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Adaptive step-sizes

• Recall the claim we proved earlier: If the convex set C has diameter D, for an arbitrary
sequence of losses such that each fk is convex and differentiable, OGD with the update
wk+1 = ΠC[wk − ηk∇fk(wk)] such that ηk ≤ ηk−1 and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 =
D2

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2 (If ηk = η for all k)

In order to find the optimal η, differentiating the RHS w.r.t η and setting it to zero,

− D2

2η2 +
1
2

T∑
k=1

∥∇fk(wk)∥2 = 0 =⇒ η∗ =
D√∑T

k=1 ∥∇fk(wk)∥2

Since the second derivative equal to 2D2

η3 > 0, η∗ minimizes the RHS. Setting η = η∗,

RT (u) ≤ D

√√√√ T∑
k=1

∥∇fk(wk)∥2
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Adaptive step-sizes

• Choosing η = η∗ = D√∑T
k=1∥∇fk (wk )∥2 minimizes the upper-bound on the regret. However, this

is not practical since setting η requires knowing ∇fk(wk) for all k ∈ [T ].

• To approximate η∗ to have a practical algorithm, we can set ηk as follows:

ηk =
D√∑k

s=1 ∥∇fs(ws)∥2

Hence, at iteration k , we only use the gradients upto that iteration.

• Algorithmically, we only need to maintain the running sum of the squared gradient norms.

• Moreover, this choice of step-size ensures that ηk ≤ ηk−1 (since we are accumulating gradient
norms in the denominator so the step-size cannot increase) and hence we can use our general
result for bounding the regret.
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Scalar AdaGrad

Hence, we have the following update for any η > 0,

wk+1 = ΠC [wk − ηk∇fk(wk)] ; ηk =
η√∑k

s=1 ∥∇fs(ws)∥2

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar
AdaGrad or AdaGrad Norm [WWB20].

• For a sequence of convex, differentiable losses, using the general result,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 =
D2

2η

√√√√ T∑
k=1

∥∇fk(wk)∥2 +
η

2

T∑
k=1

∥∇fk(wk)∥2√∑k
s=1 ∥∇fs(ws)∥2

In order to bound the regret for AdaGrad, we need to bound the last term.
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Scalar AdaGrad

We prove the following general claim and will use it for as = ∥∇fs(ws)∥2.

Claim: For all T and as ≥ 0,
∑T

k=1
ak√∑k
s=1 as

≤ 2
√∑T

k=1 ak .

Proof: Let us prove by induction. Base case: For T = 1, LHS =
√
a1 < 2

√
a1 = RHS.

Inductive Hypothesis: If the statement is true for T − 1, we need to prove it for T .

T∑
k=1

ak√∑k
s=1 as

=
T−1∑
k=1

ak√∑k
s=1 as

+
aT√∑T
s=1 as

≤ 2

√√√√T−1∑
s=1

as +
aT√∑T
s=1 as

= 2
√
Z − x +

x√
Z

(x := aT , Z :=
∑T

s=1 as)

The derivative of the RHS w.r.t to x is − 1√
Z−x

+ 1√
Z
< 0 for all x ≥ 0 and hence the RHS is

maximized at x = 0. Setting x = 0 completes the induction proof.

=⇒
T∑

k=1

ak√∑k
s=1 as

≤ 2
√
Z = 2

√√√√ T∑
s=1

as
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Scalar AdaGrad

Recall that RT (u) ≤ D2

2η

√∑T
k=1 ∥∇fk(wk)∥2 + η

2

∑T
k=1

∥∇fk (wk )∥2√∑k
s=1∥∇fs (ws )∥2 .

Using the claim in the previous slide with as := ∥∇fs(ws)∥2 ≥ 0,

RT (u) ≤
D2

2η

√√√√ T∑
k=1

∥∇fk(wk)∥2 + η

√√√√ T∑
k=1

∥∇fk(wk)∥2 =

(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2
.

The step-size that minimizes the above bound is equal to η∗ = D√
2
. With this choice,

RT (u) ≤
√

2D

√√√√ T∑
k=1

∥∇fk(wk)∥2

Comparing to the regret for the optimal (impractical) constant step-size on Slide 1,

RT (u) ≤
√

2 min
η

[
D2

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2

]
Hence, AdaGrad is only sub-optimal by

√
2 when compared to the best constant step-size! 5



Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence of losses such that each fk is convex, differentiable and G -Lipschitz, scalar AdaGrad
with ηk = η√∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)
G
√
T

Proof: Using the general result from the previous slide,

RT (u) ≤
(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2 ≤
(
D2

2η
+ η

) √
G 2T =

(
D2

2η
+ η

)
G
√
T

(Since each fk is G -Lipschitz)

With η = D√
2
, RT (u) ≤

√
2D G

√
T .

• Hence, for convex, Lipschitz functions, AdaGrad achieves the same regret as OGD but is
adaptive to G .
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Scalar AdaGrad - Convex, Smooth functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is convex, differentiable and L-smooth and ζ2 := maxk∈[T ][fk(u)− f ∗k ] where f ∗k = minw∈C fk(w),
scalar AdaGrad with ηk = η√∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤ 2L
(
D2

2η
+ η

)2

+
√

2L
(
D2

2η
+ η

)
ζ
√
T ,

The regret depends on ζ2 which depends on u. Such bounds that depend on the fixed
decision that we are comparing against are called first-order regret bounds.
If the learner is competing against a fixed decision u that minimizes each fk , i.e.
u ∈ argminw fk(w) for all k , then ζ2 = 0. Hence, ζ2 characterizes the analog of
interpolation in the online setting. In this setting, AdaGrad only incurs a constant regret
that is independent of T . This observation has been used to explain the good performance
of IL algorithms when using over-parameterized (convex) models [YBC20, LVS22].
Note that the above bound holds for all η > 0 and AdaGrad does not need to know ζ or L.
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Scalar AdaGrad - Convex, Smooth functions

Proof: Using the general result for scalar AdaGrad,

RT (u) ≤
(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2
.

Using L-smoothness of fk to bound the gradient norm term (for each k) in the regret expression,

∥∇fk(wk)∥2 ≤ 2L[fk(wk)− f ∗k ] = 2L[fk(wk)− fk(u)] + 2L[fk(u)− f ∗k ] ≤ 2L[fk(wk)− fk(u)] + 2L ζ2

=⇒
T∑

k=1

∥∇fk(wk)∥2 ≤ 2L
T∑

k=1

[fk(wk)− fk(u)] + 2L
T∑

k=1

ζ2 = 2L [RT (u) + ζ2 T ]

=⇒ RT (u) ≤
(
D2

2η
+ η

)√
2L [RT (u) + ζ2 T ]
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Scalar AdaGrad - Convex, Smooth functions

Recall that RT (u) ≤
(

D2

2η + η
)√

2L [RT (u) + ζ2 T ]. Squaring this expression,

[RT (u)]
2 ≤ 2L

(
D2

2η
+ η

)2

︸ ︷︷ ︸
:=α

[RT (u)︸ ︷︷ ︸
:=x

+ ζ2T︸︷︷︸
:=β

]

=⇒ x2 ≤ α(x + β) =⇒ x ≤ α+
√

α2 + 4αβ
2

≤ α+
√

αβ

=⇒ RT (u) ≤ 2L
(
D2

2η
+ η

)2

+
√

2L
(
D2

2η
+ η

)
ζ
√
T
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Scalar AdaGrad - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence of losses such that each fk is µ strongly-convex, differentiable and G -Lipschitz, scalar
AdaGrad with ηk =

G2/µ

1+
∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
D2µ

2G 2 +
G 2

2µ
[
1 + log

(
1 + G 2T

)]
Proof: Need to prove this in Assignment 4!

• Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar
to OGD and FTL, it requires knowledge of both G and µ.
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Questions?
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