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Adaptive step-sizes

e Recall the claim we proved earlier: If the convex set C has diameter D, for an arbitrary
sequence of losses such that each f, is convex and differentiable, OGD with the update
Wit1 = Me[wy — T]kak(Wk)] such that ¢ < mx_1 and wy € C has the following regret for u € C,
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In order to find the optimal n, differentiating the RHS w.r.t 7 and setting it to zero,
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Adaptive step-sizes

D
Sl V(w2
is not practical since setting 7 requires knowing Vf,(wy) for all k € [T].

e Choosing n =n* = minimizes the upper-bound on the regret. However, this

e To approximate n* to have a practical algorithm, we can set 7, as follows:

D
Nk = p 5
VI IVE(w)]

Hence, at iteration k, we only use the gradients upto that iteration.

e Algorithmically, we only need to maintain the running sum of the squared gradient norms.

e Moreover, this choice of step-size ensures that 7y < 7,_1 (since we are accumulating gradient
norms in the denominator so the step-size cannot increase) and hence we can use our general
result for bounding the regret.



Scalar AdaGrad

Hence, we have the following update for any 1 > 0,
_ n
Nk = p 5
VELL V)]

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar
AdaGrad or AdaGrad Norm [WWB20].

W1 = Newe — e Vii(wi)]

e For a sequence of convex, differentiable losses, using the general result,
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In order to bound the regret for AdaGrad, we need to bound the last term.



Scalar AdaGrad

We prove the following general claim and will use it for as = ||V (ws)||°.

Claim: For all T and a; >0, 3/, \/% <2y/)_, ax.

Proof: Let us prove by induction. Base case: For T =1, LHS = ,/a; < 2,/a; = RHS.

Inductive Hypothesis: If the statement is true for T — 1, we need to prove it for T.
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(x:=ar, Z:=X3",a)

The derivative of the RHS w.r.t to x is — \/% + % < 0 for all x > 0 and hence the RHS is

maximized at x = 0. Setting x = 0 completes the induction proof.




Scalar AdaGrad

2 T 7 T \AIE
Recall that Rr(u) < 2= />0, [IVA(wi)|® + 2 X0y %
s=1 s(Ws

Using the claim in the previous slide with a5 := Hst(Ws)H2 >0,
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The step-size that minimizes the above bound is equal to n*
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Hence, AdaGrad is only sub-optimal by v/2 when compared to the best constant step-size! 5



Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x,y € C, ||x — y|| < D, for an arbitrary
sequence of losses such that each f, is convex, differentiable and G-Lipschitz, scalar AdaGrad

with 7, = and wy € C has the following regret for all u € C,

n
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Rr(u) < (g} +n) GVT

Proof: Using the general result from the previous slide,

0= (&) {Emimar < (2 ) 7= (8 0) o0

2n

(Since each fi is G-Lipschitz)
With n = &, Rr(u) < V2D GVT.

e Hence, for convex, Lipschitz functions, AdaGrad achieves the same regret as OGD but is
adaptive to G.



Scalar AdaGrad - Convex, Smooth functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f;
is convex, differentiable and L-smooth and ¢? := maxye[r)[fi(u) — f;'] where £ = minyec fi(w),

scalar AdaGrad with n, = - Han( T and wy € C has the following regret for all u € C,
s=1 s(Ws

2

Rr(u) < 2L <§n+n) +V2L <+n> VT,

@ The regret depends on (2 which depends on u. Such bounds that depend on the fixed
decision that we are comparing against are called first-order regret bounds.

@ If the learner is competing against a fixed decision u that minimizes each fy, i.e.
u € argmin,, f(w) for all k, then ¢ = 0. Hence, (? characterizes the analog of
interpolation in the online setting. In this setting, AdaGrad only incurs a constant regret
that is independent of T. This observation has been used to explain the good performance
of IL algorithms when using over-parameterized (convex) models [YBC20, LVS22].

@ Note that the above bound holds for all 7 > 0 and AdaGrad does not need to know ¢ or L.



Scalar AdaGrad - Convex, Smooth functions

Proof: Using the general result for scalar AdaGrad,

Rr(u) < <+n> \ ank W)

Using L-smoothness of fi to bound the gradient norm term (for each k) in the regret expression,

IV (W) |? < 2L[fe(wie) — £] = 2L[fi(wi) — fi(w)] + 2L[fie(u) — £] < 2L[fi(wi) — fi(u)] + 2L ¢?

= > VAW < 2L [hi(we) — fi(u)] +2L > 2 =2L[Rr(u) + ¢ T]
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. Rr(u) < (fn +n) VILR(0) T 2 7]




Scalar AdaGrad - Convex, Smooth functions

Recall that Rr(u) < (g—; + 77) V/2L[R7(u) + (2 T]. Squaring this expression,

[Rr(u)]? <2L <D2 +n> [R7(u) +C?T]
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Scalar AdaGrad - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x,y € C, ||[x — y|| < D, for an arbitrary

sequence of losses such that each 7 is i strongly-convex, differentiable and G-Lipschitz, scalar
. - Gz/“, .

AdaGrad with 7, = S S ZATA and wy € C has the following regret for all v € C,

D?p

Rr(u) < 5z + 5—2 [141log (14 G?T)]

Proof: Need to prove this in Assignment 4!

e Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar
to OGD and FTL, it requires knowledge of both G and .
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Questions?
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