CMPT 409/981: Optimization for Machine Learning Lecture 18

Sharan Vaswani

November 12, 2024

Adaptive step-sizes

• Recall the claim we proved earlier: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f_k is convex and differentiable, OGD with the update $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta_k \nabla f_k(w_k)]$ such that $\eta_k \leq \eta_{k-1}$ and $w_1 \in C$ has the following regret for $u \in C$,

$$R_{T}(u) \leq \frac{D^{2}}{2\eta_{T}} + \sum_{k=1}^{T} \frac{\eta_{k}}{2} \|\nabla f_{k}(w_{k})\|^{2} = \frac{D^{2}}{2\eta} + \frac{\eta}{2} \sum_{k=1}^{T} \|\nabla f_{k}(w_{k})\|^{2} \quad (\text{If } \eta_{k} = \eta \text{ for all } k)$$

In order to find the optimal η , differentiating the RHS w.r.t η and setting it to zero,

$$-\frac{D^2}{2\eta^2} + \frac{1}{2}\sum_{k=1}^T \|\nabla f_k(w_k)\|^2 = 0 \implies \eta^* = \frac{D}{\sqrt{\sum_{k=1}^T \|\nabla f_k(w_k)\|^2}}$$

Since the second derivative equal to $\frac{2D^2}{\eta^3} > 0$, η^* minimizes the RHS. Setting $\eta = \eta^*$,

$$R_T(u) \leq D \sqrt{\sum_{k=1}^T \|
abla f_k(w_k)\|^2}$$

- Choosing $\eta = \eta^* = \frac{D}{\sqrt{\sum_{k=1}^{T} \|\nabla f_k(w_k)\|^2}}$ minimizes the upper-bound on the regret. However, this is not practical since setting η requires knowing $\nabla f_k(w_k)$ for all $k \in [T]$.
- To approximate η^* to have a practical algorithm, we can set η_k as follows:

$$\eta_k = \frac{D}{\sqrt{\sum_{s=1}^k \left\|\nabla f_s(w_s)\right\|^2}}$$

Hence, at iteration k, we only use the gradients upto that iteration.

- Algorithmically, we only need to maintain the running sum of the squared gradient norms.
- Moreover, this choice of step-size ensures that $\eta_k \leq \eta_{k-1}$ (since we are accumulating gradient norms in the denominator so the step-size cannot increase) and hence we can use our general result for bounding the regret.

Scalar AdaGrad

Hence, we have the following update for any $\eta > 0$,

$$w_{k+1} = \prod_{C} [w_k - \eta_k \nabla f_k(w_k)]$$
; $\eta_k = \frac{\eta}{\sqrt{\sum_{s=1}^{k} \|\nabla f_s(w_s)\|^2}}$

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar AdaGrad or AdaGrad Norm [WWB20].

• For a sequence of convex, differentiable losses, using the general result,

$$R_{T}(u) \leq rac{D^{2}}{2\eta_{T}} + \sum_{k=1}^{T} rac{\eta_{k}}{2} \left\|
abla f_{k}(w_{k})
ight\|^{2} = rac{D^{2}}{2\eta} \sqrt{\sum_{k=1}^{T} \left\|
abla f_{k}(w_{k})
ight\|^{2}} + rac{\eta}{2} \sum_{k=1}^{T} rac{\left\|
abla f_{k}(w_{k})
ight\|^{2}}{\sqrt{\sum_{s=1}^{k} \left\|
abla f_{s}(w_{s})
ight\|^{2}}}$$

In order to bound the regret for AdaGrad, we need to bound the last term.

Scalar AdaGrad

We prove the following general claim and will use it for $a_s = \|\nabla f_s(w_s)\|^2$.

Claim: For all
$$T$$
 and $a_s \ge 0$, $\sum_{k=1}^{T} \frac{a_k}{\sqrt{\sum_{s=1}^k a_s}} \le 2\sqrt{\sum_{k=1}^T a_k}$.

Proof: Let us prove by induction. **Base case**: For T = 1, LHS = $\sqrt{a_1} < 2\sqrt{a_1} = RHS$.

Inductive Hypothesis: If the statement is true for T - 1, we need to prove it for T.

$$\sum_{k=1}^{T} \frac{a_k}{\sqrt{\sum_{s=1}^k a_s}} = \sum_{k=1}^{T-1} \frac{a_k}{\sqrt{\sum_{s=1}^k a_s}} + \frac{a_T}{\sqrt{\sum_{s=1}^T a_s}} \le 2\sqrt{\sum_{s=1}^{T-1} a_s} + \frac{a_T}{\sqrt{\sum_{s=1}^T a_s}} = 2\sqrt{Z-x} + \frac{x}{\sqrt{Z}}$$
$$(x := a_T, Z := \sum_{s=1}^T a_s)$$

The derivative of the RHS w.r.t to x is $-\frac{1}{\sqrt{Z-x}} + \frac{1}{\sqrt{Z}} < 0$ for all $x \ge 0$ and hence the RHS is maximized at x = 0. Setting x = 0 completes the induction proof.

$$\implies \sum_{k=1}^{T} \frac{a_k}{\sqrt{\sum_{s=1}^{k} a_s}} \le 2\sqrt{Z} = 2\sqrt{\sum_{s=1}^{T} a_s}$$

4

Scalar AdaGrad

Recall that
$$R_T(u) \leq \frac{D^2}{2\eta} \sqrt{\sum_{k=1}^T \|\nabla f_k(w_k)\|^2} + \frac{\eta}{2} \sum_{k=1}^T \frac{\|\nabla f_k(w_k)\|^2}{\sqrt{\sum_{k=1}^k \|\nabla f_k(w_k)\|^2}}$$

Using the claim in the previous slide with $a_s := \left\|
abla f_s(w_s) \right\|^2 \geq 0$,

$$R_T(u) \leq rac{D^2}{2\eta} \, \sqrt{\sum_{k=1}^T \left\|
abla f_k(w_k)
ight\|^2} + \eta \, \sqrt{\sum_{k=1}^T \left\|
abla f_k(w_k)
ight\|^2} = \left(rac{D^2}{2\eta} + \eta
ight) \, \sqrt{\sum_{k=1}^T \left\|
abla f_k(w_k)
ight\|^2} \, .$$

The step-size that minimizes the above bound is equal to $\eta^* = \frac{D}{\sqrt{2}}$. With this choice,

$$R_T(u) \leq \sqrt{2}D \sqrt{\sum_{k=1}^T \|
abla f_k(w_k)\|^2}$$

Comparing to the regret for the optimal (impractical) constant step-size on Slide 1,

$$R_T(u) \leq \sqrt{2} \min_{\eta} \left[\frac{D^2}{2\eta} + \frac{\eta}{2} \sum_{k=1}^T \left\| \nabla f_k(w_k) \right\|^2
ight]$$

Hence, AdaGrad is only sub-optimal by $\sqrt{2}$ when compared to the best constant step-size!

Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all $x, y \in C$, $||x - y|| \leq D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, scalar AdaGrad with $\eta_k = \frac{\eta}{\sqrt{\sum_{s=1}^k ||\nabla f_s(w_s)||^2}}$ and $w_1 \in C$ has the following regret for all $u \in C$,

$$\mathsf{R}_{\mathsf{T}}(u) \leq \left(rac{D^2}{2\eta} + \eta
ight) \ \mathsf{G} \ \sqrt{\mathsf{T}}$$

Proof: Using the general result from the previous slide,

$$R_{T}(u) \leq \left(\frac{D^{2}}{2\eta} + \eta\right) \sqrt{\sum_{k=1}^{T} \left\|\nabla f_{k}(w_{k})\right\|^{2}} \leq \left(\frac{D^{2}}{2\eta} + \eta\right) \sqrt{G^{2}T} = \left(\frac{D^{2}}{2\eta} + \eta\right) G\sqrt{T}$$
(Since each f, is G Linschi

(Since each f_k is *G*-Lipschitz)

With
$$\eta = \frac{D}{\sqrt{2}}$$
, $R_T(u) \le \sqrt{2} D G \sqrt{T}$.

• Hence, for convex, Lipschitz functions, AdaGrad achieves the same regret as OGD but is adaptive to G.

Scalar AdaGrad - Convex, Smooth functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f_k is convex, differentiable and L-smooth and $\zeta^2 := \max_{k \in [T]} [f_k(u) - f_k^*]$ where $f_k^* = \min_{w \in C} f_k(w)$, scalar AdaGrad with $\eta_k = \frac{\eta}{\sqrt{\sum_{s=1}^k \|\nabla f_s(w_s)\|^2}}$ and $w_1 \in C$ has the following regret for all $u \in C$,

$$R_T(u) \leq 2L \left(rac{D^2}{2\eta} + \eta
ight)^2 + \sqrt{2L} \left(rac{D^2}{2\eta} + \eta
ight) \zeta \sqrt{T},$$

- The regret depends on ζ^2 which depends on u. Such bounds that depend on the fixed decision that we are comparing against are called *first-order regret bounds*.
- If the learner is competing against a fixed decision u that minimizes each f_k, i.e. u ∈ arg min_w f_k(w) for all k, then ζ² = 0. Hence, ζ² characterizes the analog of interpolation in the online setting. In this setting, AdaGrad only incurs a *constant regret* that is independent of *T*. This observation has been used to explain the good performance of IL algorithms when using over-parameterized (convex) models [YBC20, LVS22].
- Note that the above bound holds for all $\eta > 0$ and AdaGrad does not need to know ζ or L.

Scalar AdaGrad - Convex, Smooth functions

Proof: Using the general result for scalar AdaGrad,

$$R_T(u) \leq \left(rac{D^2}{2\eta} + \eta
ight) \sqrt{\sum_{k=1}^T \left\|
abla f_k(w_k)
ight\|^2} \,.$$

Using L-smoothness of f_k to bound the gradient norm term (for each k) in the regret expression,

$$\begin{aligned} |\nabla f_k(w_k)||^2 &\leq 2L[f_k(w_k) - f_k^*] = 2L[f_k(w_k) - f_k(u)] + 2L[f_k(u) - f_k^*] \leq 2L[f_k(w_k) - f_k(u)] + 2L\zeta^2 \\ \implies \sum_{k=1}^T \|\nabla f_k(w_k)\|^2 &\leq 2L\sum_{k=1}^T [f_k(w_k) - f_k(u)] + 2L\sum_{k=1}^T \zeta^2 = 2L[R_T(u) + \zeta^2 T] \\ \implies R_T(u) \leq \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{2L[R_T(u) + \zeta^2 T]} \end{aligned}$$

Recall that $R_T(u) \leq \left(\frac{D^2}{2\eta} + \eta\right) \sqrt{2L[R_T(u) + \zeta^2 T]}$. Squaring this expression,

$$[R_{T}(u)]^{2} \leq \underbrace{2L\left(\frac{D^{2}}{2\eta} + \eta\right)^{2}}_{:=\alpha} [\underbrace{R_{T}(u)}_{:=x} + \underbrace{\zeta^{2}T}_{:=\beta}]$$

$$\implies x^{2} \leq \alpha(x + \beta) \implies x \leq \frac{\alpha + \sqrt{\alpha^{2} + 4\alpha\beta}}{2} \leq \alpha + \sqrt{\alpha\beta}$$

$$\implies R_{T}(u) \leq 2L\left(\frac{D^{2}}{2\eta} + \eta\right)^{2} + \sqrt{2L}\left(\frac{D^{2}}{2\eta} + \eta\right)\zeta\sqrt{T}$$

Claim: If the convex set C has diameter D i.e. for all $x, y \in C$, $||x - y|| \leq D$, for an arbitrary sequence of losses such that each f_k is μ strongly-convex, differentiable and G-Lipschitz, scalar AdaGrad with $\eta_k = \frac{\frac{G^2}{\mu}}{1 + \sum_{s=1}^{k} ||\nabla f_s(w_s)||^2}$ and $w_1 \in C$ has the following regret for all $u \in C$,

$$R_{T}(u) \leq rac{D^{2}\mu}{2\,G^{2}} + rac{G^{2}}{2\mu} \, \left[1 + \log\left(1 + G^{2}\,T
ight)
ight]$$

Proof: Need to prove this in Assignment 4!

• Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar to OGD and FTL, it requires knowledge of both G and μ .

Questions?

- Jonathan Wilder Lavington, Sharan Vaswani, and Mark Schmidt, *Improved policy optimization for online imitation learning*, arXiv preprint arXiv:2208.00088 (2022).
- Rachel Ward, Xiaoxia Wu, and Leon Bottou, Adagrad stepsizes: Sharp convergence over nonconvex landscapes, The Journal of Machine Learning Research 21 (2020), no. 1, 9047–9076.
- Xinyan Yan, Byron Boots, and Ching-An Cheng, *Explaining fast improvement in online policy optimization*, arXiv preprint arXiv:2007.02520 (2020).