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Recap

• Interpolation: Over-parameterized models (such as deep neural networks) are capable of
exactly fitting the training dataset.

• When minimizing f (w) = 1
n

∑n
i=1 fi (w), if ∥∇f (w)∥ = 0, then ∥∇fi (w)∥ = 0 for all i ∈ [n] i.e.

the variance in the stochastic gradients becomes zero at a stationary point.

• Under interpolation, since the noise is zero at the optimum, SGD does not need to decrease
the step-size and can converge to the minimizer by using a constant step-size.

• If f is strongly-convex and interpolation is satisfied (e.g. when using kernels or least squares
with d > n), constant step-size SGD can converge to the minimizer at an O(exp(−T/κ)) rate.
Hence, SGD matches the rate of deterministic GD, but compared to GD, each iteration is cheap.

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ∥∇fi (w∗)∥ = 0, T iterations of
SGD with ηk = η = 1

L returns iterate wT such that,

E[∥wT − w∗∥2] ≤ exp

(
−T
κ

)
∥w0 − w∗∥2 .
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Minimizing smooth, strongly-convex functions using SGD under interpolation

Proof: Following the same proof as before, we get that,

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇fik(wk)∥2

]
≤ ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k Ei [2L [fik(wk)− fik(w
∗)]]

(Using L-smoothness, convexity of fi and ∇fi (w∗) = 0)

= ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ 2L η2
k E [f (wk)− f (w∗)]

(Unbiasedness)

= ∥wk − w∗∥2 (1− µηk)− 2ηk [f (wk)− f (w∗)] + 2L η2
k E [f (wk)− f (w∗)]

(Strong-convexity)

=
(
1− µ

L

)
∥wk − w∗∥2 (Since ηk = η = 1

L )

Taking expectation w.r.t the randomness from iterations k = 0 to T − 1 and recursing,

E[∥wT − w∗∥2] ≤
(
1− µ

L

)T

∥w0 − w∗∥2 ≤ exp

(
−T
κ

)
∥w0 − w∗∥2
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Minimizing smooth, strongly-convex functions using SGD under interpolation

We can modify the proof in order to get an O
(
exp

(−T
κ

)
+ ζ2

)
where ζ2 ∝ Ei ∥∇fi (w∗)∥2.

Moreover, as before, if we use a mini-batch of size b, the effective noise is ζ2
b ∝

Ei∥∇fi (w
∗)∥2

b .
Hence, if the model is sufficiently over-parameterized so that it almost interpolates the data,
and we are using a large batch-size, then ζ2

b is small, and constant step-size works well.

When minimizing convex functions under (exact) interpolation, constant step-size SGD
results in O(1/T ) convergence, matching deterministic GD, but with much smaller
per-iteration cost (Need to prove this in Assignment 3!)
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Questions?
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Minimizing smooth, non-convex functions using SGD under interpolation

• When minimizing non-convex functions, interpolation is not enough to guarantee a fast
(matching the deterministic) O(1/T ) rate for SGD.

• Can achieve this rate under the strong growth condition (SGC) on the stochastic gradients.
Formally, there exists a constant ρ > 1 such that for all w ,

Ei ∥∇fi (w)∥2 ≤ ρ ∥∇f (w)∥2

Hence, SGC implies that ∥∇fi (w∗)∥2 = 0 for all i and hence interpolation.

• As before, let us study the effect of SGC on the variance σ2(w).

σ2(w) := Ei ∥∇fi (w)−∇f (w)∥2 = Ei ∥∇fi (w)∥2 − ∥∇f (w)∥2 (Unbiasedness)

=⇒ σ2(w) ≤ (ρ− 1) ∥∇f (w)∥2 (SGC)

Hence, SGC implies that as w gets closer to a stationary point (in terms of the gradient norm),
the variance decreases and constant step-size SGD converges to a stationary point.
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Minimizing smooth, non-convex functions using SGD under interpolation

Claim: For (i) L-smooth functions lower-bounded by f ∗, (ii) under ρ-SGC, T iterations of SGD
with ηk = 1

ρL returns an iterate ŵ such that,

E[∥∇f (ŵ)∥2] ≤ 2ρL [f (w0)− f ∗]

T
.Proof: Similar to the proof in Lecture 8, using the L-smoothness of f with x = wk and
y = wk+1 = wk − ηk∇fik(wk),

f (wk+1) ≤ f (wk) + ⟨∇f (wk),−ηk∇fik(wk)⟩+
L

2
η2
k ∥∇fik(wk)∥2

Taking expectation w.r.t ik on both sides and using that ηk is independent of ik

E[f (wk+1)] ≤ f (wk)− ηkE [⟨∇f (wk),∇fik(wk)⟩] +
Lη2

k

2
E
[
∥∇fik(wk)∥2

]
E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +

Lη2
k

2
E
[
∥∇fik(wk)∥2

]
(Unbiasedness)
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Minimizing smooth, non-convex functions using SGD under interpolation

Recall E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 + Lη2
k

2 E
[
∥∇fik(wk)∥2

]
. Using ρ-SGC,

E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lρη2

k

2
∥∇f (wk)∥2

E[f (wk+1)] ≤ f (wk)−
1

2ρL
∥∇f (wk)∥2 (Using ηk = η = 1

ρL )

Taking expectation w.r.t the randomness from iterations i = 0 to k − 1, and summing

T−1∑
k=0

E[∥∇f (wk)∥2] ≤ 2ρL
T−1∑
k=0

E[f (wk)− f (wk+1)] =⇒
∑T−1

k=0 E[∥∇f (wk)∥2]
T

≤ 2ρLE[f (w0)− f ∗]

T

(Dividing by T )

Defining ŵ := argmink∈{0,1,...,T−1} E[∥∇f (wk)∥2],

E[∥∇f (ŵ)∥2] ≤ 2ρL [f (w0)− f ∗]

T
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Questions?
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Stochastic Line-Search

• Algorithmically, convergence under interpolation requires knowledge of L. We will use a
stochastic line-search (SLS) procedure [VML+19] to estimate L. SLS is similar to the
deterministic variant in Lecture 3, but uses only stochastic function/gradient evaluations.

Algorithm SGD with Stochastic Line-search
1: function SGD with Stochastic Line-search (f , w0, ηmax, c ∈ (0, 1), β ∈ (0, 1))
2: for k = 0, . . . ,T − 1 do
3: η̃k ← ηmax

4: while fik(wk − η̃k∇fik(wk)) > fik(wk)− c · η̃k ∥∇fik(wk)∥2 do
5: η̃k ← η̃kβ

6: end while
7: ηk ← η̃k
8: wk+1 = wk − ηk∇fik(wk)

9: end for
10: return wT
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Stochastic Line-Search

• SLS searches for a good step-size in the wrong direction.

• Since all fi have zero gradient at w∗ and the noise
decreases as we get closer to the solution (because of
interpolation), SGD with SLS converges to the minimizer.

Claim: If each fi is L-smooth, then the (exact) backtracking procedure for SLS terminates and
returns ηk ∈

[
min

{
2 (1−c)

L , ηmax

}
, ηmax

]
.

Proof: Similar to the deterministic case (Lecture 3), but requires that each fi is L-smooth.
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Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ∥∇fi (w∗)∥ = 0, T iterations of
SGD with SLS (with c = 1/2) returns iterate wT such that,

E[∥wT − w∗∥2] ≤ exp

(
−µT min

{
1
L
, ηmax

})
∥w0 − w∗∥2

Proof: Similar to the previous proof, we get that,

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E
[
η2
k ∥∇fik(wk)∥2

]
(1)

Since ηk depends on ik , we can not push the expectation in. ηk is set by SLS, it satisfies the
stochastic Armijo condition. Simplifying the third term and denoting f ∗ik := min fik(w),

E
[
η2
k ∥∇fik(wk)∥2

]
≤ E

[
ηk

fik(wk)− fik(wk+1)

c

]
≤ E

[
ηk

fik(wk)− f ∗ik
c

]
(2)

9



Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Using eq. (1) + eq. (2),

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E
[
ηk

fik(wk)− f ∗ik
c

]
(3)

E
[
ηk

fik(wk)− f ∗ik
c

]
= E [2ηk (fik(wk)− fik(w

∗) + fik(w
∗)− f ∗ik )] (Setting c = 1/2)

= E [2ηk (fik(wk)− fik(w
∗))] + E

2ηk (fik(w
∗)− f ∗ik ))︸ ︷︷ ︸

Positive


≤ E [2ηk (fik(wk)− fik(w

∗))] + 2ηmax E [fik(w
∗)− f ∗ik ] (Since ηk ≤ ηmax)

Since fik is convex and ∇fik(w∗) = 0, fik(w∗) = f ∗ik .

E
[
ηk

fik(wk)− f ∗ik
c

]
≤ E [2ηk (fik(wk)− fik(w

∗))] (4)
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Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Using eq. (3) + eq. (4),

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E [2ηk (fik(wk)− fik(w
∗))]

= ∥wk − w∗∥2 + 2E [ηk(fik(wk)− fik(w
∗) + ⟨∇fik(wk),w

∗ − wk⟩)]

Since fik is convex, fik(wk)− fik(w
∗) + ⟨∇fik(wk),w

∗ − wk⟩ ≤ 0

≤ ∥wk − w∗∥2 + 2ηmin E [fik(wk)− fik(w
∗) + ⟨∇fik(wk),w

∗ − wk⟩]
(Lower-bounding ηk . ηmin := min

{ 1
L , ηmax

}
)

= ∥wk − w∗∥2 + 2ηmin E [f (wk)− f (w∗) + ⟨∇f (wk),w
∗ − wk⟩]
(Unbiasedness)

≤ ∥wk − w∗∥2 + 2ηmin

[
−µ
2
∥wk − w∗∥2

]
(f is µ-strongly convex)

=⇒ E[∥wk+1 − w∗∥2] ≤ (1− µ ηmin) ∥wk − w∗∥2
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Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Recall that E[∥wk+1 − w∗∥2] ≤ (1− µ ηmin) ∥wk − w∗∥2. Taking expectation w.r.t the
randomness from iterations k = 0 to T − 1 and recursing,

E[∥wT − w∗∥2] ≤ (1− µηmin)
T ∥w0 − w∗∥2 ≤ exp (−µT ηmin) ∥w0 − w∗∥2

=⇒ E[∥wT − w∗∥2] ≤ exp

(
−µT min

{
1
L
, ηmax

})
∥w0 − w∗∥2

Hence, when minimizing smooth, strongly-convex functions under interpolation, SGD + SLS will
will converge to the minimizer at an exponential rate.

• If interpolation is not exactly satisfied, we can modify the proof to get an O
(
exp

(−T
κ

)
+ ζ2

)
rate, where ζ2 := E [fik(w

∗)− f ∗ik ].

• When minimizing convex functions under (exact) interpolation, SGD + SLS results in an
O(1/T ) rate without requiring knowledge of L. (Need to prove this in Assignment 3!)

• Do not have strong theoretical results for SGD + SLS on smooth, non-convex problems.
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Stochastic Line-Search and Effect of Over-parametrization

Objective: minθ1,θ2
1
2n

∑n
i=1 ∥θ2 θ1xi − yi∥2 ; Parameterization: θ1 ∈ Rk×6, θ2 ∈ R10×k .
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Stochastic Line-Search - Experimental Results

Task: Multi-class classification with logistic loss.
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Stochastic Polyak Step-size

• When interpolation is (approximately) satisfied, we can use SGD with the stochastic Polyak
step-size (SPS) [LVLLJ21]: At iteration k , for hyper-parameter c ∈ (0, 1) and f ∗ik := minw fik(w),

ηk =
fik(wk)− f ∗ik
c ∥∇fik(wk)∥2

.

Common machine learning losses (squared loss, logistic loss, exponential loss) are lower-bounded
by zero. Algorithmically, we can set f ∗ik = 0.

SPS matches the SLS rates on smooth, (strongly) convex functions. E.g. SPS with c = 1/2

achieves the O
(
exp

(−T
κ

)
+ ζ2

)
rate for smooth, strongly-convex functions.

Much simpler and computationally inexpensive to implement compared to SLS.
Unlike SLS, SPS can be used for minimizing non-smooth, convex functions.
Results in large step-sizes and requires some additional heuristics for stabilizing the method.
For neural networks, generalization for SGD + SPS was typically worse than for SGD + SLS.
Requires access to f ∗ik which might be difficult to compute for more general problems.
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Adaptivity for SGD

Noise-adaptivity: When minimizing smooth, strongly-convex functions, with T iterations of
SGD with ηk := 1

L

( 1
T

) k
T , we can obtain an O

(
exp

(−T
κ

)
+ ζ2

T

)
rate, where

ζ2 := Ei [fi (w
∗)− f ∗i ]. Adaptive to the extent of interpolation, but requires L to set the step-size.

Problem-adaptivity: SGD with the step-size set according to SLS/SPS is adaptive to L, but
results in an O

(
exp

(−T
κ

)
+ ζ2

)
rate.

• [VDTB21] attempts to combine the above ideas to obtain both noise and problem adaptivity

i.e. use SLS to set γk ≈ 1
L and use ηk = γk

( 1
T

) k
T . Either not guaranteed to converge to the

minimizer or will converge to the minimizer at a slower (than optimal) rate.

• For smooth, strongly-convex problems, we do not (yet) know how to make SGD problem and
noise-adaptive, and achieve the optimal rate.

• For smooth, convex problems, AdaGrad is both problem and noise-adaptive.
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Questions?
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