CMPT 409/981: Optimization for Machine Learning Lecture 16

Sharan Vaswani

November 5, 2024

Recap

Generic Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set $\mathcal{C} \subseteq \mathbb{R}^d)$

1: for $k = 1, ..., T$ do

- 2: Algorithm A chooses point (decision) $w_k \in \mathcal{C}$
- 3: Environment chooses and reveals the (potentially adversarial) loss function $f_k : \mathcal{C} \to \mathbb{R}$
- 4: Algorithm suffers a cost $f_k(w_k)$
- 5: end for

• Regret: For any fixed decision $u \in \mathcal{C}$, $R_{\mathcal{T}}(u) := \sum_{k=1}^{T} [f_k(w_k) - f_k(u)]$.

• Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, OGD suffers a cost $f_k(w_k)$ and uses the function to compute: $w_{k+1} = \prod_{\substack{c \in \{w_k - \eta_k \nabla f_k(w_k)\}}}$ where $\Pi_{\substack{c \in \{x\}}} = \arg \min_{y \in \substack{c \in \{x\}}} |y - x|^2$.

• Claim: If the convex set C has a diameter D i.e. for all $x, y \in C$, $||x - y|| \le D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k = \frac{\eta}{\sqrt{k}}$ befice of losses such that each r_k is convex, unterentiable and G-Lipschitz, $\frac{1}{k}$ and $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$, $R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T}$ $T \eta$.

Recap

- Given a differentiable, strictly-convex mirror map ϕ , $D_{\phi}(y, x) := \phi(y) \phi(x) \langle \nabla \phi(x), y x \rangle$.
- Online Mirror Descent (OMD): $w_{k+1} = \arg \min_{w \in C} \left[\langle \nabla f_k(w_k), w \rangle + \frac{1}{\eta_k} D_{\phi}(w, w_k) \right]$. Setting $\phi(x) = \frac{1}{2} ||x||^2$ results in $D_{\phi}(y, x) = \frac{1}{2} ||y - x||^2$ and recovers OGD.
- \bullet Example: For prediction with expert advice, $C=\Delta_d=\{w_i|w_i\geq 0\;;\;\sum_{i=1}^d w_i=1\}$ and we typically use the *negative-entropy mirror map* i.e. $\phi(w) = \sum_{i=1}^d w_i$ ln (w_i) . In this case, $D_{\phi}(u, v) = \mathsf{KL}(u||v).$
- The OMD update can be equivalently written as: **GD in dual space**: $w_{k+1/2} = (\nabla \phi)^{-1} (\nabla \phi(w_k) - \eta_k \nabla f_k(w_k))$ Bregman projection: $w_{k+1} = \arg \min_{w \in C} D_{\phi}(w, w_{k+1/2})$
- With the negative-entropy mirror map, OMD results in the multiplicative weights update: $w_{k+1}[i] = \frac{w_k[i] \exp(-\eta_k g_k[i])}{\sum_{j=1}^d w_k[j] \exp(-\eta_k g_k[j])}.$

In order to analyze OMD, we will make some assumptions about \mathcal{C} , f_k and ϕ .

- Assumption 1: C is a convex set and $\forall k$, f_k is a convex function.
- Assumption 2: $\forall k, f_k$ is G-Lipschitz in the ℓ_p norm (for $p > 1$), implying that $\forall w \in C$,

$$
\left\|\nabla f_k(w)\right\|_p \leq G
$$

• Assumption 3: ϕ is ν strongly-convex in the ℓ_q norm (for $q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$) i.e.

$$
\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} ||y - x||_q^2
$$

Example: For prediction from expert advice,

- $C = \Delta_d$ is a convex set and $f_k(w_k) = \langle c_k, w_k \rangle$ is a convex function.
- **If the costs are bounded by M, then,** $\|\nabla f_k(w)\|_{\infty} = \|c_k\|_{\infty} \leq M$ **. Hence,** $p = \infty$ **,** $G = M$ **.**
- If $\phi(w)$ is negative-entropy, then by Pinsker's inequality, $q = 1$ and $\nu = 1$ i.e.

$$
\phi(y) - \phi(x) - \langle \nabla \phi(x), y - x \rangle = D_{\phi}(y, x) = \mathsf{KL}(y||x) \geq \frac{1}{2} ||y - x||_1^2.
$$

Claim: For an arbitrary sequence of losses such that each f_k is convex, G-Lipschitz and differentiable, then OMD with a ν strongly-convex mirror map ϕ , $\eta_k=\eta=\sqrt{\frac{2\nu}{\mathcal{T}}}\frac{D}{G}$ where $D^2:=\max_{u\in\mathcal{C}}D_\phi(u,w_1)$ has the following regret for all $u\in\mathcal{C}$,

$$
R_T(u) \leq \frac{\sqrt{2} \, DG}{\sqrt{\nu}} \, \sqrt{T} \, ,
$$

Proof: Recall the mirror descent update: $\nabla \phi(w_{k+1/2}) = \nabla \phi(w_k) - \eta_k \nabla f_k(w_k)$. Setting $\eta_k = \eta$ and using the definition of regret,

$$
R_T(u) = \sum_{k=1}^T f_k(w_k) - f_k(u) \le \sum_{k=1}^T [\langle g_k, w_k - u \rangle]
$$
 (Convexity of f_k and $g_k := \nabla f_k(w_k)$)
=
$$
\sum_{k=1}^T \frac{1}{\eta} \langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \rangle
$$
 (Using the OMD update)

Recall that
$$
R_T(u) = \sum_{k=1}^T \frac{1}{\eta} \langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \rangle
$$

\n**Three point property**: for any 3 points x, y, z,
\n
$$
\langle \nabla \phi(z) - \nabla \phi(y), z - x \rangle = D_{\phi}(x, z) + D_{\phi}(z, y) - D_{\phi}(x, y)
$$
\n
$$
\langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \rangle = D_{\phi}(u, w_k) + D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(u, w_{k+1/2})
$$
\n
$$
\implies R_T(u) \le \sum_{k=1}^T \frac{1}{\eta} [D_{\phi}(u, w_k) + D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(u, w_{k+1/2})]
$$

From the OMD update, we know that, $w_{k+1} = \arg \min_{w \in \mathcal{W}} D_{\phi}(w, w_{k+1/2})$. Recall the optimality condition: for a convex function f and a convex set \mathcal{C} , if $x^* = \arg \min_{x \in \mathcal{C}} f(x)$, then $\forall x \in \mathcal{X}, \ \langle \nabla f(x^*), x^* - x \rangle \leq 0$. Using this condition for $D_\phi(w, w_{k+1/2})$, for $u \in \mathcal{C}$,

$$
\langle \nabla \phi(w_{k+1}) - \nabla \phi(w_{k+1/2}), w_{k+1} - u \rangle \le 0
$$

\n
$$
\implies -D_{\phi}(u, w_{k+1/2}) \le -D_{\phi}(u, w_{k+1}) - D_{\phi}(w_{k+1}, w_{k+1/2}) \qquad (3 \text{ point property})
$$

\n
$$
\implies R_{T}(u) \le \sum_{k=1}^{T} \frac{1}{\eta} [D_{\phi}(u, w_{k}) - D_{\phi}(u, w_{k+1})] + \frac{1}{\eta} [D_{\phi}(w_{k}, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2})]
$$

Telescoping we conclude that $R_{\mathcal{T}}(u) \leq \frac{1}{\eta} D_{\phi}(u, w_1) + \frac{1}{\eta} \sum_{k=1}^{\mathcal{T}} [D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2})]$. $D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) = \phi(w_k) - \phi(w_{k+1}) - \langle \nabla \phi(w_{k+1/2}), w_k - w_{k+1} \rangle$ $\leq \langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - w_{k+1} \rangle - \frac{\nu}{2} ||w_k - w_{k+1}||_q^2$ q (Using strong-convexity of ϕ with $y = w_{k+1}$ and $x = w_k$) $= \eta \langle g_k, w_k - w_{k+1} \rangle - \frac{\nu}{2} ||w_k - w_{k+1}||_q^2$ q (Using the OMD update) $\leq \eta$ G $||w_k - w_{k+1}||_q - \frac{\nu}{2}$ $\frac{\nu}{2}$ || $w_k - w_{k+1}$ || $\frac{2}{q}$ q (Holder's inequality: $\langle x, y \rangle \leq ||x||_p ||y||_q$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$ and since $||g_k||_p \leq G$) $\leq \frac{\eta^2 G^2}{2}$ 2ν (For all z, $az - bz^2 \leq \frac{a^2}{4R}$ $\frac{a}{4b}$) $\implies R_{\mathcal{T}}(u) \leq \frac{1}{u}$ $\frac{1}{\eta} D_{\phi}(u, w_1) + \frac{\eta G^2 T}{2\nu}$ $\frac{G^2 T}{2\nu} \leq \frac{D^2}{\eta}$ $\frac{\partial^2}{\partial \eta} + \frac{\eta G^2}{2\nu}$ 2ν (Since $D_{\phi}(u, w_1) \leq D^2$) $\implies R_T(u) \leq$ $^{\prime}$ ′ $\frac{2DG}{\sqrt{\nu}}$ √ \overline{T} (Setting $\eta = \sqrt{\frac{2\nu}{T}} \frac{D}{G}$)

6

Online Mirror Descent – Example

We have proved that for any fixed comparator u , $R_{\mathcal{T}}(u) \leq \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2DG}}{\sqrt{\nu}}$ √ T where, (i) $\|\nabla f_k(w)\|_p \leq G$, (ii) $\phi(y) \geq \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_q^2$ $\frac{2}{q}$ and (iii) $D_{\phi}(u, w_1) \leq D^2$.

- Using OMD with negative-entropy for prediction with expert advice, $p = \infty$, $q = 1$, $\nu = 1$. Since $||c_k||_{\infty} \leq M$, $G = M$. If $\forall i \in [d]$, $w_1[i] = \frac{1}{d}$, $D_{\phi}(u, w_1) = \sum_{i=1}^{d} u_i \ln(u_i \, d) \leq \ln(d)$. $\implies R_T(u) \leq$ √ $2M \sqrt{\ln(d)}$ √ T
- Since OGD is a special case of OMD with $\phi(w) = \frac{1}{2} ||w||^2$, using OGD for prediction with expert advice, $p = 2$, $q = 2$, $\nu = 1$. Since $||c_k||_{\infty} \le M$, using the relation between norms, $G = M\sqrt{d}$. If $\forall i \in [d]$, $w_1[i] = \frac{1}{d}$, $D_{\phi}(u, w_1) = \frac{1}{2} ||u - w_1||^2 \leq \sqrt{2}$ $\implies R_{\mathcal{T}}(u) \leq 2M$ √ d √ T

• Hence, using multiplicative weights results in $O(\sqrt{\ln(d)})$ √ Hence, using multiplicative weights results in $O(\sqrt{\ln(d)}\sqrt{T})$ regret which is better than the $O(\sqrt{d}\sqrt{T})$ regret obtained by OGD. For prediction with expert advice, when the number of experts is large, this can be a substantial advantage. The substantial series of $\frac{7}{100}$

Questions?