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Recap

Generic Online Optimization (w0, Algorithm A, Convex set C ⊆ Rd)
1: for k = 1, . . . ,T do
2: Algorithm A chooses point (decision) wk ∈ C
3: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
4: Algorithm suffers a cost fk(wk)

5: end for

• Regret: For any fixed decision u ∈ C, RT (u) :=
∑T

k=1[fk(wk)− fk(u)].

• Online Gradient Descent (OGD): At iteration k , the algorithm chooses the point wk . After
the loss function fk is revealed, OGD suffers a cost fk(wk) and uses the function to compute:
wk+1 = ΠC [wk − ηk∇fk(wk)] where ΠC [x ] = argminy∈C

1
2 ∥y − x∥2.

• Claim: If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an
arbitrary sequence of losses such that each fk is convex, differentiable and G -Lipschitz, OGD
with ηk = η√

k
and w1 ∈ C has the following regret for all u ∈ C, RT (u) ≤ D2 √

T
2η + G 2

√
T η.
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Recap

• Given a differentiable, strictly-convex mirror map ϕ, Dϕ(y , x) := ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩.

• Online Mirror Descent (OMD): wk+1 = argminw∈C

[
⟨∇fk(wk),w⟩+ 1

ηk
Dϕ(w ,wk)

]
.

Setting ϕ(x) = 1
2 ∥x∥

2 results in Dϕ(y , x) =
1
2 ∥y − x∥2 and recovers OGD.

• Example: For prediction with expert advice, C = ∆d = {wi |wi ≥ 0 ;
∑d

i=1 wi = 1} and we
typically use the negative-entropy mirror map i.e. ϕ(w) =

∑d
i=1 wi ln(wi ). In this case,

Dϕ(u, v) = KL(u||v).

• The OMD update can be equivalently written as:
GD in dual space: wk+1/2 = (∇ϕ)−1 (∇ϕ(wk)− ηk∇fk(wk))

Bregman projection: wk+1 = argminw∈C Dϕ(w ,wk+1/2)

• With the negative-entropy mirror map, OMD results in the multiplicative weights update:
wk+1[i ] =

wk [i ] exp(−ηk gk [i ])∑d
j=1 wk [j] exp(−ηk gk [j])

.
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Online Mirror Descent – Convex, Lipschitz functions

In order to analyze OMD, we will make some assumptions about C, fk and ϕ.

• Assumption 1: C is a convex set and ∀k , fk is a convex function.

• Assumption 2: ∀k , fk is G -Lipschitz in the ℓp norm (for p ≥ 1), implying that ∀w ∈ C,

∥∇fk(w)∥p ≤ G

• Assumption 3: ϕ is ν strongly-convex in the ℓq norm (for q ≥ 1 s.t. 1
p + 1

q = 1) i.e.

ϕ(y) ≥ ϕ(x) + ⟨∇ϕ(x), y − x⟩+ ν

2
∥y − x∥2

q

Example: For prediction from expert advice,

C = ∆d is a convex set and fk(wk) = ⟨ck ,wk⟩ is a convex function.
If the costs are bounded by M, then, ∥∇fk(w)∥∞ = ∥ck∥∞ ≤ M. Hence, p = ∞, G = M.
If ϕ(w) is negative-entropy, then by Pinsker’s inequality, q = 1 and ν = 1 i.e.

ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩ = Dϕ(y , x) = KL(y ||x) ≥ 1
2
∥y − x∥2

1 .
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Online Mirror Descent – Convex, Lipschitz functions

Claim: For an arbitrary sequence of losses such that each fk is convex, G -Lipschitz and

differentiable, then OMD with a ν strongly-convex mirror map ϕ, ηk = η =
√

2ν
T

D
G where

D2 := maxu∈C Dϕ(u,w1) has the following regret for all u ∈ C,

RT (u) ≤
√

2DG√
ν

√
T ,

Proof : Recall the mirror descent update: ∇ϕ(wk+1/2) = ∇ϕ(wk)− ηk∇fk(wk). Setting ηk = η and
using the definition of regret,

RT (u) =
T∑

k=1

fk(wk)− fk(u) ≤
T∑

k=1

[⟨gk ,wk − u⟩] (Convexity of fk and gk := ∇fk(wk))

=
T∑

k=1

1
η

〈
∇ϕ(wk)−∇ϕ(wk+1/2),wk − u

〉
(Using the OMD update)
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Online Mirror Descent – Convex, Lipschitz functions

Recall that RT (u) =
∑T

k=1
1
η

〈
∇ϕ(wk)−∇ϕ(wk+1/2),wk − u

〉
Three point property: for any 3 points x , y , z ,

⟨∇ϕ(z)−∇ϕ(y), z − x⟩ = Dϕ(x , z) + Dϕ(z , y)− Dϕ(x , y)〈
∇ϕ(wk)−∇ϕ(wk+1/2),wk − u

〉
= Dϕ(u,wk) + Dϕ(wk ,wk+1/2)− Dϕ(u,wk+1/2)

=⇒ RT (u) ≤
T∑

k=1

1
η

[
Dϕ(u,wk) + Dϕ(wk ,wk+1/2)− Dϕ(u,wk+1/2)

]
From the OMD update, we know that, wk+1 = argminw∈W Dϕ(w ,wk+1/2). Recall the

optimality condition: for a convex function f and a convex set C, if x∗ = argminx∈C f (x), then
∀x ∈ X , ⟨∇f (x∗), x∗ − x⟩ ≤ 0. Using this condition for Dϕ(w ,wk+1/2), for u ∈ C,〈

∇ϕ(wk+1)−∇ϕ(wk+1/2),wk+1 − u
〉
≤ 0

=⇒ − Dϕ(u,wk+1/2) ≤ −Dϕ(u,wk+1)− Dϕ(wk+1,wk+1/2) (3 point property)

=⇒ RT (u) ≤
T∑

k=1

1
η
[Dϕ(u,wk)− Dϕ(u,wk+1)] +

1
η

[
Dϕ(wk ,wk+1/2)− Dϕ(wk+1,wk+1/2)

]
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Online Mirror Descent – Convex, Lipschitz functions

Telescoping we conclude that RT (u) ≤ 1
η
Dϕ(u,w1) +

1
η

∑T
k=1

[
Dϕ(wk ,wk+1/2)− Dϕ(wk+1,wk+1/2)

]
.

Dϕ(wk ,wk+1/2)− Dϕ(wk+1,wk+1/2) = ϕ(wk)− ϕ(wk+1)− ⟨∇ϕ(wk+1/2),wk − wk+1⟩

≤ ⟨∇ϕ(wk)−∇ϕ(wk+1/2),wk − wk+1⟩ −
ν

2
∥wk − wk+1∥2

q

(Using strong-convexity of ϕ with y = wk+1 and x = wk)

= η ⟨gk ,wk − wk+1⟩ −
ν

2
∥wk − wk+1∥2

q (Using the OMD update)

≤ ηG ∥wk − wk+1∥q −
ν

2
∥wk − wk+1∥2

q

(Holder’s inequality: ⟨x , y⟩ ≤ ∥x∥p ∥y∥q s.t. 1
p + 1

q = 1 and since ∥gk∥p ≤ G )

≤ η2G 2

2ν
(For all z , a z − bz2 ≤ a2

4b )

=⇒ RT (u) ≤
1
η
Dϕ(u,w1) +

ηG 2 T

2ν
≤ D2

η
+

ηG 2 T

2ν
(Since Dϕ(u,w1) ≤ D2)

=⇒ RT (u) ≤
√

2DG√
ν

√
T (Setting η =

√
2ν
T

D
G )
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Online Mirror Descent – Example

We have proved that for any fixed comparator u, RT (u) ≤
√

2DG√
ν

√
T where,

(i) ∥∇fk(w)∥p ≤ G , (ii) ϕ(y) ≥ ϕ(x) + ⟨∇ϕ(x), y − x⟩+ ν
2 ∥y − x∥2

q and (iii) Dϕ(u,w1) ≤ D2.

• Using OMD with negative-entropy for prediction with expert advice, p = ∞, q = 1, ν = 1.
Since ∥ck∥∞ ≤ M, G = M. If ∀i ∈ [d ], w1[i ] =

1
d , Dϕ(u,w1) =

∑d
i=1 ui ln(ui d) ≤ ln(d).

=⇒ RT (u) ≤
√

2M
√
ln(d)

√
T

• Since OGD is a special case of OMD with ϕ(w) = 1
2 ∥w∥2, using OGD for prediction with

expert advice, p = 2, q = 2, ν = 1. Since ∥ck∥∞ ≤ M, using the relation between norms,
G = M

√
d . If ∀i ∈ [d ], w1[i ] =

1
d , Dϕ(u,w1) =

1
2 ∥u − w1∥2 ≤

√
2

=⇒ RT (u) ≤ 2M
√
d
√
T

• Hence, using multiplicative weights results in O(
√
ln(d)

√
T ) regret which is better than the

O(
√
d
√
T ) regret obtained by OGD. For prediction with expert advice, when the number of

experts is large, this can be a substantial advantage. 7



Questions?

7


