
CMPT 409/981: Optimization for Machine Learning

Lecture 13

Sharan Vaswani

October 24, 2024

Minimizing smooth, strongly-convex functions

For minimizing smooth, strongly-convex functions f (w) = 1
n

∑n
i=1 fi (w) to an ϵ-suboptimality,

Deterministic GD requires O(κ log(1/ϵ)) iterations, and O(n κ log(1/ϵ)) gradient evaluations.

SGD with a decreasing step-size requires O(1/ϵ) iterations, and O(1/ϵ) gradient evaluations.

Under exact interpolation, SGD with a constant step-size requires O(κ log(1/ϵ)) iterations,
and O(κ log(1/ϵ)) gradient evaluations.

For finite-sum problems of the form 1
n

∑n
i=1 fi (w), variance reduced methods require

O((n + κ) log(1/ϵ)) gradient evaluations.

1

Variance Reduced Methods

• Recall that under exact interpolation, the variance decreases as we approach the minimizer.

• In contrast, variance reduced (VR) methods explicitly reduce the variance by either storing the
past stochastic gradients to approximate the full gradient [SLRB17] or by computing the full
gradient every “few” iterations [JZ13].

• VR methods only require f to be a finite sum, and make no interpolation assumption.

• With variance reduction, we can use acceleration techniques to improve the dependence on the
condition number, and require O((n +

√
κ) log(1/ϵ)) gradient evaluations [AZ17].

• For smooth, convex finite-sum problems, variance reduced techniques require
O
(
(n + 1

ϵ) log(
1/ϵ)

)
gradient evaluations [NLST17], compared to deterministic GD that requires

O(nϵ) gradient evaluations and SGD that requires O(1
ϵ2) gradient evaluations.

• We will use SVRG (Stochastic Variance Reduced Gradient) [JZ13] for smooth, strongly-convex
finite-sum problems, and prove that it requires O((n + κ) log(1/ϵ)) gradient evaluations.

2

SVRG

For simplicity, we will use Loopless SVRG [KHR20] that has a simpler implementation and
analysis compared to the original paper [JZ13].

Algorithm SVRG
1: function SVRG (f , w0, η, p ∈ (0, 1])
2: v0 = w0

3: for k = 0, . . . ,T − 1 do
4: gk = ∇fik(wk)−∇fik(vk) +∇f (vk)

5: wk+1 = wk − ηgk

6: vk+1 =

{
vk with probability 1 − p

wk with probability p

7: end for
8: return wT

3

Minimizing smooth, strongly-convex functions using SVRG

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, T iterations of SVRG with η = 1
6L and p = 1

n returns iterate wT ,

E[∥wT − w∗∥2] ≤
(
max

{(
1 − µ

6L

)
,

(
1 − 1

2n

)})T [
2n ∥w0 − w∗∥2

]
.

Case 1:
(
1 − µ

6L

)
≤

(
1 − 1

2n

)
=⇒ n ≥ 3κ. In this case, for achieving an ϵ-suboptimality, we

need T iterations such that T ≥ 2n log
(

2n ∥w0−w∗∥2

ϵ

)
.

Case 2:
(
1 − µ

6L

)
>

(
1 − 1

2n

)
=⇒ n ≤ 3κ. In this case, for achieving an ϵ-suboptimality, we

need T iterations such that T ≥ 6κ log
(

2n ∥w0−w∗∥2

ϵ

)
.

• Putting cases together, for achieving an ϵ-suboptimality, we need T = O ((n + κ) log(1/ϵ)).

• In each iteration, the number of expected gradient evaluations is
(1 − p) (2) + (p) (n + 2) = pn + 2 = 3. Hence, in expectation, SVRG requires
O ((n + κ) log(1/ϵ)) gradient evaluations to achieve an ϵ-suboptimality.

4

Minimizing smooth, strongly-convex functions using SVRG

Proof: Using the algorithm update, wk+1 = wk − ηgk and following a similar proof as before,

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η ⟨gk ,wk − w∗⟩+ η2 ∥gk∥2

=⇒ E ∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η⟨E[gk],wk − w∗⟩+ η2 E[∥gk∥2]

(Since η does not depend on ik)

= ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 E[∥gk∥2]

(E[gk] = E[∇fik(wk)−∇fik(vk) +∇f (vk)] = ∇f (wk))

By strong-convexity,

E ∥wk+1 − w∗∥2 ≤ (1 − µη) ∥wk − w∗∥2 − 2η [f (wk)− f (w∗)] + η2 E[∥gk∥2] (1)

Next, we will bound E[∥gk∥2].

5

Minimizing smooth, strongly-convex functions using SVRG

E[∥gk∥2] = E[∥∇fik(wk)−∇fik(vk) +∇f (vk)∥2]

= E[∥∇fik(wk)−∇fik(w
∗) +∇fik(w

∗)−∇fik(vk) +∇f (vk)∥2]

≤ 2E
[
∥∇fik(wk)−∇fik(w

∗)∥2
]
+ 2E

[
∥∇fik(w

∗)−∇fik(vk) +∇f (vk)∥2
]

((a+ b)2 ≤ 2a2 + 2b2)

= 2E
[
∥∇fik(wk)−∇fik(w

∗)∥2
]
+ 2E

[
∥∇fik(w

∗)−∇fik(vk)− E [∇fik(w
∗)−∇fik(vk)]∥2

]
(Since E[∇fik(w

∗)] = ∇f (w∗) = 0)

For any vector x , E
[
∥x − E[x]∥2

]
≤ E[∥x∥2]. Using this with x = ∇fik(w

∗)−∇fik(vk)

≤ 2E
[
∥∇fik(wk)−∇fik(w

∗)∥2
]
+ 2E

[
∥∇fik(w

∗)−∇fik(vk)∥2
]

≤ 4LE [fik(wk)− fik(w
∗) + ⟨∇fik(w

∗),w∗ − wk⟩] + 2E
[
∥∇fik(w

∗)−∇fik(vk)∥2
]

(Smoothness of fik)

=⇒ E[∥gk∥2] ≤ 4LE[f (wk)− f (w∗)] + 2E
[
∥∇fik(w

∗)−∇fik(vk)∥2
]

(2) 6

Minimizing smooth, strongly-convex functions using SVRG

Using eq. (1) with eq. (2),

E ∥wk+1 − w∗∥2 ≤ (1 − µη) ∥wk − w∗∥2 − 2η [f (wk)− f (w∗)]

+ η2
[
4LE[f (wk)− f (w∗)] + 2E

[
∥∇fik(w

∗)−∇fik(vk)∥2
]]

≤ (1 − µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)]

+
2η2

n

n∑
i=1

[
∥∇fi (w

∗)−∇fi (vk)∥2
]

Define Dk := 4η2

pn

∑n
i=1

[
∥∇fi (w

∗)−∇fi (vk)∥2
]
.

E ∥wk+1 − w∗∥2 ≤ (1 − µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)] +
p

2
Dk (3)

7

Minimizing smooth, strongly-convex functions using SVRG

Recall that Dk = 4η2

pn

∑n
i=1

[
∥∇fi (w

∗)−∇fi (vk)∥2
]
. Using the algorithm,

E[Dk+1] = (1 − p)Dk + p
4η2

pn

n∑
i=1

[
∥∇fi (w

∗)−∇fi (wk)∥2
]

≤ (1 − p)Dk +
8η2 L

n

n∑
i=1

[fi (wk)− fi (w
∗) + ⟨∇fi (w

∗),w∗ − wk⟩]

(Smoothness)

=⇒ E[Dk+1] ≤ (1 − p)Dk + 8η2 L [f (wk)− f (w∗)] (4)

8

Minimizing smooth, strongly-convex functions using SVRG

Using eq. (3) + eq. (4),

E ∥wk+1 − w∗∥2 + E[Dk+1] ≤ (1 − µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)] +
p

2
Dk

+ (1 − p)Dk + 8η2 L [f (wk)− f (w∗)]

= (1 − µη) ∥wk − w∗∥2 + (12L η2 − 2η) [f (wk)− f (w∗)] +
(
1 − p

2

)
Dk

=
(
1 − µ

6L

)
∥wk − w∗∥2 +

(
1 − p

2

)
Dk (Since η = 1

6L)

≤ max
{(

1 − µ

6L

)
,
(
1 − p

2

)} [
∥wk − w∗∥2 +Dk

]
E
[
∥wk+1 − w∗∥2 +Dk+1

]
≤ max

{(
1 − µ

6L

)
,

(
1 − 1

2n

)} [
∥wk − w∗∥2 +Dk

]
(Since p = 1

n)

Define Φk :=
[
∥wk − w∗∥2 +Dk

]
and ρ := max

{(
1 − µ

6L

)
,
(
1 − 1

2n

)}
=⇒ E[Φk+1] ≤ ρΦk 9

Minimizing smooth, strongly-convex functions using SVRG

Recall that E[Φk+1] ≤ ρΦk . Taking expectation w.r.t the randomness in iterations from k = 0 to
T − 1 and recursing,

E[ΦT] ≤ ρTΦ0

=⇒ E[∥wT − w∗∥2] ≤ ρT
[
∥w0 − w∗∥2 +D0

]
(Lower bounding ϕT since DT is positive)

= ρT

[
∥w0 − w∗∥2 + 4η2

n∑
i=1

∥∇fi (w0)−∇fi (w
∗)∥2

]

≤ ρT

[
∥w0 − w∗∥2 + 4η2 L2

n∑
i=1

∥w0 − w∗∥2

]
(Smoothness)

=⇒ E[∥wT − w∗∥2] ≤
(
max

{(
1 − µ

6L

)
,

(
1 − 1

2n

)})T [
2n ∥w0 − w∗∥2

]
(Since η = 1

6L)

10

Questions?

10

Summary

Function class L-smooth L-smooth
+ convex + µ-strongly convex

GD O (n/ϵ) O (n κ log (1/ϵ))

Nesterov Acceleration O (n/
√
ϵ) O (n

√
κ log (1/ϵ))

SGD O (1/ϵ2) O (1/ϵ)

SGD under exact interpolation O (1/ϵ) O (κ log (1/ϵ))

Variance reduced methods
(SVRG [JZ13], SARAH [NLST17]) O ((n + 1/ϵ) log(1/ϵ)) O ((n + κ) log (1/ϵ))

Accelerated variance reduced methods
(Katyusha [AZ17], Varag [LLZ19]), O ((n + 1/

√
ϵ) log(1/ϵ)) O ((n +

√
κ) log (1/ϵ))

Table 1: Number of gradient evaluations for obtaining an ϵ-sub-optimality when minimizing a finite-sum.

The final class of functions we will look at is non-smooth, but Lipschitz (strongly)-convex
functions.

11

Lipschitz Functions

• Recall that for Lipschitz functions, for all x , y ∈ D, there exists a constant G < ∞,

|f (y)− f (x)| ≤ G ∥x − y∥ .

This immediately implies that the gradients are bounded, i.e. for all w ∈ D, ∥∇f (w)∥ ≤ G .

Example: Hinge loss: f (w) = max {0, 1 − y⟨w , x⟩} is Lipschitz with G = ∥y x∥

Compare this to smooth functions that satisfy ∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥. Lipschitz
functions are not necessarily smooth, and smooth functions are not necessarily Lipschitz.

Example: f (w) = |w | is 1-Lipschitz, but not smooth (gradient changes from −1 to +1 at
w = 0). On the other hand, f (w) = 1

2 ∥w∥2
2 is 1-smooth, but not Lipschitz (the gradient is

equal to x and hence not bounded).

12

Subgradients

Subgradient: For a convex function f , the subgradient of f at x ∈ D is a vector g that satisfies
the inequality for all y ,

f (y) ≥ f (x) + ⟨g , y − x⟩

This is similar to the first-order definition of convexity, with the subgradient instead of the
gradient. Importantly, the subgradient is not unique.

Example: For f (w) = |w | at w = 0, vectors with slope in [−1, 1] and passing through the origin
are subgradients.

Subdifferential: The set of subgradients of f at w ∈ D is referred to as the subdifferential and
denoted by ∂f (w). Formally, ∂f (w) = {g | ∀y ∈ D; f (y) ≥ f (w) + ⟨g , y − w⟩}.

For f : D → R, iff ∀w ∈ D, ∂f (w) ̸= ∅, f is convex. If f is convex and differentiable at w , then
∇f (w) ∈ ∂f (w) (see [B+15, Proposition 1.1] for a proof)

13

Subgradients

Example: For f (w) = |w |,

∂f (w) =


{1} for w > 0

[−1, 1] for w = 0

{−1} for w < 0

Q: Compute the subdifferential for the Hinge loss f (w) = max {0, 1 − ⟨z ,w⟩}

Ans:

∂f (w) =


{0} for 1 − ⟨z ,w⟩ < 0

{−αz |α ∈ [0, 1]} for 1 − ⟨z ,w⟩ = 0

{−z} for 1 − ⟨z ,w⟩ > 0

14

Subgradients

• For unconstrained minimization of convex, non-smooth functions, w∗ is the minimizer of f iff
0 ∈ ∂f (w∗) (this is analogous to the smooth case).

Using the subgradient definition at x = w∗, if 0 ∈ ∂f (w∗), then, for all y ,

f (y) ≥ f (w∗) + ⟨0, y − w∗⟩ =⇒ f (y) ≥ f (w∗) ,

and hence w∗ is a minimizer of f .

Example: For f (w) = |w |, 0 ∈ ∂f (0) and hence w∗ = 0.

Similarly, when minimizing convex, non-smooth functions over a constrained domain, if
w∗ = argminD f (w) iff ∃g ∈ ∂f (w∗) such that y ∈ D, ⟨g , y − w∗⟩ ≥ 0.

15

Subgradient Descent

• Algorithmically, we can use the subgradient instead of the gradient in GD, and use the
resulting algorithm to minimize convex, Lipschitz functions.

Projected Subgradient Descent: wk+1 = ΠD [wk − ηkgk], where gk ∈ ∂f (wk).

Similar to GD, we can interpret subgradient descent as:

wk+1 = argmin
w∈D

[
⟨gk ,w⟩+ 1

2ηk
∥w − wk∥2

]
• Unlike for smooth, convex functions, we cannot relate the subgradient norm to the
suboptimality in the function values. Example: For f (w) = |w |, for all w > 0 (including
w = 0+), ∥g∥ = 1.

• Since the sub-gradient norm does not necessarily decrease closer to the solution, to converge to
the minimizer, we need to explicitly decrease the step-size resulting in slower convergence.

Example: For Lipschitz, convex functions, ηk = O(1/
√
k) and subgradient descent will result in

Θ(1/
√
T) convergence.

16

References i

Zeyuan Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradient methods,
The Journal of Machine Learning Research 18 (2017), no. 1, 8194–8244.

Sébastien Bubeck et al., Convex optimization: Algorithms and complexity, Foundations and
Trends® in Machine Learning 8 (2015), no. 3-4, 231–357.

Rie Johnson and Tong Zhang, Accelerating stochastic gradient descent using predictive
variance reduction, Advances in neural information processing systems 26 (2013).

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik, Don’t jump through hoops and
remove those loops: Svrg and katyusha are better without the outer loop, Algorithmic
Learning Theory, PMLR, 2020, pp. 451–467.

Guanghui Lan, Zhize Li, and Yi Zhou, A unified variance-reduced accelerated gradient
method for convex optimization, Advances in Neural Information Processing Systems 32
(2019).

17

References ii

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč, Sarah: A novel method for
machine learning problems using stochastic recursive gradient, International Conference on
Machine Learning, PMLR, 2017, pp. 2613–2621.

Mark Schmidt, Nicolas Le Roux, and Francis Bach, Minimizing finite sums with the
stochastic average gradient, Mathematical Programming 162 (2017), no. 1, 83–112.

18

