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Generic Online Optimization (wp, Algorithm A, Convex set C C RY)
1: fork=1,..., T do
2:  Algorithm A chooses point (decision) wy € C
3:  Environment chooses and reveals the (potentially adversarial) loss function 7 : C — R

4:  Algorithm suffers a cost fi(wy)
5: end for

e Regret: For any fixed decision u € C, Rr(u) := Z,Ll[fk(wk) — fi(w)].

e Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point wy. After

the loss function fy is revealed, OGD suffers a cost fx(wk) and uses the function to compute:

Wip1 = Newk — i Vii(wi)] where Mc[x] = arg min, ¢ % ly — XH2.

e Claim: If the convex set C has a diameter D i.e. for all x,y € C, ||[x — y|| < D, for an
arbitrary sequence of losses such that each f; is convex, differentiable and G-Lipschitz, OGD

with 7, = % and wy € C has the following regret for all u € C, Ry (u) < DZf + G2/ To.




o Given a differentiable, strictly-convex mirror map ¢, Dg(y, x) := ¢(y) — ¢(x) — (Vo(x), y — x).

e Online Mirror Descent (OMD): w1 = argmin,, ¢ [(ka(wk), w) + % Dy(w, Wk):|.
Setting ¢(x) = 3 || x||* results in Dy(y,x) =1 |ly - x||* and recovers OGD.

e Example: For prediction with expert advice, C = Ay = {w;|w; >0 ; Zfl:l w; = 1} and we
typically use the negative-entropy mirror map i.e. ¢(w) = Z:.j:l w; In(w;). In this case,

Dy(u, v) = KL(u||v).

e The OMD update can be equivalently written as:

GD in dual space: wy 1, = (V@) (Vo(wi) — ncVi(wi))

Bregman projection: w1 = argmin,, ¢ Dy(w, Wyia/,)

e With the negative-entropy mirror map, OMD results in the multiplicative weights update:

n wi[i] exp(—mn« gk[i])
wiy1[i] = SO, wili] exp(—nk gklil)”




Online Mirror Descent — Convex, Lipschitz functions

In order to analyze OMD, we will make some assumptions about C, f, and ¢.

e Assumption 1: C is a convex set and Vk, f; is a convex function.

o Assumption 2: Vk, fi is G-Lipschitz in the £, norm (for p > 1), implying that Yw € C,
IVhi(w)ll, < G

o Assumption 3: ¢ is v strongly-convex in the ¢; norm (for ¢ > 1 s.t. % +

B(y) 2 ¢(x) + (Vé(x),y = x) + 3 lly = xII3

Example: For prediction from expert advice,

c=1lie

e C = A, is a convex set and fx(wx) = (ck, wk) is a convex function.
o If the costs are bounded by M, then, ||Vfi(w)||,, = |lck|l., < M. Hence, p =00, G = M.
o If ¢(w) is negative-entropy, then by Pinsker’s inequality, ¢ =1 and v =1 i.e.

B) = () ~ (V9(x), ¥ — x) = Dyly,x) = KL(yllx) = 3 lly = 1.




Online Mirror Descent — Convex, Lipschitz functions

Claim: For an arbitrary sequence of losses such that each f, is convex, G-Lipschitz and
differentiable, then OMD with a v strongly-convex mirror map ¢, nx =n = ,/2% % where
D? := max,ec Dy(u, wr) has the following regret for all u € C,

V206

N
Proof: Recall the mirror descent update: Vo (wiian) = Vo(wi) — miVfi(wi). Setting e = 7 and
using the definition of regret,

Rr(u) <

T T
Rr(u) = Z fi(wg) — fr(u) < Z[(gk, wi — u)] (Convexity of fx and gk := Vfi(wk))
k=1 k=1
"1
— Z; (Vo(wi) — Vo(Wkias), wi — u) (Using the OMD update)
k=1



Online Mirror Descent — Convex, Lipschitz functions

Recall that Rr(u) = ZZ—ZI % (Vop(wi) — Vo (Wiyasz), wi — u)
Three point property: for any 3 points x, y, z,

(Vo(2) = Vo(y), 2z = x) = Dy(x,2) + Dy(2,y) = Dy(x,y)

<v¢(Wk) = V¢(Wk+1/2)7 Wy — U> = D¢(U Wk) + D¢(Wk, Wk+1/2) = D¢(U, Wk+1/2)
T

1
— Rr(u) <D = [Dy(u, wi) + Dg(Wi, Wiy y/2) — Do, wi3y2)]
k=1

3

From the OMD update, we know that, wy;1 = argmin,, cyy Dg(w, wy11/,). Recall the
optimality condition: for a convex function f and a convex set C, if x* = argmin .. f(x), then
Vx € X, (Vf(x*),x* —x) <0. Using this condition for Dy(w, wy1s,), for u e C,

(Vo(Wies1) — Vo(Wisasa), Wi — u) <0

= — Dy(u, Wiq1s) < —Dg(u, Wiy1) — Dp(Wii1, Wita/a) (3 point property)

1 1
— Rr(u) < Z; [Dg(u, wic) — Dy (u, wicr1)] + p [ (Wi, Wit 3/2) — D (Wicr1, Wici72)]



Online Mirror Descent — Convex, Lipschitz functions

Telescoping we conclude that R7(u) < + Dy(u, wi) + % ZZ—ZI [Dg (Wi, Wir172) — Do (Wit 1, Wiray2)] -

Dy (Wi, Wit/2) — Dy (Wiy1, Witaz) = d(wi) — d(Wig1) — (VO(Witass), Wie — Wira)
v

< (Vo(wk) = VO(Wityz), Wi = Wie1) — 5 [[wic = Wisa||?

(Using strong-convexity of ¢ with y = wy11 and x = wy)
v :

=1 {8k, Wk — Wkt1) — 3 [lwi — Wk+1||(27 (Using the OMD update)
v 2
<0G (Wi = wierallg = 5 lIwic = wiea g
(Holder's inequality: (x,y) < |[[x|[, ll¥l, st +%

22
n G 2 a%
50 (Forall z, az — bz* < %)

=1 and since ||g[|, < G)

T I

<

2 2 2
nG T<g+nG T

(Since Dy(u,wi) < D?)

1
R <-D
— T(u)_77 (U, wy) + = oD

g _ 2v
(Setting n = /%

— RT(U) <

[9lle}

)



Online Mirror Descent — Example

We have proved that for any fixed comparator u, Ry(u) < % VT where,
() IVEW)Il, < G, (i) ¢(y) > &(x) + (Vo(x),y = x) + % [ly — x|2 and (iii) Dy(u, ws) < D2.
e Using OMD with negative-entropy for prediction with expert advice, p=00, g =1, v = 1.
Since |ckl|o <M, G =M. If Vi€ [d], m[i] =%, Dy(u,m) = Z?:l u; In(u; d) <In(d).

— Rr(u) < V2M /In(d) VT

e Since OGD s a special case of OMD with ¢(w) = % |w||?, using OGD for prediction with

expert advice, p =2, ¢ =2, v = 1. Since ||ck||,, < M, using the relation between norms,
G=MVd. IfVield], wi[i] = %, Dy(u,mi) =3 |lu— wi|* < V2
— Rr(u) <2MVdVT

e Hence, using multiplicative weights results in O(+/In(d)v/T) regret which is better than the
O(v/d\/T) regret obtained by OGD. For prediction with expert advice, when the number of
experts is large, this can be a substantial advantage.



Questions?



