CMPT 409/981: Optimization for Machine Learning Lecture 17

Sharan Vaswani

November 7, 2024

Recap

Generic Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set $\mathcal{C} \subseteq \mathbb{R}^d)$

- 1: for $k = 1, ..., T$ do
- 2: Algorithm A chooses point (decision) $w_k \in \mathcal{C}$
- 3: Environment chooses and reveals the (potentially adversarial) loss function $f_k : \mathcal{C} \to \mathbb{R}$
- 4: Algorithm suffers a cost $f_k(w_k)$

5: end for

Examples: In imitation learning, $f_k(\pi) = \mathbb{E}_{s \sim d^{\pi_k}} [KL(\pi(\cdot|s) || \pi_{\text{expert}}(\cdot|s))]$ where d^{π_k} is a distribution over the states induced by running policy π_k . In online control such as LQR (linear quadratic regulator) with unknown costs/perturbations, f_k is quadratic.

- Regret: For any fixed decision $u \in \mathcal{C}$, $R_{\mathcal{T}}(u) := \sum_{k=1}^{T} [f_k(w_k) f_k(u)]$.
- Online Gradient Descent (OGD): $w_{k+1} = \prod_{C} [w_k \eta_k \nabla f_k(w_k)].$

• Claim: If the convex set C has a diameter D i.e. for all $x, y \in C$, $||x - y|| \le D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k = \frac{\eta}{\sqrt{k}}$ befice of losses such that each r_k is convex, unterentiable and G-Lipschitz, $\frac{1}{k}$ and $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$, $R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T}$ $T \eta$. 1

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set C has a diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k \in [T]} \mu_k > 0$), G-Lipschitz and differentiable, then OGD with $\eta_k = \frac{1}{\sum_{i=1}^k \mu_i}$ and $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$
R_{\mathcal{T}}(u) \leq \frac{G^2}{2\mu} \ (1 + \log(T))
$$

Proof: Similar to the convex proof, use the update $w_{k+1} = \prod_{C} [w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in C$,

$$
||w_{k+1} - u||^2 = ||\Pi_C[w_k - \eta_k \nabla f_k(w_k)] - u||^2 = ||\Pi_C[w_k - \eta_k \nabla f_k(w_k)] - \Pi_C[u]||^2
$$

\n
$$
\leq ||w_k - u||^2 - 2\eta_k \langle \nabla f_k(w_k), w_k - u \rangle + \eta_k^2 ||\nabla f_k(w_k)||^2
$$

\n
$$
\leq ||w_k - u||^2 (1 - \mu_k \eta_k) - 2\eta_k [f_k(w_k) - f_k(u)] + \eta_k^2 ||\nabla f_k(w_k)||^2
$$

\n(Since f_k is μ_k strongly-convex)

$$
\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right] + \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k}
$$
\n(Since f_{k} is G-Lipschitz)

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that
$$
R_T(u) \le \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \frac{G^2}{2} \sum_{k=1}^T \eta_k
$$
.
\n
$$
\sum_{k=1}^T \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right]
$$
\n
$$
= \sum_{k=2}^T \left[\|w_k - u\|^2 \underbrace{\left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} - \frac{\mu_k}{2}\right)}_{=0} + \|w_1 - u\|^2 \underbrace{\left[\frac{1}{2\eta_1} - \frac{\mu_1}{2}\right]}_{=0} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \le 0
$$
\n(Since $\eta_k = \frac{1}{\sum_{i=1}^K \mu_i}$)

Putting everything together,
\n
$$
R_T(u) \le \frac{G^2}{2} \sum_{k=1}^T \frac{1}{\mu k} \le \frac{G^2}{2\mu} (1 + \log(T))
$$
\n(Since $\mu := \min_{k \in [T]} \mu_k$ and $\sum_{k=1}^T 1/k \le 1 + \log(T)$)

Lower Bound: There is an $\Omega(\log(T))$ lower-bound on the regret for strongly-convex, Lipschitz functions and hence OGD is optimal (in terms of T) for this setting!

Questions?

Follow the Leader

Common algorithm that achieves logarithmic regret for strongly-convex losses.

Follow the Leader (FTL): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, FTL suffers a cost $f_k(w_k)$ and uses it to compute

$$
w_{k+1} = \argmin_{w \in C} \sum_{i=1}^{k} f_i(w).
$$

- \times Needs to solve a deterministic optimization sub-problem which can be expensive.
- \times Needs to store all the previous loss functions and requires $O(T)$ memory.
- Does not require any step-size and is hyper-parameter free.
- In applications such Imitation Learning (IL), interacting with the environment and getting access to f_k is expensive. FTL allows multiple policy updates (when solving the sub-problem) and helps better reuse the collected data. FTL is a standard method to solve online IL problems and the resulting algorithm is known as DAGGER [\[RGB11\]](#page-19-0).
- Compared to FTL, OGD requires an environment interaction for each policy update.

Follow the Leader and OGD

To connect FTL and OGD, consider the case when $\mathcal{C} = \mathbb{R}^d$.

$$
w_{k+1} = \underset{w \in \mathbb{R}}{\arg \min} \sum_{i=1}^{k} [f_i(w)] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) = 0
$$

 \bullet If we define $\tilde{f}_i(w)$ to be a lower-bound on the original μ_i strongly-convex function as $\tilde{f}_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w - w_i \rangle + \frac{\mu_i}{2} ||w - w_i||^2$, then $\nabla \tilde{f}_i(w) = \nabla f_i(w_i) + \mu_i [w - w_i]$.

 \bullet Using FTL on \tilde{f}_k instead and using that $\sum_{i=1}^k \nabla \tilde{f}_i(w_{k+1}) = 0$ and $\sum_{i=1}^{k-1} \nabla \tilde{f}_i(w_k) = 0$,

$$
\sum_{i=1}^{k} \nabla f_i(w_i) + w_{k+1} \left[\sum_{i=1}^{k} \mu_i \right] = \sum_{i=1}^{k} \mu_i w_i \quad ; \quad \sum_{i=1}^{k-1} \nabla f_i(w_i) + w_k \left[\sum_{i=1}^{k-1} \mu_i \right] = \sum_{i=1}^{k-1} \mu_i w_i
$$
\n
$$
\nabla f_k(w_k) + (w_{k+1} - w_k) \left[\sum_{i=1}^{k} \mu_i \right] = 0 \implies w_{k+1} = w_k - \eta_k \nabla f_k(w_k). \text{ (where } \eta_k := 1/\sum_{i=1}^{k} \mu_i)
$$

(Adding $\mu_k w_k$ to the second equation, and subtracting the two equations)

Hence, in the strongly-convex setting, running FTL on \tilde{f}_k (a quadratic lower-bound on $f_k)$ recovers OGD on f_k .

Follow the Leader

Claim: If the convex set C has a diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k \in [\tau]} \mu_k > 0$), G-Lipschitz and differentiable, FTL with $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$
R_{\mathcal{T}}(u) \leq \frac{G^2}{2\mu} \ (1 + \log(T))
$$

Hence, FTL achieves the same regret as OGD when the sequence of losses is strongly-convex and Lipschitz (we will prove this later today).

• What about when the losses are convex but not strongly-convex?

Consider running FTL on the following problem. $C = [-1, 1]$ and $f_k(w) = \langle z_k, w \rangle$ where

$$
z_1 = -0.5
$$
; $z_k = 1$ for $k = 2, 4, ...$; $z_k = -1$ for $k = 3, 5, ...$

In round 1, FTL suffers $-0.5w_1$ cost and will compute $w_2 = 1$. It will suffer cost of 1 in round 2 and compute $w_3 = -1$. In round 3, it will thus suffer a cost of 1 and so on. Hence, FTL will suffer $O(T)$ regret if the losses are not strongly-convex.

A way to fix the performance of FTL for a convex sequence of losses is to add an explicit regularization resulting in Follow the Regularized Leader.

Follow the Regularized Leader (FTRL): At iteration $k > 0$, the algorithm chooses w_{k+1} as:

$$
w_{k+1} = \underset{w \in C}{\arg \min} \sum_{i=1}^{k} \left[f_i(w) + \frac{\sigma_i}{2} ||w - w_i||^2 \right] + \frac{\sigma_0}{2} ||w||^2,
$$

where $\sigma_i > 0$ is the regularization strength.

• Intuitively, since FTRL is equivalent to running FTL on a sequence of strongly-convex (because of the additional regularization) losses, it can obtain sublinear regret even for convex f_k .

• If we set $\sigma_i = 0$ for all *i*, FTRL reduces to FTL.

Follow the Regularized Leader and OGD

To connect <code>FTRL</code> and OGD, consider the case when $\mathcal{C} = \mathbb{R}^d$ and set $\sigma_0 = 0$.

$$
w_{k+1} = \arg \min_{w \in \mathbb{R}} \sum_{i=1}^{k} \left[f_i(w) + \frac{\sigma_i}{2} ||w - w_i||^2 \right] \implies \sum_{i=1}^{k} \nabla f_i(w_{k+1}) + w_{k+1} \left[\sum_{i=1}^{k} \sigma_i \right] = \sum_{i=1}^{k} \sigma_i w_i
$$

 \bullet If we define $\tilde{f}_i(w)$ to be a lower-bound on the original convex function as $\tilde{f}_i(w) := f_i(w_i) + \langle \nabla f_i(w_i), w - w_i \rangle$, then, $\forall w, \nabla \tilde{f}_i(w) = \nabla f_i(w_i)$.

 \bullet Using FTRL on \tilde{f}_k instead and computing the gradients at w_{k+1} and w_k ,

$$
\sum_{i=1}^{k} \nabla f_i(w_i) + w_{k+1} \left[\sum_{i=1}^{k} \sigma_i \right] = \sum_{i=1}^{k} \sigma_i w_i \quad ; \quad \sum_{i=1}^{k-1} \nabla f_i(w_i) + w_k \left[\sum_{i=1}^{k-1} \sigma_i \right] = \sum_{i=1}^{k-1} \sigma_i w_i
$$

$$
\nabla f_k(w_k) + (w_{k+1} - w_k) \left(\sum_{i=1}^{k} \sigma_i \right) = 0 \implies w_{k+1} = w_k - \eta_k \nabla f_k(w_k),
$$

(Adding $\sigma_k w_k$ to the second equation, and subtracting the two equations)

where $\eta_k:=1/(\sum_{i=1}^k\sigma_i).$ Hence, in the general convex setting, running <code>FTRL</code> on \tilde{f}_k (a linear lower-bound on f_k) recovers OGD on f_k .

Questions?

 \bullet To analyze FTRL, define $\psi_k(w):=\sum_{i=1}^{k-1}\frac{\sigma_i}{2}\|w-w_i\|^2+\frac{\sigma_0}{2}\|w\|^2.$ At iteration $k-1$, FTRL uses the knowledge of the losses upto $k - 1$ and computes the decision for iteration k as:

$$
w_k = \underset{w \in \mathcal{C}}{\arg \min} F_k(w) \quad \text{where} \quad F_k(w) := \sum_{i=1}^{k-1} f_i(w) + \psi_k(w).
$$

 \bullet Hence F_k is $\lambda_k:=\sum_{i=1}^{k-1}\mu_i+\sum_{i=0}^{k-1}\sigma_i$ strongly-convex. The regularizer ψ_k is known as a proximal regularizer and satisfies the condition that,

$$
w_k = \arg\min\left[\psi_{k+1}(w) - \psi_k(w)\right] \implies \nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) = 0
$$

• In order to simplify the analysis, we will assume that w_k lies in the interior of C. This assumption is not necessary and can be handled by augmenting the loss with an indicator function \mathcal{I}_{C} (see [\[Ora19,](#page-19-1) Sec 7.2]).

• We will also assume that the minimization for the w_k update is done exactly. Hence $\nabla F_k(w_k) = 0$ for all k.

Claim: For an arbitrary sequence losses such that each f_k is convex and differentiable, FTRL with the update $w_k = \arg \min_{w \in C} F_k(w)$ satisfies the following regret for all $u \in C$,

$$
R_T(u) \leq \sum_{k=1}^T \left[\frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) \right\|^2 \right] + \sum_{k=1}^T \frac{\sigma_k}{2} \left\| u - w_k \right\|^2 + \frac{\sigma_0}{2} \left\| u \right\|^2
$$

Proof: For $k > 1$.

$$
F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \langle \nabla F_{k+1}(w_{k+1}), w_k - w_{k+1} \rangle + \frac{1}{2\lambda_{k+1}} \|\nabla F_{k+1}(w_k) - \nabla F_{k+1}(w_{k+1})\|^2
$$

\n
$$
\le \frac{1}{2\lambda_{k+1}} \|\nabla F_{k+1}(w_k)\|^2 \qquad \text{(Since } \nabla F_{k+1}(w_{k+1}) = 0\text{)}
$$

\n
$$
\implies F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \frac{1}{2\lambda_{k+1}} \left\| \sum_{i=1}^k \nabla f_i(w_k) + \nabla \psi_{k+1}(w_k) \right\|^2 \qquad \text{(By def. of } F_{k+1})
$$

Recall that
$$
F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \frac{1}{2\lambda_{k+1}} \left\| \sum_{i=1}^k \nabla f_i(w_k) + \nabla \psi_{k+1}(w_k) \right\|^2
$$

\n
$$
F_{k+1}(w_k) - F_{k+1}(w_{k+1})
$$
\n
$$
\le \frac{1}{2\lambda_{k+1}} \left\| \left[\sum_{i=1}^{k-1} \nabla f_i(w_k) + \nabla \psi_k(w_k) \right] + \nabla f_k(w_k) + [\nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k)] \right\|^2
$$
\n
$$
= \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) + [\nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k)] \right\|^2 \quad \text{(Since } \nabla F_k(w_k) = 0\text{)}
$$
\n
$$
\implies F_{k+1}(w_k) - F_{k+1}(w_{k+1}) \le \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) \right\|^2 \quad \text{(Since } \nabla \psi_{k+1}(w_k) - \nabla \psi_k(w_k) = 0\text{)}
$$
\n
$$
F_{k+1}(w_k) - F_{k+1}(w_{k+1}) = [F_{k+1}(w_k) - F_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})]
$$
\n
$$
= [f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})]
$$

Putting everything together,

$$
\implies \left[f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k) \right] + \left[F_k(w_k) - F_{k+1}(w_{k+1}) \right] \leq \frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) \right\|^2
$$

Recall that $[f_k(w_k) + \psi_{k+1}(w_k) - \psi_k(w_k)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \leq \frac{1}{2\lambda_{k+1}} ||\nabla f_k(w_k)||^2$. $[f_k(w_k) - f_k(u)] + [F_k(w_k) - F_{k+1}(w_{k+1})] \leq \frac{1}{2\lambda}$ $\frac{1}{2\lambda_{k+1}} \|\nabla f_k(w_k)\|^2 + \underbrace{[\psi_k(w_k) - \psi_{k+1}(w_k)]}_{=} -f_k(u)$ $=-\frac{\sigma_k}{2}||w_k-w_k||^2=0$ 2 $R_{\cal T}(u) + F_1(w_1) - F_{{\cal T}+1}(w_{{\cal T}+1}) \leq \sum^{\cal T}$ $=\frac{\sigma_0}{2}||w_1||^2 \geq 0$ $k=1$ $\begin{bmatrix} 1 \end{bmatrix}$ $\frac{1}{2\lambda_{k+1}}\left\|\nabla f_k(w_k)\right\|^2\Bigg]-\sum_{k=1}^T$ $k=1$ $f_k(u)$ $\implies R_T(u) \leq \sum_{i=1}^{T}$ $k=1$ $\begin{bmatrix} 1 \end{bmatrix}$ $\frac{1}{2\lambda_{k+1}}\left\|\nabla f_k(w_k)\right\|^2\right]+\left[F_{T+1}(w_{T+1})\right]-\left[\sum_{k=1}^T\right]$ $k=1$ $f_k(u) + \psi_{T+1}(u)$ 1 $+\psi_{T+1}(u)$ $\leq \sum_{i=1}^{T}$ $k=1$ $\begin{bmatrix} 1 \end{bmatrix}$ $\frac{1}{2\lambda_{k+1}}\|\nabla f_k(w_k)\|^2\bigg] + \qquad \underbrace{[F_{\mathcal{T}+1}(w_{\mathcal{T}+1})-F_{\mathcal{T}+1}(u)]}_{=} \qquad \qquad + \psi_{\mathcal{T}+1}(u)$ Non-Positive since $w_{T+1} := \arg \min F_{T+1}(w)$ $\implies R_T(u) \leq \sum_{i=1}^{T}$ $k=1$ $\begin{bmatrix} 1 \end{bmatrix}$ $\frac{1}{2\lambda_{k+1}}\left\|\nabla f_k(w_k)\right\|^2\right]+\sum_{k=1}^T$ $k=1$ σk $\frac{\sigma_k}{2} \|u - w_k\|^2 + \frac{\sigma_0}{2}$ $\frac{1}{2}$ || $|u||^2$

Follow the Regularized Leader - Convex, Lipschitz functions

Claim: If the convex set C has a diameter D and for an arbitrary sequence of losses such that each f_k is convex, G-Lipschitz and differentiable, then FTRL with $\eta_k := \frac{1}{\sum_{i=0}^k \sigma_i} = \frac{\sqrt{D^2 + ||u||^2}}{\sqrt{2} G \sqrt{k}}$ satisfies the following regret bound for all $u \in \mathcal{C}$.

$$
R_{\mathcal{T}}(u) \leq \sqrt{2} \sqrt{D^2 + ||u||^2} G \sqrt{\mathcal{T}}
$$

Proof: Using the general result from the previous slide, for $\lambda_{k+1} = \sum_{i=1}^{k} \mu_i + \sum_{i=0}^{k} \sigma_i$. Since f_k is not necessarily strongly-convex, $\lambda_{k+1} = \sum_{i=0}^{k} \sigma_i$

$$
R_{\mathcal{T}}(u) \leq \sum_{k=1}^{T} \left[\frac{1}{2\lambda_{k+1}} \left\| \nabla f_{k}(w_{k}) \right\|^{2} \right] + \sum_{i=0}^{T} \frac{\sigma_{i}}{2} \left\| u - w_{i} \right\|^{2} + \frac{\sigma_{0}}{2} \left\| u \right\|^{2}
$$

$$
\leq \sum_{k=1}^{T} \left[\frac{1}{2\sum_{i=0}^{k} \sigma_{i}} \left\| \nabla f_{k}(w_{k}) \right\|^{2} \right] + \frac{D^{2} + \left\| u \right\|^{2}}{2} \sum_{i=0}^{T} \sigma_{i} \qquad \text{(Since } \|u - w_{i}\|^{2} \leq D\text{)}
$$

$$
R_{\mathcal{T}}(u) \leq \frac{G^{2}}{2} \sum_{k=1}^{T} \left[\frac{1}{\sum_{i=0}^{k} \sigma_{i}} \right] + \frac{D^{2} + \left\| u \right\|^{2}}{2} \sum_{i=0}^{T} \sigma_{i} \qquad \text{(Since } f_{k} \text{ is } G\text{-Lipschitz)}
$$

Follow the Regularized Leader - Convex, Lipschitz functions

Recall that
$$
R_T(u) \leq \frac{G^2}{2} \sum_{k=1}^T \left[\frac{1}{\sum_{i=0}^k \sigma_i} \right] + \frac{D^2 + ||u||^2}{2} \sum_{i=0}^T \sigma_i
$$
. Denoting $\eta_k := \frac{1}{\sum_{i=0}^k \sigma_i}$,
\n $R_T(u) \leq \frac{G^2}{2} \sum_{k=1}^T \eta_k + \frac{(D^2 + ||u||^2)}{2\eta_T} = G^2 \eta \sqrt{T} + \frac{(D^2 + ||u||^2)\sqrt{T}}{2\eta}$ (Since $\eta_k = \frac{\eta}{\sqrt{k}}$)

Using $\eta =$ $\frac{\sqrt{D^2 + ||u||^2}}{\sqrt{2}G}$,

$$
R_T(u) \leq \sqrt{2}\sqrt{D^2 + ||u||^2} G \sqrt{T}
$$

- If $0 \in \mathcal{C}$, then $||u||^2 \leq D^2$, and this is the regret bound we derived for OGD (upto a $\sqrt{2}$ factor)!
- Hence, though FTL incurs linear regret for convex, Lipschitz losses, FTRL can attain the \bullet rience, though r r L n
optimal $\Theta(\sqrt{T})$ regret.

Follow the Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu := \min_{k=1}^T \mu_k > 0$), G-Lipschitz and differentiable, then FTL with $w_1 \in \mathcal{C}$ satisfies the following regret bound for all $u \in \mathcal{C}$.

$$
R_T(u) \leq \frac{G^2}{2\mu} \left(1 + \log(T)\right)
$$

Proof: Using the general result for FTRL, for $\lambda_{k+1} = \sum_{i=1}^{k} \mu_i + \sum_{i=0}^{k} \sigma_i$. Since f_k is μ_k strongly-convex, we will set $\sigma_i = 0$ for all *i*. Hence, $\lambda_{k+1} = \sum_{i=1}^{k} \mu_i \ge \mu$ *k*.

$$
R_T(u) \leq \sum_{k=1}^T \left[\frac{1}{2\lambda_{k+1}} \left\| \nabla f_k(w_k) \right\|^2 \right] + \sum_{i=1}^T \frac{\sigma_i}{2} \left\| u - w_i \right\|^2 + \frac{\sigma_0}{2} \left\| u \right\|^2 \leq \frac{G^2}{2\mu} \sum_{k=1}^T \left[\frac{1}{k} \right]
$$
\n(Since f_k is G-Lipschitz)

$$
\implies R_{\mathcal{T}}(u) \leq \frac{G^2\left(1 + \log(T)\right)}{2\mu}
$$

• Hence, FTL matches the regret for OGD for strongly-convex, Lipschitz functions, but does not require knowledge of μ .

Questions?

- Francesco Orabona, A modern introduction to online learning, arXiv preprint 螶 arXiv:1912.13213 (2019).
- Stéphane Ross, Geoffrey Gordon, and Drew Bagnell, A reduction of imitation learning and 畐 structured prediction to no-regret online learning, Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.