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Recap

For G -Lipschitz functions, for all x , y ∈ D, |f (y)− f (x)| ≤ G ∥x − y∥. Equivalently,
∥∇f (w)∥ ≤ G . Example: Hinge loss: f (w) = max {0, 1 − y⟨w , x⟩} is ∥y x∥-Lipschitz.
Subgradient: For a convex function f , the subgradient of f at x ∈ D is a vector g that
satisfies the inequality for all y , f (y) ≥ f (x) + ⟨g , y − x⟩. Example: For f (w) = |w | at
w = 0, vectors with slope in [−1, 1] and passing through the origin are subgradients.
Subdifferential: The set of subgradients of f at w ∈ D is referred to as the subdifferential
and denoted by ∂f (w). Formally, ∂f (w) = {g | ∀y ∈ D; f (y) ≥ f (w) + ⟨g , y − w⟩}.
For unconstrained minimization of convex, non-smooth functions, w∗ is the minimizer of f
iff 0 ∈ ∂f (w∗) (this is analogous to the smooth case).
For Lipschitz functions, we cannot relate the subgradient norm to the suboptimality in the
function values. Example: For f (w) = |w |, for all w > 0 (including w = 0+), ∥g∥ = 1.
Projected Subgradient Descent: wk+1 = ΠD [wk − ηkgk ], where gk ∈ ∂f (wk).
Since the sub-gradient norm does not necessarily decrease closer to the solution, to
converge to the minimizer, we need to explicitly decrease the step-size.
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Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that D = Rd and analyze the convergence of subgradient descent.

Claim: For G -Lipschitz, convex functions, for η > 0, T iterations of subgradient descent with
ηk = η/

√
k+1 converges as follows, where w̄T =

∑T−1
k=0 wk/T ,

f (w̄T )− f (w∗) ≤ 1√
T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T )]

2

]
.

Proof: Similar to the previous proofs, using the update wk+1 = wk − ηkgk where gk ∈ ∂f (wk),

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2ηk⟨gk ,wk − w∗⟩+ η2
k ∥gk∥

2

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k ∥gk∥

2

(Definition of subgradient with x = wk , y = w∗)

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k G

2

(Since f is G -Lipschitz)

=⇒ ηk [f (wk)− f (w∗)] ≤ ∥wk − w∗∥2 − ∥wk+1 − w∗∥2

2
+

η2
k G

2

2
2



Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that ηk [f (wk)− f (w∗)] ≤ ∥wk−w∗∥2−∥wk+1−w∗∥2

2 +
η2
k G2

2 ,

=⇒ ηmin

T−1∑
k=0

[f (wk)− f (w∗)] ≤
T−1∑
k=0

[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

2

]
+

G 2

2

T−1∑
k=0

η2
k

≤ ∥w0 − w∗∥2

2
+

G 2

2

T−1∑
k=0

η2
k

=⇒ η√
T

T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2
+

G 2η2

2

T∑
k=1

1
k

(Since ηk = η/
√
k+1)

=⇒
∑T−1

k=0 [f (wk)− f (w∗)]

T
≤ 1√

T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T )]

2

]

=⇒ f (w̄T )− f (w∗) ≤ 1√
T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T )]

2

]
(Using Jensen’s inequality on the LHS, and by definition of w̄T .)
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Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that f (w̄T )− f (w∗) ≤ 1√
T

[
∥w0−w∗∥2

2η + G2η [1+log(T )]
2

]
. The above proof works for any

value of η and we can modify the proof to set the “best” value of η.

For this, let us use a constant step-size ηk = η. Following the same proof as before,

ηmin

T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2
+

G 2

2

T−1∑
k=0

η2
k

=⇒
T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2η
+

G 2Tη

2
(Since ηk = η)

Setting η = ∥w0−w∗∥
G
√
T

, dividing by T and using Jensen’s inequality on the LHS,

f (w̄T )− f (w∗) ≤ G ∥w0 − w∗∥√
T

For Lipschitz, convex functions, the above O(1/ϵ2) rate is optimal, but we require knowledge of
G , ∥w0 − w∗∥ ,T to set the step-size. 4



Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster
O(1/

√
ϵ) rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal.

In order to get the G∥w0−w∗∥√
T

rate, we needed knowledge of G and ∥w0 − w∗∥ to set the
step-size. There are various techniques to set the step-size in an adaptive manner.

AdaGrad [DHS11] is adaptive to G , but still requires knowing a quantity related ∥w0 − w∗∥
to select the “best” step-size. This influences the practical performance of AdaGrad.

Polyak step-size [HK19] attains the desired rate without knowledge of G or ∥w0 − w∗∥, but
requires knowing f ∗.

Coin-Betting [OP16] does not require knowledge of ∥w0 − w∗∥. It only requires an estimate
of G and is robust to its misspecification in theory (but not quite in practice).
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Minimizing convex, Lipschitz functions using Subgradient Descent

For Lipschitz, strongly-convex functions, subgradient descent attains an Θ
( 1
ϵ

)
rate. For this, the

step-size depends on µ and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class L-smooth L-smooth G -Lipschitz G -Lipschitz
+ convex + µ-strongly convex + convex + µ-strongly convex

GD O (1/ϵ) O (κ log (1/ϵ)) Θ (1/ϵ2) Θ (1/ϵ)

SGD Θ(1/ϵ2) Θ (1/ϵ) Θ (1/ϵ2) Θ (1/ϵ)

Table 1: Number of iterations required for obtaining an ϵ-sub-optimality.
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Questions?
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Online Optimization

Online Optimization
1: Online Optimization (w0, Algorithm A, Convex set C)
2: for k = 1, . . . ,T do
3: Algorithm A chooses point (decision) wk ∈ C
4: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
5: Algorithm suffers a cost fk(wk)

6: end for

Application: Prediction from Expert Advice: Given n experts,
C = ∆n = {wi |wi ≥ 0 ;

∑n
i=1 wi = 1} and fk(wk) = ⟨ck ,wk⟩ where ck ∈ Rn is the loss vector.

Application: Imitation Learning: Given access to an expert that knows what action a ∈ [A] to
take in each state s ∈ [S ], learn a policy π : [S ] → [A] that imitates the expert, i.e. we want
that π(a|s) ≈ πexpert(a|s). Here, w = π and C = ∆A ×∆A . . .∆A (simplex for each state) and
fk is a measure of discrepancy between πk and πexpert.
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