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Minimizing smooth, strongly-convex functions

For minimizing smooth, strongly-convex functions f (w) = 1
n

∑n
i=1 fi (w) to an ϵ-suboptimality,

Deterministic GD requires O(κ log(1/ϵ)) iterations, and O(n κ log(1/ϵ)) gradient evaluations.

SGD with a decreasing step-size requires O(1/ϵ) iterations, and O(1/ϵ) gradient evaluations.

Under exact interpolation, SGD with a constant step-size requires O(κ log(1/ϵ)) iterations,
and O(κ log(1/ϵ)) gradient evaluations.

For finite-sum problems of the form 1
n

∑n
i=1 fi (w), variance reduced methods require

O((n + κ) log(1/ϵ)) gradient evaluations.
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Variance Reduced Methods

• Recall that under exact interpolation, the variance decreases as we approach the minimizer.

• In contrast, variance reduced (VR) methods explicitly reduce the variance by either storing the
past stochastic gradients to approximate the full gradient [SLRB17] or by computing the full
gradient every “few” iterations [JZ13].

• VR methods only require f to be a finite sum, and make no interpolation assumption.

• With variance reduction, we can use acceleration techniques to improve the dependence on the
condition number, and require O((n +

√
κ) log(1/ϵ)) gradient evaluations [AZ17].

• For smooth, convex finite-sum problems, variance reduced techniques require
O
(
(n + 1

ϵ ) log(
1/ϵ)

)
gradient evaluations [NLST17], compared to deterministic GD that requires

O( nϵ ) gradient evaluations and SGD that requires O( 1
ϵ2 ) gradient evaluations.

• We will use SVRG (Stochastic Variance Reduced Gradient) [JZ13] for smooth, strongly-convex
finite-sum problems, and prove that it requires O((n + κ) log(1/ϵ)) gradient evaluations.

2



SVRG

For simplicity, we will use Loopless SVRG [KHR20] that has a simpler implementation and
analysis compared to the original paper [JZ13].

Algorithm SVRG
1: function SVRG (f , w0, η, p ∈ (0, 1])
2: v0 = w0

3: for k = 0, . . . ,T − 1 do
4: gk = ∇fik(wk)−∇fik(vk) +∇f (vk)

5: wk+1 = wk − ηgk

6: vk+1 =

{
vk with probability 1 − p

wk with probability p

7: end for
8: return wT
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Minimizing smooth, strongly-convex functions using SVRG

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, T iterations of SVRG with η = 1
6L and p = 1

n returns iterate wT ,

E[∥wT − w∗∥2] ≤
(
max

{(
1 − µ

6L

)
,

(
1 − 1

2n

)})T [
2n ∥w0 − w∗∥2

]
.

Case 1:
(
1 − µ

6L

)
≤

(
1 − 1

2n

)
=⇒ n ≥ 3κ. In this case, for achieving an ϵ-suboptimality, we

need T iterations such that T ≥ 2n log
(

2n ∥w0−w∗∥2

ϵ

)
.

Case 2:
(
1 − µ

6L

)
>

(
1 − 1

2n

)
=⇒ n ≤ 3κ. In this case, for achieving an ϵ-suboptimality, we

need T iterations such that T ≥ 6κ log
(

2n ∥w0−w∗∥2

ϵ

)
.

• Putting cases together, for achieving an ϵ-suboptimality, we need T = O ((n + κ) log(1/ϵ)).

• In each iteration, the number of expected gradient evaluations is
(1 − p) (2) + (p) (n + 2) = pn + 2 = 3. Hence, in expectation, SVRG requires
O ((n + κ) log(1/ϵ)) gradient evaluations to achieve an ϵ-suboptimality.
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Minimizing smooth, strongly-convex functions using SVRG

Proof: Using the algorithm update, wk+1 = wk − ηgk and following a similar proof as before,

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η ⟨gk ,wk − w∗⟩+ η2 ∥gk∥2

=⇒ E ∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η⟨E[gk ],wk − w∗⟩+ η2 E[∥gk∥2]

(Since η does not depend on ik)

= ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 E[∥gk∥2]

(E[gk ] = E[∇fik(wk)−∇fik(vk) +∇f (vk)] = ∇f (wk))

By strong-convexity,

E ∥wk+1 − w∗∥2 ≤ (1 − µη) ∥wk − w∗∥2 − 2η [f (wk)− f (w∗)] + η2 E[∥gk∥2] (1)

Next, we will bound E[∥gk∥2].
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Minimizing smooth, strongly-convex functions using SVRG

E[∥gk∥2] = E[∥∇fik(wk)−∇fik(vk) +∇f (vk)∥2]

= E[∥∇fik(wk)−∇fik(w
∗) +∇fik(w

∗)−∇fik(vk) +∇f (vk)∥2]

≤ 2E
[
∥∇fik(wk)−∇fik(w

∗)∥2
]
+ 2E

[
∥∇fik(w

∗)−∇fik(vk) +∇f (vk)∥2
]

((a+ b)2 ≤ 2a2 + 2b2)

= 2E
[
∥∇fik(wk)−∇fik(w

∗)∥2
]
+ 2E

[
∥∇fik(w

∗)−∇fik(vk)− E [∇fik(w
∗)−∇fik(vk)]∥2

]
(Since E[∇fik(w

∗)] = ∇f (w∗) = 0)

For any vector x , E
[
∥x − E[x ]∥2

]
≤ E[∥x∥2]. Using this with x = ∇fik(w

∗)−∇fik(vk)

≤ 2E
[
∥∇fik(wk)−∇fik(w

∗)∥2
]
+ 2E

[
∥∇fik(w

∗)−∇fik(vk)∥2
]

≤ 4LE [fik(wk)− fik(w
∗) + ⟨∇fik(w

∗),w∗ − wk⟩] + 2E
[
∥∇fik(w

∗)−∇fik(vk)∥2
]

(Smoothness of fik)

=⇒ E[∥gk∥2] ≤ 4LE[f (wk)− f (w∗)] + 2E
[
∥∇fik(w

∗)−∇fik(vk)∥2
]

(2) 6



Minimizing smooth, strongly-convex functions using SVRG

Using eq. (1) with eq. (2),

E ∥wk+1 − w∗∥2 ≤ (1 − µη) ∥wk − w∗∥2 − 2η [f (wk)− f (w∗)]

+ η2
[
4LE[f (wk)− f (w∗)] + 2E

[
∥∇fik(w

∗)−∇fik(vk)∥2
]]

≤ (1 − µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)]

+
2η2

n

n∑
i=1

[
∥∇fi (w

∗)−∇fi (vk)∥2
]

Define Dk := 4η2

pn

∑n
i=1

[
∥∇fi (w

∗)−∇fi (vk)∥2
]
.

E ∥wk+1 − w∗∥2 ≤ (1 − µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)] +
p

2
Dk (3)
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Minimizing smooth, strongly-convex functions using SVRG

Recall that Dk = 4η2

pn

∑n
i=1

[
∥∇fi (w

∗)−∇fi (vk)∥2
]
. Using the algorithm,

E[Dk+1] = (1 − p)Dk + p
4η2

pn

n∑
i=1

[
∥∇fi (w

∗)−∇fi (wk)∥2
]

≤ (1 − p)Dk +
8η2 L

n

n∑
i=1

[fi (wk)− fi (w
∗) + ⟨∇fi (w

∗),w∗ − wk⟩]

(Smoothness)

=⇒ E[Dk+1] ≤ (1 − p)Dk + 8η2 L [f (wk)− f (w∗)] (4)

8



Minimizing smooth, strongly-convex functions using SVRG

Using eq. (3) + eq. (4),

E ∥wk+1 − w∗∥2 + E[Dk+1] ≤ (1 − µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)] +
p

2
Dk

+ (1 − p)Dk + 8η2 L [f (wk)− f (w∗)]

= (1 − µη) ∥wk − w∗∥2 + (12L η2 − 2η) [f (wk)− f (w∗)] +
(
1 − p

2

)
Dk

=
(
1 − µ

6L

)
∥wk − w∗∥2 +

(
1 − p

2

)
Dk (Since η = 1

6L )

≤ max
{(

1 − µ

6L

)
,
(
1 − p

2

)} [
∥wk − w∗∥2 +Dk

]
E
[
∥wk+1 − w∗∥2 +Dk+1

]
≤ max

{(
1 − µ

6L

)
,

(
1 − 1

2n

)} [
∥wk − w∗∥2 +Dk

]
(Since p = 1

n )

Define Φk :=
[
∥wk − w∗∥2 +Dk

]
and ρ := max

{(
1 − µ

6L

)
,
(
1 − 1

2n

)}
=⇒ E[Φk+1] ≤ ρΦk 9



Minimizing smooth, strongly-convex functions using SVRG

Recall that E[Φk+1] ≤ ρΦk . Taking expectation w.r.t the randomness in iterations from k = 0 to
T − 1 and recursing,

E[ΦT ] ≤ ρTΦ0

=⇒ E[∥wT − w∗∥2] ≤ ρT
[
∥w0 − w∗∥2 +D0

]
(Lower bounding ϕT since DT is positive)

= ρT

[
∥w0 − w∗∥2 + 4η2

n∑
i=1

∥∇fi (w0)−∇fi (w
∗)∥2

]

≤ ρT

[
∥w0 − w∗∥2 + 4η2 L2

n∑
i=1

∥w0 − w∗∥2

]
(Smoothness)

=⇒ E[∥wT − w∗∥2] ≤
(
max

{(
1 − µ

6L

)
,

(
1 − 1

2n

)})T [
2n ∥w0 − w∗∥2

]
(Since η = 1

6L )
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Questions?
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Summary

Function class L-smooth L-smooth
+ convex + µ-strongly convex

GD O (n/ϵ) O (n κ log (1/ϵ))

Nesterov Acceleration O (n/
√
ϵ) O (n

√
κ log (1/ϵ))

SGD O (1/ϵ2) O (1/ϵ)

SGD under exact interpolation O (1/ϵ) O (κ log (1/ϵ))

Variance reduced methods
(SVRG [JZ13], SARAH [NLST17]) O ((n + 1/ϵ) log(1/ϵ)) O ((n + κ) log (1/ϵ))

Accelerated variance reduced methods
(Katyusha [AZ17], Varag [LLZ19]), O ((n + 1/

√
ϵ) log(1/ϵ)) O ((n +

√
κ) log (1/ϵ))

Table 1: Number of gradient evaluations for obtaining an ϵ-sub-optimality when minimizing a finite-sum.

The final class of functions we will look at is non-smooth, but Lipschitz (strongly)-convex
functions.
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Lipschitz Functions

• Recall that for Lipschitz functions, for all x , y ∈ D, there exists a constant G < ∞,

|f (y)− f (x)| ≤ G ∥x − y∥ .

This immediately implies that the gradients are bounded, i.e. for all w ∈ D, ∥∇f (w)∥ ≤ G .

Example: Hinge loss: f (w) = max {0, 1 − y⟨w , x⟩} is Lipschitz with G = ∥y x∥

Compare this to smooth functions that satisfy ∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥. Lipschitz
functions are not necessarily smooth, and smooth functions are not necessarily Lipschitz.

Example: f (w) = |w | is 1-Lipschitz, but not smooth (gradient changes from −1 to +1 at
w = 0). On the other hand, f (w) = 1

2 ∥w∥2
2 is 1-smooth, but not Lipschitz (the gradient is

equal to x and hence not bounded).

12



Subgradients

Subgradient: For a convex function f , the subgradient of f at x ∈ D is a vector g that satisfies
the inequality for all y ,

f (y) ≥ f (x) + ⟨g , y − x⟩

This is similar to the first-order definition of convexity, with the subgradient instead of the
gradient. Importantly, the subgradient is not unique.

Example: For f (w) = |w | at w = 0, vectors with slope in [−1, 1] and passing through the origin
are subgradients.

Subdifferential: The set of subgradients of f at w ∈ D is referred to as the subdifferential and
denoted by ∂f (w). Formally, ∂f (w) = {g | ∀y ∈ D; f (y) ≥ f (w) + ⟨g , y − w⟩}.

For f : D → R, iff ∀w ∈ D, ∂f (w) ̸= ∅, f is convex. If f is convex and differentiable at w , then
∇f (w) ∈ ∂f (w) (see [B+15, Proposition 1.1] for a proof)
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Subgradients

Example: For f (w) = |w |,

∂f (w) =


{1} for w > 0

[−1, 1] for w = 0

{−1} for w < 0

Q: Compute the subdifferential for the Hinge loss f (w) = max {0, 1 − ⟨z ,w⟩}

Ans:

∂f (w) =


{0} for 1 − ⟨z ,w⟩ < 0

{−αz |α ∈ [0, 1]} for 1 − ⟨z ,w⟩ = 0

{−z} for 1 − ⟨z ,w⟩ > 0
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Subgradients

• For unconstrained minimization of convex, non-smooth functions, w∗ is the minimizer of f iff
0 ∈ ∂f (w∗) (this is analogous to the smooth case).

Using the subgradient definition at x = w∗, if 0 ∈ ∂f (w∗), then, for all y ,

f (y) ≥ f (w∗) + ⟨0, y − w∗⟩ =⇒ f (y) ≥ f (w∗) ,

and hence w∗ is a minimizer of f .

Example: For f (w) = |w |, 0 ∈ ∂f (0) and hence w∗ = 0.

Similarly, when minimizing convex, non-smooth functions over a constrained domain, if
w∗ = argminD f (w) iff ∃g ∈ ∂f (w∗) such that y ∈ D, ⟨g , y − w∗⟩ ≥ 0.
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Subgradient Descent

• Algorithmically, we can use the subgradient instead of the gradient in GD, and use the
resulting algorithm to minimize convex, Lipschitz functions.

Projected Subgradient Descent: wk+1 = ΠD [wk − ηkgk ], where gk ∈ ∂f (wk).

Similar to GD, we can interpret subgradient descent as:

wk+1 = argmin
w∈D

[
⟨gk ,w⟩+ 1

2ηk
∥w − wk∥2

]
• Unlike for smooth, convex functions, we cannot relate the subgradient norm to the
suboptimality in the function values. Example: For f (w) = |w |, for all w > 0 (including
w = 0+), ∥g∥ = 1.

• Since the sub-gradient norm does not necessarily decrease closer to the solution, to converge to
the minimizer, we need to explicitly decrease the step-size resulting in slower convergence.

Example: For Lipschitz, convex functions, ηk = O(1/
√
k) and subgradient descent will result in

Θ(1/
√
T) convergence.
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