CMPT 409/981: Optimization for Machine Learning

Lecture 14

Sharan Vaswani
October 29, 2024

@ For G-Lipschitz functions, for all x,y € D, |f(y) — f(x)| < G ||x — y||. Equivalently,
IVFf(w)|| < G. Example: Hinge loss: f(w) = max{0,1 — y(w,x)} is ||y x||-Lipschitz.

@ Subgradient: For a convex function f, the subgradient of f at x € D is a vector g that
satisfies the inequality for all y, f(y) > f(x) + (g,y — x). Example: For f(w) = |w| at
w = 0, vectors with slope in [—1,1] and passing through the origin are subgradients.

o Subdifferential: The set of subgradients of f at w € D is referred to as the subdifferential
and denoted by 0f(w). Formally, 0f (w) = {g|Vy € D; f(y) > f(w) + (g,y — w)}.

@ For unconstrained minimization of convex, non-smooth functions, w* is the minimizer of f
iff 0 € Of (w*) (this is analogous to the smooth case).

@ For Lipschitz functions, we cannot relate the subgradient norm to the suboptimality in the
function values. Example: For f(w) = |w|, for all w > 0 (including w = 07), ||g|| = 1.

o Projected Subgradient Descent: w1 = lNp [wx — nkgk], where g € Of (wy).

@ Since the sub-gradient norm does not necessarily decrease closer to the solution, to
converge to the minimizer, we need to explicitly decrease the step-size.

Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that D = R? and analyze the convergence of subgradient descent.
Claim: For G-Lipschitz, convex functions, for n > 0, T iterations of subgradient descent with

—_ T—1
Nk = M/Vk+1 converges as follows, where wr = Xio wi/T,

i o L [l —wlP G2[1+log(T)
_ <
Flir) = F(w) € = | PO 4 2

Proof: Similar to the previous proofs, using the update wy1 = wx — nxgk Where gk € Of (wy),
[wicrs — w*[|* = [Jwic — w*||* — 2 (g, wie — w*) + 777 [|
%112 * 2
< lwie = w* || = 20kl (wic) = F(w*)] + g [l ex]
(Definition of subgradient with x = wy, y = w*)
< Jlwie — w*||* = 2mi[F(wi) — F(w™)] + 7} G
(Since f is G-Lipschitz)

—wHl? = — 2 2 G2
= nelf(we) — F(w*)] < [wie — w|| 2||Wk+1 w|| + nk2

Minimizing convex, Lipschitz functions using Subgradient Descent

Reca” that nk[f(Wk) _ f(W*)] S [|wi—w™ || 72HWI<+1*W*H + 7h<2G ’
S () — ()] < S | 1w = w12 = i = wiIP] 622
= Tmin D _[F(wie) = F(W)] < > t 5 2k
k=0 k=0 k=0
. =
lwo —wI* | 6% 5~
= 2 2 2k
k=0
T-1 |2 2,2 T
n . [wo —w*[|” | G*n 1 .
= Z[f(Wk) — f(w")] < + Z = (Since nx = 1/vk+1)
VT & 2 2 ok
T-1 N .
2o [F(wi) = F(w™)] _ 1 |[lwo—w I " G?n[1 + log(T)]
T —JT 2n 2
_ . 1 [fwo—w*|® | G2n[1+log(T)]
— - <
f(wr) — f(w*) < = 2 + 5

(Using Jensen's inequality on the LHS, and by definition of wr.)

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that f(wr) — f(w*) < # [”W";y*”z + Gz"[lzlog(n] . The above proof works for any

value of n and we can modify the proof to set the “best” value of 7.

For this, let us use a constant step-size 1, = 1. Following the same proof as before,

R e G
Min Y [F(wi) = F(W")] < ===+ -) g
k=0 k=0
T-1 * 12 D,
wo — W G-T .
= Z[f(wk) —f(w")] < wo 2 ” + 5 i (Since nx = 7)
k=0

_ lwo—w]

Setting n , dividing by T and using Jensen's inequality on the LHS,
GVT

G [[wo — w7

VT

For Lipschitz, convex functions, the above O(1/¢?) rate is optimal, but we require knowledge of
G, ||wo — w*||, T to set the step-size.

f(wr) — f(w") <

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster
O(1/) rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal.

Gllwo—w™||

In order to get the rate, we needed knowledge of G and |[wy — w*|| to set the

step-size. There are various techniques to set the step-size in an adaptive manner.

e AdaGrad [DHS11] is adaptive to G, but still requires knowing a quantity related ||wy — w*||
to select the "best” step-size. This influences the practical performance of AdaGrad.

@ Polyak step-size [HK19] attains the desired rate without knowledge of G or |jwy — w*||, but

requires knowing f*.

e Coin-Betting [OP16] does not require knowledge of ||wy — w*||. It only requires an estimate
of G and is robust to its misspecification in theory (but not quite in practice).

Minimizing convex, Lipschitz functions using Subgradient Descent

For Lipschitz, strongly-convex functions, subgradient descent attains an © (%) rate. For this, the
step-size depends on p and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class | L-smooth L-smooth G-Lipschitz G-Lipschitz
+ convex | + p-strongly convex + convex + p-strongly convex
GD O (¥/) O (r log (/) © (/) oY)
SGD 6(1/2) 6 (1) 6 (y2) 6 (1)

Table 1: Number of iterations required for obtaining an e-sub-optimality.

Questions?

Online Optimization

Online Optimization
: Online Optimization (wp, Algorithm A, Convex set C)
fork=1,...,T do

1
2
3: Algorithm A chooses point (decision) wy € C

4: Environment chooses and reveals the (potentially adversarial) loss function 7, : C — R
5. Algorithm suffers a cost fi(wy)

6: end for

Application: Prediction from Expert Advice: Given n experts,
C=A,={ww; >0; 3", w; =1} and fi(wk) = (ck, wk) where ¢, € R" is the loss vector.

Application: Imitation Learning: Given access to an expert that knows what action a € [A] to
take in each state s € [S], learn a policy 7 : [S] — [A] that imitates the expert, i.e. we want
that m(als) & Texpert(als). Here, w =7 and C = Aa X Ax... Ay (simplex for each state) and
fi is a measure of discrepancy between 7 and Texpert-

References i

@ John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.

[3 Elad Hazan and Sham Kakade, Revisiting the polyak step size, arXiv preprint
arXiv:1905.00313 (2019).

[# Francesco Orabona and David Pal, Coin betting and parameter-free online learning,
Advances in Neural Information Processing Systems 29 (2016).

