CMPT 409/981: Optimization for Machine Learning Lecture 17

Sharan Vaswani November 7, 2024

Recap

Generic Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set $\mathcal{C} \subseteq \mathbb{R}^d$)

- 1: for k = 1, ..., T do
- 2: Algorithm \mathcal{A} chooses point (decision) $w_k \in \mathcal{C}$
- 3: Environment chooses and reveals the (potentially adversarial) loss function $f_k : C \to \mathbb{R}$
- 4: Algorithm suffers a cost $f_k(w_k)$

5: **end for**

Examples: In imitation learning, $f_k(\pi) = \mathbb{E}_{s \sim d^{\pi_k}} [KL(\pi(\cdot|s) || \pi_{expert}(\cdot|s)]$ where d^{π_k} is a distribution over the states induced by running policy π_k . In online control such as LQR (linear quadratic regulator) with unknown costs/perturbations, f_k is quadratic.

- **Regret**: For any fixed decision $u \in C$, $R_T(u) := \sum_{k=1}^T [f_k(w_k) f_k(u)]$.
- Online Gradient Descent (OGD): $w_{k+1} = \prod_C [w_k \eta_k \nabla f_k(w_k)].$

• Claim: If the convex set C has a diameter D i.e. for all $x, y \in C$, $||x - y|| \leq D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k = \frac{\eta}{\sqrt{k}}$ and $w_1 \in C$ has the following regret for all $u \in C$, $R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta$.

1

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set C has a diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k \in [T]} \mu_k > 0$), *G*-Lipschitz and differentiable, then OGD with $\eta_k = \frac{1}{\sum_{i=1}^k \mu_i}$ and $w_1 \in C$ has the following regret for all $u \in C$,

$${\sf R}_{{\cal T}}(u) \leq rac{{\sf G}^2}{2\mu} \, \left(1+\log({\cal T})
ight)$$

Proof: Similar to the convex proof, use the update $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2\eta_{k}} \right] + \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k}$$
(Since f_{k} is G-Lipschitz)

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that
$$R_T(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \frac{G^2}{2} \sum_{k=1}^{T} \eta_k.$$

$$\sum_{k=1}^{T} \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \underbrace{\left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} - \frac{\mu_k}{2}\right)}_{=0} \right] + \|w_1 - u\|^2 \underbrace{\left[\frac{1}{2\eta_1} - \frac{\mu_1}{2}\right]}_{=0} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \leq 0$$
(Since $\eta_k = \frac{1}{\sum_{i=1}^{k} \mu_i}$)

Putting everything together,

$$R_{T}(u) \leq \frac{G^{2}}{2} \sum_{k=1}^{T} \frac{1}{\mu k} \leq \frac{G^{2}}{2\mu} (1 + \log(T))$$
(Since $\mu := \min_{k \in [T]} \mu_{k}$ and $\sum_{k=1}^{T} \frac{1}{k} \leq 1 + \log(T)$)

Lower Bound: There is an $\Omega(\log(T))$ lower-bound on the regret for strongly-convex, Lipschitz functions and hence OGD is optimal (in terms of T) for this setting!

Questions?

Follow the Leader

Common algorithm that achieves logarithmic regret for strongly-convex losses.

Follow the Leader (FTL): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, FTL suffers a cost $f_k(w_k)$ and uses it to compute

$$w_{k+1} = rgmin_{w\in\mathcal{C}} \sum_{i=1}^k f_i(w)$$
.

- imes Needs to solve a deterministic optimization sub-problem which can be expensive.
- imes Needs to store all the previous loss functions and requires O(T) memory.
- ✓ Does not require any step-size and is hyper-parameter free.
- In applications such Imitation Learning (IL), interacting with the environment and getting access to f_k is expensive. FTL allows multiple policy updates (when solving the sub-problem) and helps better reuse the collected data. FTL is a standard method to solve online IL problems and the resulting algorithm is known as DAGGER [RGB11].
- Compared to FTL, OGD requires an environment interaction for each policy update.

Follow the Leader and OGD

To connect FTL and OGD, consider the case when $\mathcal{C} = \mathbb{R}^d$.

$$w_{k+1} = \arg\min_{w \in \mathbb{R}} \sum_{i=1}^{k} [f_i(w)] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) = 0$$

• If we define $\tilde{f}_i(w)$ to be a lower-bound on the original μ_i strongly-convex function as $\tilde{f}_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w - w_i \rangle + \frac{\mu_i}{2} ||w - w_i||^2$, then $\nabla \tilde{f}_i(w) = \nabla f_i(w_i) + \mu_i [|w - w_i|]$.

• Using FTL on \tilde{f}_k instead and using that $\sum_{i=1}^k \nabla \tilde{f}_i(w_{k+1}) = 0$ and $\sum_{i=1}^{k-1} \nabla \tilde{f}_i(w_k) = 0$,

$$\sum_{i=1}^{k} \nabla f_i(w_i) + w_{k+1} \left[\sum_{i=1}^{k} \mu_i \right] = \sum_{i=1}^{k} \mu_i w_i \quad ; \quad \sum_{i=1}^{k-1} \nabla f_i(w_i) + w_k \left[\sum_{i=1}^{k-1} \mu_i \right] = \sum_{i=1}^{k-1} \mu_i w_i$$
$$\nabla f_k(w_k) + (w_{k+1} - w_k) \left[\sum_{i=1}^{k} \mu_i \right] = 0 \implies w_{k+1} = w_k - \eta_k \nabla f_k(w_k). \text{ (where } \eta_k := 1/\sum_{i=1}^{k} \mu_i)$$

(Adding $\mu_k w_k$ to the second equation, and subtracting the two equations)

Hence, in the strongly-convex setting, running FTL on \tilde{f}_k (a quadratic lower-bound on f_k) recovers OGD on f_k .

Follow the Leader

Claim: If the convex set C has a diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k \in [T]} \mu_k > 0$), *G*-Lipschitz and differentiable, FTL with $w_1 \in C$ has the following regret for all $u \in C$,

$${\sf R}_{{\cal T}}(u) \leq rac{G^2}{2\mu} \, \left(1 + \log({\cal T})
ight)$$

Hence, FTL achieves the same regret as OGD when the sequence of losses is strongly-convex and Lipschitz (we will prove this later today).

• What about when the losses are convex but not strongly-convex?

Consider running FTL on the following problem. C = [-1, 1] and $f_k(w) = \langle z_k, w \rangle$ where

$$z_1 = -0.5; \quad z_k = 1 \quad \text{for } k = 2, 4, \ldots; \quad z_k = -1 \quad \text{for } k = 3, 5, \ldots$$

In round 1, FTL suffers $-0.5w_1$ cost and will compute $w_2 = 1$. It will suffer cost of 1 in round 2 and compute $w_3 = -1$. In round 3, it will thus suffer a cost of 1 and so on. Hence, FTL will suffer O(T) regret if the losses are not strongly-convex.

A way to fix the performance of FTL for a convex sequence of losses is to add an explicit regularization resulting in *Follow the Regularized Leader*.

Follow the Regularized Leader (FTRL): At iteration $k \ge 0$, the algorithm chooses w_{k+1} as:

$$w_{k+1} = \operatorname*{arg\,min}_{w \in \mathcal{C}} \sum_{i=1}^{k} \left[f_i(w) + \frac{\sigma_i}{2} \|w - w_i\|^2 \right] + \frac{\sigma_0}{2} \|w\|^2 \; ,$$

where $\sigma_i > 0$ is the regularization strength.

- Intuitively, since FTRL is equivalent to running FTL on a sequence of strongly-convex (because of the additional regularization) losses, it can obtain sublinear regret even for convex f_k .
- If we set $\sigma_i = 0$ for all *i*, FTRL reduces to FTL.

Follow the Regularized Leader and OGD

To connect FTRL and OGD, consider the case when $C = \mathbb{R}^d$ and set $\sigma_0 = 0$.

$$w_{k+1} = \arg\min_{w \in \mathbb{R}} \sum_{i=1}^{k} \left[f_i(w) + \frac{\sigma_i}{2} \|w - w_i\|^2 \right] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) + w_{k+1} \left[\sum_{i=1}^{k} \sigma_i \right] = \sum_{i=1}^{k} \sigma_i w_i$$

• If we define $\tilde{f}_i(w)$ to be a lower-bound on the original convex function as $\tilde{f}_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w - w_i \rangle$, then, $\forall w, \nabla \tilde{f}_i(w) = \nabla f_i(w_i)$.

• Using FTRL on \tilde{f}_k instead and computing the gradients at w_{k+1} and w_k ,

$$\sum_{i=1}^{k} \nabla f_i(w_i) + w_{k+1} \left[\sum_{i=1}^{k} \sigma_i \right] = \sum_{i=1}^{k} \sigma_i w_i \quad ; \quad \sum_{i=1}^{k-1} \nabla f_i(w_i) + w_k \left[\sum_{i=1}^{k-1} \sigma_i \right] = \sum_{i=1}^{k-1} \sigma_i w_i$$
$$\nabla f_k(w_k) + (w_{k+1} - w_k) \left(\sum_{i=1}^{k} \sigma_i \right) = 0 \implies w_{k+1} = w_k - \eta_k \nabla f_k(w_k) ,$$

(Adding $\sigma_k w_k$ to the second equation, and subtracting the two equations)

where $\eta_k := 1/(\sum_{i=1}^k \sigma_i)$. Hence, in the general convex setting, running FTRL on \tilde{f}_k (a linear lower-bound on f_k) recovers OGD on f_k .

Questions?

• To analyze FTRL, define $\psi_k(w) := \sum_{i=1}^{k-1} \frac{\sigma_i}{2} \|w - w_i\|^2 + \frac{\sigma_0}{2} \|w\|^2$. At iteration k - 1, FTRL uses the knowledge of the losses upto k - 1 and computes the decision for iteration k as:

$$w_k = \operatorname*{arg\,min}_{w \in \mathcal{C}} F_k(w) \quad ext{where} \quad F_k(w) := \sum_{i=1}^{k-1} f_i(w) + \psi_k(w) \, .$$

• Hence F_k is $\lambda_k := \sum_{i=1}^{k-1} \mu_i + \sum_{i=0}^{k-1} \sigma_i$ strongly-convex. The regularizer ψ_k is known as a proximal regularizer and satisfies the condition that,

$$w_k = \arg\min \left[\psi_{k+1}(w) - \psi_k(w)
ight] \implies
abla \psi_{k+1}(w_k) -
abla \psi_k(w_k) = 0$$

• In order to simplify the analysis, we will assume that w_k lies in the interior of C. This assumption is not necessary and can be handled by augmenting the loss with an indicator function \mathcal{I}_C (see [Ora19, Sec 7.2]).

• We will also assume that the minimization for the w_k update is done exactly. Hence $\nabla F_k(w_k) = 0$ for all k.

Claim: For an arbitrary sequence losses such that each f_k is convex and differentiable, FTRL with the update $w_k = \arg \min_{w \in C} F_k(w)$ satisfies the following regret for all $u \in C$,

$$R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \left\| \nabla f_{k}(w_{k}) \right\|^{2} \right] + \sum_{k=1}^{T} \frac{\sigma_{k}}{2} \left\| u - w_{k} \right\|^{2} + \frac{\sigma_{0}}{2} \left\| u \right\|^{2}$$

Proof: For $k \geq 1$,

$$F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \leq \langle \nabla F_{k+1}(w_{k+1}), w_k - w_{k+1} \rangle + \frac{1}{2\lambda_{k+1}} \| \nabla F_{k+1}(w_k) - \nabla F_{k+1}(w_{k+1}) \|^2$$

$$(By \ \lambda_{k+1} \text{ strong-convexity of } F_{k+1})$$

$$\leq \frac{1}{2\lambda_{k+1}} \| \nabla F_{k+1}(w_k) \|^2 \qquad (\text{Since } \nabla F_{k+1}(w_{k+1}) = 0)$$

$$\implies F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \leq \frac{1}{2\lambda_{k+1}} \left\| \sum_{i=1}^k \nabla f_i(w_k) + \nabla \psi_{k+1}(w_k) \right\|^2 \qquad (By \ \text{def. of } F_{k+1})$$

$$\begin{aligned} \text{Recall that } F_{k+1}(w_k) - F_{k+1}(w_{k+1}) &\leq \frac{1}{2\lambda_{k+1}} \left\| \sum_{i=1}^k \nabla f_i(w_k) + \nabla \psi_{k+1}(w_k) \right\|^2 \\ &\quad F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \\ &\leq \frac{1}{2\lambda_{k+1}} \left\| \left[\sum_{i=1}^{k-1} \nabla f_i(w_k) + \nabla \psi_k(w_k) \right] + \nabla f_k(w_k) + \left[\nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) \right] \right\|^2 \\ &= \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) + \left[\nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) \right] \right\|^2 \qquad (\text{Since } \nabla F_k(w_k) = 0) \\ \implies F_{k+1}(w_k) - F_{k+1}(w_{k+1}) &\leq \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) \right\|^2 \qquad (\text{Since } \nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) = 0) \\ F_{k+1}(w_k) - F_{k+1}(w_{k+1}) &= \left[F_{k+1}(w_k) - F_k(w_k) \right] + \left[F_k(w_k) - F_{k+1}(w_{k+1}) \right] \\ &= \left[f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k) \right] + \left[F_k(w_k) - F_{k+1}(w_{k+1}) \right] \end{aligned}$$

Putting everything together,

$$\implies [f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \le \frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2$$

11

Recall that $[f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \le \frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2$. $[f_k(w_k) - f_k(u)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \le \frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2 + [\psi_k(w_k) - \psi_{k+1}(w_k)] - f_k(u)$ $=-\frac{\sigma_k}{2} ||w_k - w_k||^2 = 0$ $R_{T}(u) + F_{1}(w_{1}) - F_{T+1}(w_{T+1}) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \| \nabla f_{k}(w_{k}) \|^{2} \right] - \sum_{k=1}^{T} f_{k}(u)$ $\implies R_{T}(u) \leq \sum_{l=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \left\| \nabla f_{k}(w_{k}) \right\|^{2} \right] + \left[F_{T+1}(w_{T+1}) \right] - \left[\sum_{l=1}^{T} f_{k}(u) + \psi_{T+1}(u) \right] + \psi_{T+1}(u)$ $\leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2 \right] + \underbrace{[F_{T+1}(w_{T+1}) - F_{T+1}(u)]}_{(F_{T+1}(w_{T+1}) - F_{T+1}(u))} + \psi_{T+1}(u)$ Non-Positive since $w_{\tau+1} := \arg \min F_{\tau+1}(w)$ $\implies R_{T}(u) \leq \sum^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \sum^{I}_{k=1} \frac{\sigma_{k}}{2} \|u - w_{k}\|^{2} + \frac{\sigma_{0}}{2} \|u\|^{2}$

12

Follow the Regularized Leader - Convex, Lipschitz functions

Claim: If the convex set C has a diameter D and for an arbitrary sequence of losses such that each f_k is convex, G-Lipschitz and differentiable, then FTRL with $\eta_k := \frac{1}{\sum_{i=0}^k \sigma_i} = \frac{\sqrt{D^2 + ||u||^2}}{\sqrt{2} G\sqrt{k}}$ satisfies the following regret bound for all $u \in C$,

$$R_{T}(u) \leq \sqrt{2}\sqrt{D^{2}+\left\|u\right\|^{2}} G\sqrt{T}$$

Proof: Using the general result from the previous slide, for $\lambda_{k+1} = \sum_{i=1}^{k} \mu_i + \sum_{i=0}^{k} \sigma_i$. Since f_k is not necessarily strongly-convex, $\lambda_{k+1} = \sum_{i=0}^{k} \sigma_i$

$$R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \sum_{i=0}^{T} \frac{\sigma_{i}}{2} \|u - w_{i}\|^{2} + \frac{\sigma_{0}}{2} \|u\|^{2}$$
$$\leq \sum_{k=1}^{T} \left[\frac{1}{2\sum_{i=0}^{k} \sigma_{i}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \frac{D^{2} + \|u\|^{2}}{2} \sum_{i=0}^{T} \sigma_{i} \qquad \text{(Since } \|u - w_{i}\|^{2} \leq D\text{)}$$
$$R_{T}(u) \leq \frac{G^{2}}{2} \sum_{k=1}^{T} \left[\frac{1}{\sum_{i=0}^{k} \sigma_{i}} \right] + \frac{D^{2} + \|u\|^{2}}{2} \sum_{i=0}^{T} \sigma_{i} \qquad \text{(Since } f_{k} \text{ is } G\text{-Lipschitz})$$

Follow the Regularized Leader - Convex, Lipschitz functions

Recall that
$$R_T(u) \leq \frac{G^2}{2} \sum_{k=1}^T \left[\frac{1}{\sum_{i=0}^k \sigma_i} \right] + \frac{D^2 + \|u\|^2}{2} \sum_{i=0}^T \sigma_i$$
. Denoting $\eta_k := \frac{1}{\sum_{i=0}^k \sigma_i}$,
 $R_T(u) \leq \frac{G^2}{2} \sum_{k=1}^T \eta_k + \frac{(D^2 + \|u\|^2)}{2\eta_T} = G^2 \eta \sqrt{T} + \frac{(D^2 + \|u\|^2)\sqrt{T}}{2\eta}$ (Since $\eta_k = \frac{\eta}{\sqrt{k}}$)

Using $\eta = \frac{\sqrt{D^2 + \|u\|^2}}{\sqrt{2}G}$,

$$R_T(u) \leq \sqrt{2}\sqrt{D^2 + \|u\|^2} G \sqrt{T}$$

- If $0 \in C$, then $||u||^2 \leq D^2$, and this is the regret bound we derived for OGD (upto a $\sqrt{2}$ factor)!
- Hence, though FTL incurs linear regret for convex, Lipschitz losses, FTRL can attain the optimal $\Theta(\sqrt{T})$ regret.

Follow the Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k=1}^{T} \mu_k > 0$), *G*-Lipschitz and differentiable, then FTL with $w_1 \in C$ satisfies the following regret bound for all $u \in C$,

$$R_T(u) \leq \frac{G^2}{2\mu} \, \left(1 + \log(T)\right)$$

Proof: Using the general result for FTRL, for $\lambda_{k+1} = \sum_{i=1}^{k} \mu_i + \sum_{i=0}^{k} \sigma_i$. Since f_k is μ_k strongly-convex, we will set $\sigma_i = 0$ for all *i*. Hence, $\lambda_{k+1} = \sum_{i=1}^{k} \mu_i \ge \mu k$.

$$R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \|\nabla f_{k}(w_{k})\|^{2} \right] + \sum_{i=1}^{T} \frac{\sigma_{i}}{2} \|u - w_{i}\|^{2} + \frac{\sigma_{0}}{2} \|u\|^{2} \leq \frac{G^{2}}{2\mu} \sum_{k=1}^{T} \left[\frac{1}{k} \right]$$
(Since f_{k} is G -Lipschitz)

$$\implies R_{T}(u) \leq \frac{G^{2}\left(1 + \log(T)\right)}{2\mu}$$

• Hence, FTL matches the regret for OGD for strongly-convex, Lipschitz functions, but does not require knowledge of μ .

Questions?

- Francesco Orabona, *A modern introduction to online learning*, arXiv preprint arXiv:1912.13213 (2019).
- Stéphane Ross, Geoffrey Gordon, and Drew Bagnell, *A reduction of imitation learning and structured prediction to no-regret online learning*, Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.