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Recap: Online Optimization

Generic Online Optimization (w0, Algorithm A, Convex set C ⊆ Rd)
1: for k = 1, . . . ,T do
2: Algorithm A chooses point (decision) wk ∈ C
3: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
4: Algorithm suffers a cost fk(wk)

5: end for

Application: Prediction from Expert Advice: Given d experts,
C = ∆d = {wi |wi ≥ 0 ;

∑d
i=1 wi = 1} and fk(wk) = ⟨ck ,wk⟩ where ck ∈ Rd is the loss vector.

Application: Imitation Learning: Given access to an expert that knows what action a ∈ [A] to
take in each state s ∈ [S ], learn a policy π : [S ] → [A] that imitates the expert, i.e. we want
that π(a|s) ≈ πexpert(a|s). Here, w = π and C = ∆A ×∆A . . .∆A (simplex for each state) and
fk is a measure of discrepancy between πk and πexpert.
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Online Optimization

• Recall that the sequence of losses {fk}Tk=1 is potentially adversarial and can also depend on wk .

• Objective: Do well against the best fixed decision in hindsight, i.e. if we knew the entire
sequence of losses beforehand, we would choose w∗ := argminw∈C

∑T
k=1 fk(w).

• Regret: For any fixed decision u ∈ C,

RT (u) :=
T∑

k=1

[fk(wk)− fk(u)]

When comparing against the best decision in hindsight,

RT :=
T∑

k=1

[fk(wk)]− min
w∈C

T∑
k=1

fk(w).

• We want to design algorithms that achieve a sublinear regret (that grows as o(T )). A sublinear
regret implies that the performance of our sequence of decisions is approaching that of w∗.
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Online Convex Optimization

• Online Convex Optimization (OCO): When the losses fk are (strongly) convex loss functions.

Example 1 : In prediction with expert advice, fk(w) = ⟨ck ,w⟩ is a linear function.

Example 2 : In imitation learning, fk(π) = Es∼dπk [KL(π(·|s) ||πexpert(·|s)] where dπk is a
distribution over the states induced by running policy πk .

Example 3 : In online control such as LQR (linear quadratic regulator) with unknown
costs/perturbations, fk is quadratic.

• In Examples 2-3, the loss at iteration k + 1 depends on the learner’s decision at iteration k .
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Online Convex Optimization

• Online-to-Batch conversion: If the sequence of loss functions is i.i.d from some fixed
distribution, we can convert the regret guarantees into the traditional convergence guarantees for
the resulting algorithm.

Formally, if fk are convex and R(T ) = O(
√
T ), then taking the expectation w.r.t the

distribution generating the losses,

E
[
RT

T

]
= E

[∑T
k=1[fk(wk)]−

∑T
k=1 fk(w

∗)

T

]
≥

T∑
k=1

[f (w̄T )− f (w∗)] = O

(
1√
T

)
where f (w) := E[fk(w)] (since the losses are i.i.d) and w̄T :=

∑T
k=1 wk

T (since the losses are
convex, we used Jensen’s inequality).

• If the distribution generating the losses is a uniform discrete distribution on n fixed data-points,
then f (w) = 1

n

∑n
i=1 fi (w) and we are back in the finite-sum minimization setting.

• Hence, algorithms that attain R(T ) = O(
√
T ) can result in an O

(
1√
T

)
convergence (in

terms of the function values) for convex losses. 4



Questions?
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Online Gradient Descent

The simplest algorithm that results in sublinear regret for OCO is Online Gradient Descent.

Online Gradient Descent (OGD): At iteration k , the algorithm chooses the point wk . After the
loss function fk is revealed, OGD suffers a cost fk(wk) and uses the function to compute

wk+1 = ΠC [wk − ηk∇fk(wk)]

where ΠC [x ] = argminy∈C
1
2 ∥y − x∥2.

Claim: If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence of losses such that each fk is convex and differentiable, OGD with a non-increasing
sequence of step-sizes i.e. ηk ≤ ηk−1 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2
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Online Gradient Descent - Convex functions

Proof: Using the update wk+1 = ΠC[wk − ηk∇fk(wk)]. Since u ∈ C,

∥wk+1 − u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− ΠC[u]∥2

Since projections are non-expansive i.e. for all x , y , ∥ΠC[y ]− ΠC[x ]∥ ≤ ∥y − x∥,

≤ ∥wk − ηk∇fk(wk)− u∥2

= ∥wk − u∥2 − 2ηk⟨∇fk(wk),wk − u⟩+ η2
k ∥∇fk(wk)∥2

≤ ∥wk − u∥2 − 2ηk [fk(wk)− fk(u)] + η2
k ∥∇fk(wk)∥2

(Since fk is convex)

=⇒ 2ηk [fk(wk)− fk(u)] ≤ [∥wk − u∥2 − ∥wk+1 − u∥2] + η2
k ∥∇fk(wk)∥2

=⇒ RT (u) ≤
T∑

k=1

[
∥wk − u∥2 − ∥wk+1 − u∥2

2ηk

]
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2
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Online Gradient Descent - Convex functions

Recall that RT (u) ≤
∑T

k=1

[
∥wk−u∥2−∥wk+1−u∥2

2ηk

]
+
∑T

k=1
ηk

2 ∥∇fk(wk)∥2.

T∑
k=1

[
∥wk − u∥2 − ∥wk+1 − u∥2

2ηk

]

=
T∑

k=2

∥wk − u∥2
(

1
2ηk

− 1
2ηk−1

)
︸ ︷︷ ︸

Non-negative since ηk ≤ ηk−1

+
∥w1 − u∥2

2η1
− ∥wT+1 − u∥2

2ηT

≤ D2
T∑

k=2

[
1

2ηk
− 1

2ηk−1

]
+

D2

2η1
= D2

[
1

2ηT
− 1

2η1

]
+

D2

2η1
=

D2

2ηT

(Since ∥x − y∥ ≤ D for all x , y ∈ C)

Putting everything together,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2
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Online Gradient Descent - Convex, Lipschitz functions

Claim: If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence of losses such that each fk is convex, differentiable and G -Lipschitz, OGD with
ηk = η√

k
and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
D2

√
T

2η
+ G 2

√
T η

Proof: Since the step-size is decreasing, we can use the general result from the previous slide,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 ≤ D2

2ηT
+

G 2

2

T∑
k=1

ηk (Since fk is G -Lipschitz)

=⇒ RT (u) ≤
D2

√
T

2η
+

G 2η

2

T∑
k=1

1√
k
≤ D2

√
T

2η
+ G 2

√
T η (Since

∑T
k=1

1√
k
≤ 2

√
T )

• In order to find the “best” η, set it such that D2
/2η = G 2η, implying that η = D/

√
2G and

RT (u) ≤
√

2DG
√
T . Hence, OGD with a decreasing step-size attains sublinear Θ(

√
T ) regret

for convex, Lipschitz functions. 8



Questions?
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Online Mirror Descent

• The OGD update at iteration k can also be written as:
wk+1 = argminw∈C

[
⟨∇fk(wk),w⟩+ 1

2ηk
∥w − wk∥2

2

]
• Online Mirror Descent (OMD) generalizes gradient descent by choosing a strictly convex,
differentiable function ϕ : Rd → R (referred to as the mirror map) to induce a distance measure.

• ϕ induces the Bregman divergence Dϕ(·, ·), a distance measure between points x , y ,

Dϕ(y , x) := ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩ .

Geometrically, Dϕ(y , x) is the distance between the function ϕ(y) and the line
ϕ(x) + ⟨∇ϕ(x), y − x⟩ which is tangent to the function at x .

• Using Dϕ as the distance measure results in the mirror descent update:

wk+1 = argmin
w∈C

[
⟨∇fk(wk),w⟩+ 1

ηk
Dϕ(w ,wk)

]

• Setting ϕ(x) = 1
2 ∥x∥

2 results in Dϕ(y , x) =
1
2 ∥y − x∥2 and recovers OGD.
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Online Mirror Descent – Example

• For prediction with expert advice, C = ∆d = {wi |wi ≥ 0 ;
∑d

i=1 wi = 1} and we want a
distance metric between probabilities.

• Typically use the negative-entropy mirror map i.e. ϕ(w) =
∑d

i=1 wi ln(wi ).

• For u, v ∈ C, the corresponding Bregman divergence Dϕ(u, v) can be calculated as:

Dϕ(u, v) = ϕ(u)− ϕ(v)− ⟨∇ϕ(v), u − v⟩ = ϕ(u)− ϕ(v)− ⟨log(v) + 1, u − v⟩

(∇ϕ(u) = log(u) + 1, where log(·) is element-wise)

=
d∑

i=1

ui log(ui )−
d∑

i=1

vi log(vi )−

[
d∑

i=1

ui log(vi )−
d∑

i=1

vi log(vi )

]
−

d∑
i=1

(ui − vi )

=
d∑

i=1

ui log

(
ui
vi

)
= KL(u||v). (

∑d
i=1 ui =

∑d
i=1 vi = 1)

• The KL-divergence is a standard way to measure the distance between probability distributions.
For distributions u, v , KL(u||v) :=

∑d
i=1 ui log

(
ui
vi

)
is non-negative and equal to zero iff u = v . 10



Online Mirror Descent

The OMD update can be equivalently written as:
GD in dual space: wk+1/2 = (∇ϕ)−1 (∇ϕ(wk)− ηk∇fk(wk))

Bregman projection: wk+1 = argminw∈C Dϕ(w ,wk+1/2)

Prove in Assignment 3!
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Online Mirror Descent – Example

For prediction with expert advice, C = ∆d = {wi |wi ≥ 0 ;
∑d

i=1 wi = 1},
ϕ(w) =

∑d
i=1 wi ln(wi ) is the negative-entropy mirror map and gk := ∇fk(wk), then the OMD

update can be written as: (prove in Assignment 3!)

GD in dual space: wk+1/2[i ] = wk [i ] exp(−ηk gk [i ])

Bregman projection: wk+1[i ] =
wk+1/2[i ]

∥wk+1/2∥1

• Multiplicative weights update:

wk+1[i ] =
wk [i ] exp (−ηk gk [i ])∑d
j=1 wk [j ] exp (−ηk gk [j ])

If w0[i ] =
1
d for all i ∈ [d ] and ηk = η for all k , then,

wk+1[i ] =
exp

(
−
∑k

m=1 η gm[i ]
)

∑d
j=1 exp

(
−
∑k

m=1 η gm[j ]
)
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Online Mirror Descent – Convex, Lipschitz functions

In order to analyze OMD, we will make some assumptions about C, fk and ϕ.

• Assumption 1: C is a convex set and ∀k , fk is a convex function.

• Assumption 2: ∀k , fk is G -Lipschitz in the ℓp norm (for p ≥ 1), implying that ∀w ∈ C,

∥∇fk(w)∥p ≤ G

• Assumption 3: ϕ is ν strongly-convex in the ℓq norm (for q ≥ 1 s.t. 1
p + 1

q = 1) i.e.

ϕ(y) ≥ ϕ(x) + ⟨∇ϕ(x), y − x⟩+ ν

2
∥y − x∥2

q

• Example: For prediction from expert advice,

C = ∆d is a convex set and fk(wk) = ⟨ck ,wk⟩ is a convex function.
If the costs are bounded by M, then, ∥∇fk(w)∥∞ = ∥ck∥∞ ≤ M. Hence, p = ∞, G = M.
If ϕ(w) is negative-entropy, then by Pinsker’s inequality, q = 1 and ν = 1 i.e.

ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩ = Dϕ(y , x) = KL(y ||x) ≥ 1
2
∥y − x∥2

1 .
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