CMPT 409/981: Optimization for Machine Learning Lecture 18

Sharan Vaswani

November 12, 2024

Adaptive step-sizes

• Recall the claim we proved earlier: If the convex set C has diameter D , for an arbitrary sequence of losses such that each f_k is convex and differentiable, OGD with the update $w_{k+1} = \prod_{C} [w_k - \eta_k \nabla f_k(w_k)]$ such that $\eta_k \leq \eta_{k-1}$ and $w_1 \in C$ has the following regret for $u \in C$,

$$
R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2 = \frac{D^2}{2\eta} + \frac{\eta}{2} \sum_{k=1}^T \|\nabla f_k(w_k)\|^2 \quad \text{ (If } \eta_k = \eta \text{ for all } k\text{)}
$$

In order to find the optimal η , differentiating the RHS w.r.t η and setting it to zero,

$$
-\frac{D^2}{2\eta^2} + \frac{1}{2}\sum_{k=1}^T \|\nabla f_k(w_k)\|^2 = 0 \implies \eta^* = \frac{D}{\sqrt{\sum_{k=1}^T \|\nabla f_k(w_k)\|^2}}
$$

Since the second derivative equal to $\frac{2D^2}{\eta^3}>0$, η^* minimizes the RHS. Setting $\eta=\eta^*$,

$$
R_T(u) \leq D \sqrt{\sum_{k=1}^T \left\| \nabla f_k(w_k) \right\|^2}
$$

- Choosing $\eta = \eta^* = \frac{D}{\sqrt{2L} \cdot \mu_E}$ $\frac{D}{\sum_{k=1}^{T} \|\nabla f_k(w_k)\|^2}$ minimizes the upper-bound on the regret. However, this is not practical since setting η requires knowing $\nabla f_k(w_k)$ for all $k \in [T]$.
- \bullet To approximate η^* to have a practical algorithm, we can set η_k as follows:

$$
\eta_k = \frac{D}{\sqrt{\sum_{s=1}^k \left\| \nabla f_s(w_s) \right\|^2}}
$$

Hence, at iteration k , we only use the gradients upto that iteration.

• Algorithmically, we only need to maintain the running sum of the squared gradient norms.

• Moreover, this choice of step-size ensures that $\eta_k \leq \eta_{k-1}$ (since we are accumulating gradient norms in the denominator so the step-size cannot increase) and hence we can use our general result for bounding the regret.

Scalar AdaGrad

Hence, we have the following update for any $\eta > 0$,

$$
w_{k+1} = \Pi_C[w_k - \eta_k \nabla f_k(w_k)] \quad ; \quad \eta_k = \frac{\eta}{\sqrt{\sum_{s=1}^k \left\| \nabla f_s(w_s) \right\|^2}}
$$

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar AdaGrad or AdaGrad Norm [\[WWB20\]](#page-12-0).

• For a sequence of convex, differentiable losses, using the general result,

$$
R_{T}(u) \leq \frac{D^{2}}{2\eta_{T}} + \sum_{k=1}^{T} \frac{\eta_{k}}{2} \left\| \nabla f_{k}(w_{k}) \right\|^{2} = \frac{D^{2}}{2\eta} \sqrt{\sum_{k=1}^{T} \left\| \nabla f_{k}(w_{k}) \right\|^{2}} + \frac{\eta}{2} \sum_{k=1}^{T} \frac{\left\| \nabla f_{k}(w_{k}) \right\|^{2}}{\sqrt{\sum_{s=1}^{k} \left\| \nabla f_{s}(w_{s}) \right\|^{2}}}
$$

In order to bound the regret for AdaGrad, we need to bound the last term.

Scalar AdaGrad

We prove the following general claim and will use it for $\mathit{a_s} = \left\| \nabla f_s(w_s) \right\|^2$.

Claim: For all
$$
T
$$
 and $a_s \geq 0$, $\sum_{k=1}^{T} \frac{a_k}{\sqrt{\sum_{s=1}^{k} a_s}} \leq 2\sqrt{\sum_{k=1}^{T} a_k}$.

Proof: Let us prove by induction. Base case: For $T = 1$, LHS $= \sqrt{a_1} < 2\sqrt{a_1} =$ RHS. **Inductive Hypothesis:** If the statement is true for $T - 1$, we need to prove it for T.

$$
\sum_{k=1}^{T} \frac{a_k}{\sqrt{\sum_{s=1}^{k} a_s}} = \sum_{k=1}^{T-1} \frac{a_k}{\sqrt{\sum_{s=1}^{k} a_s}} + \frac{a_T}{\sqrt{\sum_{s=1}^{T} a_s}} \le 2 \sqrt{\sum_{s=1}^{T-1} a_s} + \frac{a_T}{\sqrt{\sum_{s=1}^{T} a_s}} = 2\sqrt{Z - x} + \frac{x}{\sqrt{Z}}
$$

(x := a_T, Z := $\sum_{s=1}^{T} a_s$)

The derivative of the RHS w.r.t to x is $-\frac{1}{\sqrt{2}}$ $\frac{1}{Z-x}+\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{Z}}$ $<$ 0 for all x \geq 0 and hence the RHS is maximized at $x = 0$. Setting $x = 0$ completes the induction proof.

$$
\implies \sum_{k=1}^{T} \frac{a_k}{\sqrt{\sum_{s=1}^{k} a_s}} \leq 2\sqrt{Z} = 2\sqrt{\sum_{s=1}^{T} a_s}
$$

Scalar AdaGrad

Recall that
$$
R_T(u) \leq \frac{D^2}{2\eta} \sqrt{\sum_{k=1}^T ||\nabla f_k(w_k)||^2} + \frac{\eta}{2} \sum_{k=1}^T \frac{||\nabla f_k(w_k)||^2}{\sqrt{\sum_{s=1}^k ||\nabla f_s(w_s)||^2}}.
$$

Using the claim in the previous slide with $a_s := \left\| \nabla f_s(w_s) \right\|^2 \geq 0$,

$$
R_{\mathcal{T}}(u) \leq \frac{D^2}{2\eta} \sqrt{\sum_{k=1}^T ||\nabla f_k(w_k)||^2} + \eta \sqrt{\sum_{k=1}^T ||\nabla f_k(w_k)||^2} = \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{\sum_{k=1}^T ||\nabla f_k(w_k)||^2}.
$$

The step-size that minimizes the above bound is equal to $\eta^* = \frac{D}{\sqrt{2}}$ $\frac{2}{2}$. With this choice,

$$
R_T(u) \leq \sqrt{2}D \sqrt{\sum_{k=1}^T \|\nabla f_k(w_k)\|^2}
$$

Comparing to the regret for the optimal (impractical) constant step-size on Slide 1,

$$
R_T(u) \leq \sqrt{2} \min_{\eta} \left[\frac{D^2}{2\eta} + \frac{\eta}{2} \sum_{k=1}^T \left\| \nabla f_k(w_k) \right\|^2 \right]
$$

Hence, AdaGrad is only sub-optimal by $\sqrt{2}$ when compared to the best constant step-size!

Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all $x, y \in C$, $||x - y|| \le D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, scalar AdaGrad with $\eta_k = \frac{\eta}{\sqrt{2k}}$ $\frac{\eta}{\sum_{s=1}^k \|\nabla f_s(w_s)\|^2}$ and $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$
R_T(u) \leq \left(\frac{D^2}{2\eta} + \eta\right) G\sqrt{T}
$$

Proof: Using the general result from the previous slide,

$$
R_T(u) \le \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{\sum_{k=1}^T \|\nabla f_k(w_k)\|^2} \le \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{G^2 T} = \left(\frac{D^2}{2\eta} + \eta\right) G \sqrt{T}
$$

(Since each f_k is G-Lipschitz)

With
$$
\eta = \frac{D}{\sqrt{2}}
$$
, $R_T(u) \le \sqrt{2} D G \sqrt{T}$.

• Hence, for convex, Lipschitz functions, AdaGrad achieves the same regret as OGD but is adaptive to G.

Scalar AdaGrad - Convex, Smooth functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f_k is convex, differentiable and L-smooth and $\zeta^2:=\max_{k\in [T]}[f_k(u)-f_k^*]$ where $f_k^*=\min_{w\in\mathcal{C}}f_k(w)$, scalar AdaGrad with $\eta_k = \frac{\eta_k}{\sqrt{2\pi} k}$ $\frac{\eta}{\sum_{s=1}^k \|\nabla f_s(w_s)\|^2}$ and $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$
R_T(u) \le 2L \left(\frac{D^2}{2\eta} + \eta\right)^2 + \sqrt{2L} \left(\frac{D^2}{2\eta} + \eta\right) \zeta \sqrt{T},
$$

- The regret depends on ζ^2 which depends on u. Such bounds that depend on the fixed decision that we are comparing against are called first-order regret bounds.
- If the learner is competing against a fixed decision u that minimizes each f_k , i.e. $u \in \argmin_w f_k(w)$ for all k, then $\zeta^2 = 0$. Hence, ζ^2 characterizes the analog of interpolation in the online setting. In this setting, AdaGrad only incurs a constant regret that is independent of T . This observation has been used to explain the good performance of IL algorithms when using over-parameterized (convex) models [\[YBC20,](#page-12-1) [LVS22\]](#page-12-2).
- Note that the above bound holds for all $\eta > 0$ and AdaGrad does not need to know ζ or L.

Scalar AdaGrad - Convex, Smooth functions

Proof: Using the general result for scalar AdaGrad,

$$
R_{\mathcal{T}}(u) \leq \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{\sum_{k=1}^T \|\nabla f_k(w_k)\|^2}.
$$

Using L-smoothness of f_k to bound the gradient norm term (for each k) in the regret expression,

$$
\|\nabla f_k(w_k)\|^2 \le 2L[f_k(w_k) - f_k^*] = 2L[f_k(w_k) - f_k(u)] + 2L[f_k(u) - f_k^*] \le 2L[f_k(w_k) - f_k(u)] + 2L\zeta^2
$$

\n
$$
\implies \sum_{k=1}^T \|\nabla f_k(w_k)\|^2 \le 2L \sum_{k=1}^T [f_k(w_k) - f_k(u)] + 2L \sum_{k=1}^T \zeta^2 = 2L[F_T(u) + \zeta^2 T]
$$

\n
$$
\implies R_T(u) \le \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{2L[F_T(u) + \zeta^2 T]}
$$

Recall that $R_{\mathcal{T}}(u) \leq \left(\frac{D^2}{2\eta}+\eta\right)\sqrt{2L\left[R_{\mathcal{T}}(u)+\zeta^2|\mathcal{T}|\right]}$. Squaring this expression,

$$
[R_T(u)]^2 \leq \underbrace{2L\left(\frac{D^2}{2\eta} + \eta\right)^2}_{:=\alpha} \underbrace{[R_T(u)}_{:=x} + \underbrace{\zeta^2 T}_{:=\beta}
$$
\n
$$
\implies x^2 \leq \alpha(x+\beta) \implies x \leq \frac{\alpha + \sqrt{\alpha^2 + 4\alpha\beta}}{2} \leq \alpha + \sqrt{\alpha\beta}
$$
\n
$$
\implies R_T(u) \leq 2L\left(\frac{D^2}{2\eta} + \eta\right)^2 + \sqrt{2L}\left(\frac{D^2}{2\eta} + \eta\right)\zeta\sqrt{T}
$$

Claim: If the convex set C has diameter D i.e. for all $x, y \in C$, $||x - y|| \le D$, for an arbitrary sequence of losses such that each f_k is μ strongly-convex, differentiable and G-Lipschitz, scalar AdaGrad with $\eta_k = \frac{d^2/\mu}{1+\sum_{k=1}^k |\nabla_k|^2}$ $\frac{1}{1+\sum_{s=1}^k\|\nabla f_s(w_s)\|^2}$ and $w_1\in\mathcal{C}$ has the following regret for all $u\in\mathcal{C}$,

$$
R_T(u) \leq \frac{D^2 \mu}{2 G^2} + \frac{G^2}{2 \mu} \left[1 + \log \left(1 + G^2 T \right) \right]
$$

Proof: Need to prove this in Assignment 4!

• Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar to OGD and FTL, it requires knowledge of both G and μ .

Questions?

- E. Jonathan Wilder Lavington, Sharan Vaswani, and Mark Schmidt, *Improved policy* optimization for online imitation learning, arXiv preprint arXiv:2208.00088 (2022).
- F Rachel Ward, Xiaoxia Wu, and Leon Bottou, Adagrad stepsizes: Sharp convergence over nonconvex landscapes, The Journal of Machine Learning Research 21 (2020), no. 1, 9047–9076.
- 譶 Xinyan Yan, Byron Boots, and Ching-An Cheng, Explaining fast improvement in online policy optimization, arXiv preprint arXiv:2007.02520 (2020).