need to prove it for T .
T−1∑
k=1

∥gk∥2
A−1
k

+ ∥gT∥2
A−1
T

≤ 2Tr[AT−1] + ∥gT∥2
A−1
T

= 2Tr[
(
A2
T − gTg

T
T

)1/2
] + Tr[A−1

T gTg
T
T ]

For any X ⪰ Y ⪰ 0, we have [DHS11, Lemma 8], 2Tr[(X − Y )1/2] + Tr[X−1/2Y ] ≤ 2Tr[X 1/2].
Using this for X = A2

T , Y = gTg
T
T ,

∑T
k=1 ∥gk∥

2
A−1
k

≤ 2Tr[AT ], which completes the proof.

Putting everything together,

RT (u) ≤
(
D2

2η
+ η

)
Tr[AT ] .

7



Diagonal AdaGrad vs OGD

We have proved that for both the diagonal and full-matrix variants of AdaGrad,
RT (u) ≤

(
D2

2η + η
)
Tr[AT ].

By doing a tighter analysis for the diagonal variant, we can prove that the corresponding
regret bound is: RT (u) ≤

(
D2

∞
2η + η

)
Tr[AT ] where D∞ = maxx,y∈C ∥x − y∥∞. Setting

η = D∞√
2
, RT (u) ≤

√
2D∞

∑d
i=1

√∑T
k=1 g

2
k,i .

Compare the above bound to the regret for OGD (with η = D/
√

2G),

RT (u) ≤
√

2D
√∑d

i=1
∑T

k=1 g
2
k,i where D = maxx,y∈C ∥x − y∥2.

If C is the unit hypercube, then, D =
√
d and D∞ = 1. If the gradients are sparse (e.g.

corresponding to one-hot features for logistic regression), diagonal AdaGrad will result in a
better regret bound than OGD.

For other convex sets, such as the Euclidean ball, and when the gradients are dense, the
regret of OGD can be better than that of diagonal AdaGrad.

8



AdaGrad

Recall that RT (u) ≤
(

D2

2η + η
)
Tr[AT ]. In the worst-case, Tr[AT ] ≤

√
d
√∑T

k=1 ∥∇fk(wk)∥2.

Tr[AT ] = Tr[GT
1
2 ] =

d∑
j=1

√
λj [GT ] = d

∑d
j=1

√
λj [GT ]

d
≤ d

√∑d
j=1 λj [GT ]

d

(Jensen’s inequality for
√
x)

=
√
d

√√√√ d∑
j=1

λj [GT ] =
√
d
√
Tr[GT ] =

√
d

√√√√Tr

[
T∑

k=1

∇fk(wk)∇fk(wk)T

]

Tr[AT ] ≤
√
d

√√√√[
T∑

k=1

Tr∇fk(wk)∇fk(wk)T

]
=

√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2 (Linearity of Trace)

Putting everything together, in the worst-case, the regret can be bounded as:

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2

9



AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is convex, differentiable and G -Lipschitz, AdaGrad with the general update
wk+1 = Πk

C[wk − ηA−1
k ∇fk(wk)] with η = D√

2
and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
√

2DG
√
d
√
T

Proof: Using the general result for AdaGrad and that each fk is G -Lipschitz,

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2 ≤
(
D2

2η
+ η

)√
d G

√
T

RT (u) ≤
√

2DG
√
d
√
T (Setting η = D√

2
)

Unlike scalar AdaGrad, when using the diagonal or full-matrix variant, the worst-case regret
has a dimension dependence.
Similar to scalar AdaGrad, we can derive regret bounds for the strongly-convex Lipschitz
and smooth convex losses.

10



Questions?

10



Adaptive Gradient Methods

Update for a generic method: For k ≥ 1 with m0 := 0, β ≥ 0,

wk+1 = Πk
C[wk − ηk A

−1
k mk ]; mk = βmk−1 + (1 − β)∇fk(wk)

where, Πk
C[v ] := argmin

w∈C

1
2
∥w − v∥2

Ak
.

Instantiating the generic method:

SGD: Ak = Id , β = 0. Resulting update: wk+1 = wk − ηk∇fk(wk).
Stochastic Heavy-Ball Momentum: Ak = Id . For αk = ηk (1 − β) and γk = βηk

ηk−1
,

Resulting update: wk+1 = wk − αk∇fk(wk) + γk(wk − wk−1) (Prove in Assignment 4!)
AdaGrad: Ak = Gk

1
2 where G0 = 0 and Gk = Gk−1 +∇fk(wk)∇fk(wk)

T, β = 0, ηk = η.
Resulting update: wk+1 = wk − η A−1

k ∇fk(wk).
Adam: Ak = Gk

1
2 where G0 = 0 and Gk = β2Gk−1 + (1 − β2)∇fk(wk)∇fk(wk)

T, β = β1

for β1, β2 ∈ (0, 1). Resulting update: wk+1 = wk − ηk A
−1
k mk where

mk = β1mk−1 + (1 − β1)∇fk(wk).

11



Adam

• Recall the update: wk+1 = Πk
C[wk − ηk A

−1
k mk ] ; mk = βmk−1 + (1 − β)∇fk(wk).

• For Adam, Gk = (1− β2)
∑k

i=1 β
k−i
2 [∇fi (wi )∇fi (wi )

T] and mk = (1− β1)
∑k

i=1 β
k−i
1 [∇fi (wi )].

Hence, the influence of the past gradients is decayed exponentially which ensures that Gk and
mk are both primarily influenced by the most recent gradient ∇fk(wk). This results in better
empirical performance.

• Consider scalar Adam for which Gk = (1 − β2)
∑k

i=1 β
k−i
2 ∥∇fi (wi )∥2. Unlike scalar AdaGrad

(for which Gk =
∑k

i=1 ∥∇fi (wi )∥2), Gk is not guaranteed to increase monotonically (i.e.
Gk+1 > Gk). Hence the “effective step-size” η̃k equal to η√

Gk
is not guaranteed to decrease.

Hence, to ensure convergence, Adam requires ηk = η̃kαk for some decreasing sequence αk . The
original paper [KB14] claimed convergence for ηk = O(1/

√
k), β2 ∈ [0, 1) and β1 ∈ [0, 1).

• However, the non-monotonic behaviour of Gk can result in non-convergence of Adam even
with an explicitly decreasing sequence of ηk , constant β2 ∈ (0, 1) and β1 = 0 (no momentum).

12



Non-convergence of Adam

• For C > 2, run Adam with β1 = 0 (no momentum), β2 = 1
1+C2 and ηk = η√

k
such that

η <
√

1 − β2 on the following problem:

• Consider C = [−1, 1] and the following sequence of linear functions.

fk(w) =

{
C w for k mod 3 = 1

−w otherwise

In the next class, we will prove that Adam results in linear regret for the above example [RKK19].

• The example can be modified [RKK19] to consider:

Updates of the form wk+1 = wk − ηk√
Gk+ϵ

for ϵ > 0.
Constant ηk (rather than O(1/

√
k)).

Stochastic setting (rather than the more general online convex optimization setup).
Decreasing, non-zero β1 (the momentum parameter).

13



AMSGrad – fixing the convergence of Adam

• Since the non-decreasing step-size for Adam is problematic, AMSGrad [RKK19] fixes this issue
by making a small modification (in red) to Adam. It has the following update – for
β1, β2 ∈ (0, 1),

Gk = β2Gk−1 + (1 − β2) diag [∇fk(wk)∇fk(wk)
T] ; Ak = max{Gk

1
2 ,Ak−1}

wk+1 = Πk
C[wk − ηk A

−1
k mk ]; ; mk = β1mk−1 + (1 − β1)∇fk(wk)

Πk
C[vk+1] := argmin

w∈C

1
2
∥w − vk+1∥2

Ak
,

where C = max{A,B} for diagonal matrices A and B implies that for all i ∈ [d ],
Ci,i = max{Ai,i ,Bi,i}.

• The AMSGrad update ensures that Ak ⪰ Ak−1 and hence the step-sizes ηk are non-increasing,
which guarantees convergence.

14



References i

John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.

Diederik P Kingma and Jimmy Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar, On the convergence of adam and beyond,
arXiv preprint arXiv:1904.09237 (2019).

15


