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@ For G-Lipschitz functions, for all x,y € D, |f(y) — f(x)| < G ||x — y||. Equivalently,
IVFf(w)|| < G. Example: Hinge loss: f(w) = max{0,1 — y(w,x)} is ||y x||-Lipschitz.

@ Subgradient: For a convex function f, the subgradient of f at x € D is a vector g that
satisfies the inequality for all y, f(y) > f(x) + (g,y — x). Example: For f(w) = |w| at
w = 0, vectors with slope in [—1,1] and passing through the origin are subgradients.

o Subdifferential: The set of subgradients of f at w € D is referred to as the subdifferential
and denoted by 0f(w). Formally, 0f (w) = {g|Vy € D; f(y) > f(w) + (g,y — w)}.

@ For unconstrained minimization of convex, non-smooth functions, w* is the minimizer of f
iff 0 € Of (w*) (this is analogous to the smooth case).

@ For Lipschitz functions, we cannot relate the subgradient norm to the suboptimality in the
function values. Example: For f(w) = |w|, for all w > 0 (including w = 07), ||g|| = 1.

o Projected Subgradient Descent: w1 = lNp [wx — nkgk], where g € Of (wy).

@ Since the sub-gradient norm does not necessarily decrease closer to the solution, to
converge to the minimizer, we need to explicitly decrease the step-size.



Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that D = R? and analyze the convergence of subgradient descent.
Claim: For G-Lipschitz, convex functions, for n > 0, T iterations of subgradient descent with
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Proof: Similar to the previous proofs, using the update wy1 = wx — nxgk Where gk € Of (wy),
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Minimizing convex, Lipschitz functions using Subgradient Descent
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(Using Jensen's inequality on the LHS, and by definition of wr.)



Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that f(wr) — f(w*) < # [”W";y*”z + Gz"[lzlog(n] . The above proof works for any

value of n and we can modify the proof to set the “best” value of 7.

For this, let us use a constant step-size 1, = 1. Following the same proof as before,
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Setting n , dividing by T and using Jensen's inequality on the LHS,
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For Lipschitz, convex functions, the above O(1/¢?) rate is optimal, but we require knowledge of
G, ||wo — w*||, T to set the step-size.

f(wr) — f(w") <




Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster
O(1/) rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal.

Gllwo—w™||

In order to get the rate, we needed knowledge of G and |[wy — w*|| to set the

step-size. There are various techniques to set the step-size in an adaptive manner.

e AdaGrad [DHS11] is adaptive to G, but still requires knowing a quantity related ||wy — w*||
to select the "best” step-size. This influences the practical performance of AdaGrad.

@ Polyak step-size [HK19] attains the desired rate without knowledge of G or |jwy — w*||, but

requires knowing f*.

e Coin-Betting [OP16] does not require knowledge of ||wy — w*||. It only requires an estimate
of G and is robust to its misspecification in theory (but not quite in practice).



Minimizing convex, Lipschitz functions using Subgradient Descent

For Lipschitz, strongly-convex functions, subgradient descent attains an © (%) rate. For this, the
step-size depends on p and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class | L-smooth L-smooth G-Lipschitz G-Lipschitz
+ convex | + p-strongly convex + convex + p-strongly convex
GD O (¥/) O (r log (/) © (/) oY)
SGD 6(1/2) 6 (1) 6 (y2) 6 (1)

Table 1: Number of iterations required for obtaining an e-sub-optimality.



Questions?



Online Optimization

Online Optimization
: Online Optimization (wp, Algorithm A, Convex set C)
fork=1,...,T do

1
2
3:  Algorithm A chooses point (decision) wy € C

4:  Environment chooses and reveals the (potentially adversarial) loss function 7, : C — R
5. Algorithm suffers a cost fi(wy)

6: end for

Application: Prediction from Expert Advice: Given n experts,
C=A,={ww; >0; 3", w; =1} and fi(wk) = (ck, wk) where ¢, € R" is the loss vector.

Application: Imitation Learning: Given access to an expert that knows what action a € [A] to
take in each state s € [S], learn a policy 7 : [S] — [A] that imitates the expert, i.e. we want
that m(als) & Texpert(als). Here, w =7 and C = Aa X Ax... Ay (simplex for each state) and
fi is a measure of discrepancy between 7 and Texpert-
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