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Recap

Generic Online Optimization (w0, Algorithm A, Convex set C ⊆ Rd)
1: for k = 1, . . . ,T do
2: Algorithm A chooses point (decision) wk ∈ C
3: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
4: Algorithm suffers a cost fk(wk)

5: end for

Examples: In imitation learning, fk(π) = Es∼dπk [KL(π(·|s) ||πexpert(·|s)] where dπk is a
distribution over the states induced by running policy πk . In online control such as LQR (linear
quadratic regulator) with unknown costs/perturbations, fk is quadratic.

• Regret: For any fixed decision u ∈ C, RT (u) :=
∑T

k=1[fk(wk)− fk(u)].

• Online Gradient Descent (OGD): wk+1 = ΠC [wk − ηk∇fk(wk)].

• Claim: If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an
arbitrary sequence of losses such that each fk is convex, differentiable and G -Lipschitz, OGD
with ηk = η√

k
and w1 ∈ C has the following regret for all u ∈ C, RT (u) ≤ D2 √

T
2η + G 2

√
T η. 1



Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set C has a diameter D, for an arbitrary sequence of losses such that each
fk is µk strongly-convex (s.t. µ := mink∈[T ] µk > 0), G -Lipschitz and differentiable, then OGD
with ηk = 1∑k

i=1 µi
and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T ))

Proof: Similar to the convex proof, use the update wk+1 = ΠC[wk − ηk∇fk(wk)]. Since u ∈ C,

∥wk+1 − u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− ΠC[u]∥2

≤ ∥wk − u∥2 − 2ηk⟨∇fk(wk),wk − u⟩+ η2
k ∥∇fk(wk)∥2

≤ ∥wk − u∥2 (1 − µkηk)− 2ηk [fk(wk)− fk(u)] + η2
k ∥∇fk(wk)∥2

(Since fk is µk strongly-convex)

=⇒ RT (u) ≤
T∑

k=1

[
∥wk − u∥2 (1 − µkηk)− ∥wk+1 − u∥2

2ηk

]
+

G 2

2

T∑
k=1

ηk

(Since fk is G -Lipschitz)
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Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that RT (u) ≤
∑T

k=1

[
∥wk−u∥2(1−µkηk )−∥wk+1−u∥2

2ηk

]
+ G2

2

∑T
k=1 ηk .

T∑
k=1

[
∥wk − u∥2 (1 − µkηk)− ∥wk+1 − u∥2

2ηk

]

=
T∑

k=2

∥wk − u∥2
(

1
2ηk

− 1
2ηk−1

− µk

2

)
︸ ︷︷ ︸

=0

+ ∥w1 − u∥2
[

1
2η1

− µ1

2

]
︸ ︷︷ ︸

=0

−∥wT+1 − u∥2

2ηT
≤ 0

(Since ηk = 1∑k
i=1 µi

)

Putting everything together,
RT (u) ≤

G 2

2

T∑
k=1

1
µk

≤ G 2

2µ
(1 + log(T ))

(Since µ := mink∈[T ] µk and
∑T

k=1
1/k ≤ 1 + log(T ))

Lower Bound: There is an Ω(log(T )) lower-bound on the regret for strongly-convex, Lipschitz
functions and hence OGD is optimal (in terms of T ) for this setting!
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Questions?
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Follow the Leader

Common algorithm that achieves logarithmic regret for strongly-convex losses.

Follow the Leader (FTL): At iteration k , the algorithm chooses the point wk . After the loss
function fk is revealed, FTL suffers a cost fk(wk) and uses it to compute

wk+1 = argmin
w∈C

k∑
i=1

fi (w) .

× Needs to solve a deterministic optimization sub-problem which can be expensive.
× Needs to store all the previous loss functions and requires O(T ) memory.
✓ Does not require any step-size and is hyper-parameter free.

In applications such Imitation Learning (IL), interacting with the environment and getting
access to fk is expensive. FTL allows multiple policy updates (when solving the
sub-problem) and helps better reuse the collected data. FTL is a standard method to solve
online IL problems and the resulting algorithm is known as DAGGER [RGB11].
Compared to FTL, OGD requires an environment interaction for each policy update.
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Follow the Leader and OGD

To connect FTL and OGD, consider the case when C = Rd .

wk+1 = argmin
w∈R

k∑
i=1

[fi (w)] =⇒
k∑

i=1

∇fi (wk+1) = 0

• If we define f̃i (w) to be a lower-bound on the original µi strongly-convex function as
f̃i (w) := fi (wi ) + ⟨∇fi (wi ),w − wi ⟩+ µi

2 ∥w − wi∥2, then ∇f̃i (w) = ∇fi (wi ) + µi [w − wi ].

• Using FTL on f̃k instead and using that
∑k

i=1 ∇f̃i (wk+1) = 0 and
∑k−1

i=1 ∇f̃i (wk) = 0,
k∑

i=1

∇fi (wi ) + wk+1

[
k∑

i=1

µi

]
=

k∑
i=1

µiwi ;
k−1∑
i=1

∇fi (wi ) + wk

[
k−1∑
i=1

µi

]
=

k−1∑
i=1

µiwi

∇fk(wk) + (wk+1 − wk)

[
k∑

i=1

µi

]
= 0 =⇒ wk+1 = wk − ηk∇fk(wk). (where ηk := 1/

∑k
i=1 µi)

(Adding µkwk to the second equation, and subtracting the two equations)

Hence, in the strongly-convex setting, running FTL on f̃k (a quadratic lower-bound on fk)
recovers OGD on fk . 5



Follow the Leader

Claim: If the convex set C has a diameter D, for an arbitrary sequence of losses such that each
fk is µk strongly-convex (s.t. µ := mink∈[T ] µk > 0), G -Lipschitz and differentiable, FTL with
w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T ))

Hence, FTL achieves the same regret as OGD when the sequence of losses is strongly-convex and
Lipschitz (we will prove this later today).

• What about when the losses are convex but not strongly-convex?

Consider running FTL on the following problem. C = [−1, 1] and fk(w) = ⟨zk ,w⟩ where

z1 = −0.5; zk = 1 for k = 2, 4, . . .; zk = −1 for k = 3, 5, . . .

In round 1, FTL suffers −0.5w1 cost and will compute w2 = 1. It will suffer cost of 1 in round 2
and compute w3 = −1. In round 3, it will thus suffer a cost of 1 and so on. Hence, FTL will
suffer O(T ) regret if the losses are not strongly-convex.
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Follow the Regularized Leader

A way to fix the performance of FTL for a convex sequence of losses is to add an explicit
regularization resulting in Follow the Regularized Leader.

Follow the Regularized Leader (FTRL): At iteration k ≥ 0, the algorithm chooses wk+1 as:

wk+1 = argmin
w∈C

k∑
i=1

[
fi (w) +

σi
2
∥w − wi∥2

]
+
σ0

2
∥w∥2

,

where σi > 0 is the regularization strength.

• Intuitively, since FTRL is equivalent to running FTL on a sequence of strongly-convex (because
of the additional regularization) losses, it can obtain sublinear regret even for convex fk .

• If we set σi = 0 for all i , FTRL reduces to FTL.
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Follow the Regularized Leader and OGD

To connect FTRL and OGD, consider the case when C = Rd and set σ0 = 0.

wk+1 = argmin
w∈R

k∑
i=1

[
fi (w) +

σi
2
∥w − wi∥2

]
=⇒

k∑
i=1

∇fi (wk+1) + wk+1

[
k∑

i=1

σi

]
=

k∑
i=1

σiwi

• If we define f̃i (w) to be a lower-bound on the original convex function as
f̃i (w) := fi (wi ) + ⟨∇fi (wi ),w − wi ⟩, then, ∀w , ∇f̃i (w) = ∇fi (wi ).

• Using FTRL on f̃k instead and computing the gradients at wk+1 and wk ,
k∑

i=1

∇fi (wi ) + wk+1

[
k∑

i=1

σi

]
=

k∑
i=1

σiwi ;
k−1∑
i=1

∇fi (wi ) + wk

[
k−1∑
i=1

σi

]
=

k−1∑
i=1

σiwi

∇fk(wk) + (wk+1 − wk)

(
k∑

i=1

σi

)
= 0 =⇒ wk+1 = wk − ηk∇fk(wk) ,

(Adding σkwk to the second equation, and subtracting the two equations)

where ηk := 1/(
∑k

i=1 σi ). Hence, in the general convex setting, running FTRL on f̃k (a linear
lower-bound on fk) recovers OGD on fk . 8



Questions?
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Follow the Regularized Leader

• To analyze FTRL, define ψk(w) :=
∑k−1

i=1
σi

2 ∥w − wi∥2 + σ0
2 ∥w∥2. At iteration k − 1, FTRL

uses the knowledge of the losses upto k − 1 and computes the decision for iteration k as:

wk = argmin
w∈C

Fk(w) where Fk(w) :=
k−1∑
i=1

fi (w) + ψk(w) .

• Hence Fk is λk :=
∑k−1

i=1 µi +
∑k−1

i=0 σi strongly-convex. The regularizer ψk is known as a
proximal regularizer and satisfies the condition that,

wk = argmin [ψk+1(w)− ψk(w)] =⇒ ∇ψk+1(wk)−∇ψk(wk) = 0

• In order to simplify the analysis, we will assume that wk lies in the interior of C. This
assumption is not necessary and can be handled by augmenting the loss with an indicator
function IC (see [Ora19, Sec 7.2]).

• We will also assume that the minimization for the wk update is done exactly. Hence
∇Fk(wk) = 0 for all k .
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Follow the Regularized Leader

Claim: For an arbitrary sequence losses such that each fk is convex and differentiable, FTRL
with the update wk = argminw∈C Fk(w) satisfies the following regret for all u ∈ C,

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

σk
2

∥u − wk∥2 +
σ0

2
∥u∥2

Proof: For k ≥ 1,

Fk+1(wk)− Fk+1(wk+1) ≤⟨∇Fk+1(wk+1),wk − wk+1⟩+
1

2λk+1
∥∇Fk+1(wk)−∇Fk+1(wk+1)∥2

(By λk+1 strong-convexity of Fk+1)

≤ 1
2λk+1

∥∇Fk+1(wk)∥2 (Since ∇Fk+1(wk+1) = 0)

=⇒ Fk+1(wk)− Fk+1(wk+1) ≤
1

2λk+1

∥∥∥∥∥
k∑

i=1

∇fi (wk) +∇ψk+1(wk)

∥∥∥∥∥
2

(By def. of Fk+1)
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Follow the Regularized Leader

Recall that Fk+1(wk)− Fk+1(wk+1) ≤ 1
2λk+1

∥∥∥∑k
i=1 ∇fi (wk) +∇ψk+1(wk)

∥∥∥2

Fk+1(wk)− Fk+1(wk+1)

≤ 1
2λk+1

∥∥∥∥∥
[
k−1∑
i=1

∇fi (wk) +∇ψk(wk)

]
+∇fk(wk) + [∇ψk+1(wk)−∇ψk(wk)]

∥∥∥∥∥
2

=
1

2λk+1
∥∇fk(wk) + [∇ψk+1(wk)−∇ψk(wk)]∥2 (Since ∇Fk(wk) = 0)

=⇒ Fk+1(wk)−Fk+1(wk+1) ≤
1

2λk+1
∥∇fk(wk)∥2 (Since ∇ψk+1(wk)−∇ψk(wk) = 0)

Fk+1(wk)− Fk+1(wk+1) = [Fk+1(wk)− Fk(wk)] + [Fk(wk)− Fk+1(wk+1)]

= [fk(wk) + ψk+1(wk)− ψk(wk)] + [Fk(wk)− Fk+1(wk+1)]

Putting everything together,

=⇒ [fk(wk) + ψk+1(wk)− ψk(wk)] + [Fk(wk)− Fk+1(wk+1)] ≤
1

2λk+1
∥∇fk(wk)∥2
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Follow the Regularized Leader

Recall that [fk(wk) + ψk+1(wk)− ψk(wk)] + [Fk(wk)− Fk+1(wk+1)] ≤ 1
2λk+1

∥∇fk(wk)∥2.

[fk(wk)− fk(u)] + [Fk(wk)− Fk+1(wk+1)] ≤
1

2λk+1
∥∇fk(wk)∥2 + [ψk(wk)− ψk+1(wk)]︸ ︷︷ ︸

=−σk
2 ∥wk−wk∥2=0

−fk(u)

RT (u) + F1(w1)︸︷︷︸
=

σ0
2 ∥w1∥2≥0

−FT+1(wT+1) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
−

T∑
k=1

fk(u)

=⇒ RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+ [FT+1(wT+1)]−

[
T∑

k=1

fk(u) + ψT+1(u)

]
+ ψT+1(u)

≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+ [FT+1(wT+1)− FT+1(u)]︸ ︷︷ ︸

Non-Positive since wT+1 := arg min FT+1(w)

+ψT+1(u)

=⇒ RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

σk
2

∥u − wk∥2 +
σ0

2
∥u∥2
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Follow the Regularized Leader - Convex, Lipschitz functions

Claim: If the convex set C has a diameter D and for an arbitrary sequence of losses such that

each fk is convex, G -Lipschitz and differentiable, then FTRL with ηk := 1∑k
i=0 σi

=

√
D2+∥u∥2
√

2G
√
k

satisfies the following regret bound for all u ∈ C,

RT (u) ≤
√

2
√
D2 + ∥u∥2 G

√
T

Proof: Using the general result from the previous slide, for λk+1 =
∑k

i=1 µi +
∑k

i=0 σi . Since
fk is not necessarily strongly-convex, λk+1 =

∑k
i=0 σi

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
i=0

σi
2
∥u − wi∥2 +

σ0

2
∥u∥2

≤
T∑

k=1

[
1

2
∑k

i=0 σi
∥∇fk(wk)∥2

]
+

D2 + ∥u∥2

2

T∑
i=0

σi (Since ∥u − wi∥2 ≤ D)

RT (u) ≤
G 2

2

T∑
k=1

[
1∑k

i=0 σi

]
+

D2 + ∥u∥2

2

T∑
i=0

σi (Since fk is G -Lipschitz)
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Follow the Regularized Leader - Convex, Lipschitz functions

Recall that RT (u) ≤ G2

2

∑T
k=1

[
1∑k

i=0 σi

]
+ D2+∥u∥2

2

∑T
i=0 σi . Denoting ηk := 1∑k

i=0 σi
,

RT (u) ≤
G 2

2

T∑
k=1

ηk +
(D2 + ∥u∥2)

2ηT
= G 2 η

√
T +

(D2 + ∥u∥2)
√
T

2η
(Since ηk = η√

k
)

Using η =

√
D2+∥u∥2
√

2G
,

RT (u) ≤
√

2
√
D2 + ∥u∥2 G

√
T

• If 0 ∈ C, then ∥u∥2 ≤ D2, and this is the regret bound we derived for OGD (upto a
√

2 factor)!

• Hence, though FTL incurs linear regret for convex, Lipschitz losses, FTRL can attain the
optimal Θ(

√
T ) regret.
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Follow the Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is µk strongly-convex (s.t. µ := minTk=1 µk > 0), G -Lipschitz and differentiable, then FTL with
w1 ∈ C satisfies the following regret bound for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T ))

Proof: Using the general result for FTRL, for λk+1 =
∑k

i=1 µi +
∑k

i=0 σi . Since fk is µk

strongly-convex, we will set σi = 0 for all i . Hence, λk+1 =
∑k

i=1 µi ≥ µ k .

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
i=1

σi
2
∥u − wi∥2 +

σ0

2
∥u∥2 ≤ G 2

2µ

T∑
k=1

[
1
k

]
(Since fk is G -Lipschitz)

=⇒ RT (u) ≤
G 2 (1 + log(T ))

2µ
• Hence, FTL matches the regret for OGD for strongly-convex, Lipschitz functions, but does

not require knowledge of µ. 15



Questions?
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