
CMPT 409/981: Optimization for Machine Learning

Lecture 14

Sharan Vaswani

October 29, 2024

Recap

For G -Lipschitz functions, for all x , y ∈ D, |f (y)− f (x)| ≤ G ∥x − y∥. Equivalently,
∥∇f (w)∥ ≤ G . Example: Hinge loss: f (w) = max {0, 1 − y⟨w , x⟩} is ∥y x∥-Lipschitz.
Subgradient: For a convex function f , the subgradient of f at x ∈ D is a vector g that
satisfies the inequality for all y , f (y) ≥ f (x) + ⟨g , y − x⟩. Example: For f (w) = |w | at
w = 0, vectors with slope in [−1, 1] and passing through the origin are subgradients.
Subdifferential: The set of subgradients of f at w ∈ D is referred to as the subdifferential
and denoted by ∂f (w). Formally, ∂f (w) = {g | ∀y ∈ D; f (y) ≥ f (w) + ⟨g , y − w⟩}.
For unconstrained minimization of convex, non-smooth functions, w∗ is the minimizer of f
iff 0 ∈ ∂f (w∗) (this is analogous to the smooth case).
For Lipschitz functions, we cannot relate the subgradient norm to the suboptimality in the
function values. Example: For f (w) = |w |, for all w > 0 (including w = 0+), ∥g∥ = 1.
Projected Subgradient Descent: wk+1 = ΠD [wk − ηkgk], where gk ∈ ∂f (wk).
Since the sub-gradient norm does not necessarily decrease closer to the solution, to
converge to the minimizer, we need to explicitly decrease the step-size.

1

Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that D = Rd and analyze the convergence of subgradient descent.

Claim: For G -Lipschitz, convex functions, for η > 0, T iterations of subgradient descent with
ηk = η/

√
k+1 converges as follows, where w̄T =

∑T−1
k=0 wk/T ,

f (w̄T)− f (w∗) ≤ 1√
T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T)]

2

]
.

Proof: Similar to the previous proofs, using the update wk+1 = wk − ηkgk where gk ∈ ∂f (wk),

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2ηk⟨gk ,wk − w∗⟩+ η2
k ∥gk∥

2

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k ∥gk∥

2

(Definition of subgradient with x = wk , y = w∗)

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k G

2

(Since f is G -Lipschitz)

=⇒ ηk [f (wk)− f (w∗)] ≤ ∥wk − w∗∥2 − ∥wk+1 − w∗∥2

2
+

η2
k G

2

2
2

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that ηk [f (wk)− f (w∗)] ≤ ∥wk−w∗∥2−∥wk+1−w∗∥2

2 +
η2
k G2

2 ,

=⇒ ηmin

T−1∑
k=0

[f (wk)− f (w∗)] ≤
T−1∑
k=0

[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

2

]
+

G 2

2

T−1∑
k=0

η2
k

≤ ∥w0 − w∗∥2

2
+

G 2

2

T−1∑
k=0

η2
k

=⇒ η√
T

T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2
+

G 2η2

2

T∑
k=1

1
k

(Since ηk = η/
√
k+1)

=⇒
∑T−1

k=0 [f (wk)− f (w∗)]

T
≤ 1√

T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T)]

2

]

=⇒ f (w̄T)− f (w∗) ≤ 1√
T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T)]

2

]
(Using Jensen’s inequality on the LHS, and by definition of w̄T .)

3

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that f (w̄T)− f (w∗) ≤ 1√
T

[
∥w0−w∗∥2

2η + G2η [1+log(T)]
2

]
. The above proof works for any

value of η and we can modify the proof to set the “best” value of η.

For this, let us use a constant step-size ηk = η. Following the same proof as before,

ηmin

T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2
+

G 2

2

T−1∑
k=0

η2
k

=⇒
T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2η
+

G 2Tη

2
(Since ηk = η)

Setting η = ∥w0−w∗∥
G
√
T

, dividing by T and using Jensen’s inequality on the LHS,

f (w̄T)− f (w∗) ≤ G ∥w0 − w∗∥√
T

For Lipschitz, convex functions, the above O(1/ϵ2) rate is optimal, but we require knowledge of
G , ∥w0 − w∗∥ ,T to set the step-size. 4

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster
O(1/

√
ϵ) rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal.

In order to get the G∥w0−w∗∥√
T

rate, we needed knowledge of G and ∥w0 − w∗∥ to set the
step-size. There are various techniques to set the step-size in an adaptive manner.

AdaGrad [DHS11] is adaptive to G , but still requires knowing a quantity related ∥w0 − w∗∥
to select the “best” step-size. This influences the practical performance of AdaGrad.

Polyak step-size [HK19] attains the desired rate without knowledge of G or ∥w0 − w∗∥, but
requires knowing f ∗.

Coin-Betting [OP16] does not require knowledge of ∥w0 − w∗∥. It only requires an estimate
of G and is robust to its misspecification in theory (but not quite in practice).

5

Minimizing convex, Lipschitz functions using Subgradient Descent

For Lipschitz, strongly-convex functions, subgradient descent attains an Θ
(1
ϵ

)
rate. For this, the

step-size depends on µ and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class L-smooth L-smooth G -Lipschitz G -Lipschitz
+ convex + µ-strongly convex + convex + µ-strongly convex

GD O (1/ϵ) O (κ log (1/ϵ)) Θ (1/ϵ2) Θ (1/ϵ)

SGD Θ(1/ϵ2) Θ (1/ϵ) Θ (1/ϵ2) Θ (1/ϵ)

Table 1: Number of iterations required for obtaining an ϵ-sub-optimality.

6

Questions?

6

Online Optimization

Online Optimization
1: Online Optimization (w0, Algorithm A, Convex set C)
2: for k = 1, . . . ,T do
3: Algorithm A chooses point (decision) wk ∈ C
4: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
5: Algorithm suffers a cost fk(wk)

6: end for

Application: Prediction from Expert Advice: Given n experts,
C = ∆n = {wi |wi ≥ 0 ;

∑n
i=1 wi = 1} and fk(wk) = ⟨ck ,wk⟩ where ck ∈ Rn is the loss vector.

Application: Imitation Learning: Given access to an expert that knows what action a ∈ [A] to
take in each state s ∈ [S], learn a policy π : [S] → [A] that imitates the expert, i.e. we want
that π(a|s) ≈ πexpert(a|s). Here, w = π and C = ∆A ×∆A . . .∆A (simplex for each state) and
fk is a measure of discrepancy between πk and πexpert.

7

References i

John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.

Elad Hazan and Sham Kakade, Revisiting the polyak step size, arXiv preprint
arXiv:1905.00313 (2019).

Francesco Orabona and Dávid Pál, Coin betting and parameter-free online learning,
Advances in Neural Information Processing Systems 29 (2016).

8

