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e Interpolation: Over-parameterized models (such as deep neural networks) are capable of
exactly fitting the training dataset.

e When minimizing f(w) = 1 37 | fi(w), if [Vf(w)|| =0, then |[V£(w)| =0 for all i € [n] i.e.

o
the variance in the stochastic gradients becomes zero at a stationary point.
e Under interpolation, since the noise is zero at the optimum, SGD does not need to decrease
the step-size and can converge to the minimizer by using a constant step-size.

e If f is strongly-convex and interpolation is satisfied (e.g. when using kernels or least squares
with d > n), constant step-size SGD can converge to the minimizer at an O(exp(—T/x)) rate.
Hence, SGD matches the rate of deterministic GD, but compared to GD, each iteration is cheap.

Claim: When minimizing f(w) = 1 37 | fi(w) such that (i) f is p-strongly convex, (i) each f;
is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ||Vfi(w*)|| =0, T iterations of

SGD with ny =n = % returns iterate wr such that,

* -7 *
Eflwr — wIF] < e (=) o — wI



Minimizing smooth, strongly-convex functions using SGD under interpolation

Proof: Following the same proof as before, we get that,
Eflweer — w1 = [[we — w12~ 20(VF(we), we — w*) + 0 E [V (i) ]
< [lwi — w*[|* = 2 (V F(wie), wie — w*) + nf E; [2L [fu(wie) — Fae(w™)]]
(Using L-smoothness, convexity of f; and Vf;(w*) = 0)
(Vv

F(wie), wic — w*) + 2L E[f (wie) — F(w*)]
(Unbiasedness)

= wic = w*[1* (1 = k) = 20k [F (wi) = F(w*)] + 2L E[F (wie) — F(w")]

(Strong-convexity)

2 )
(lfz) [lwie — w™|| (Since nk:n:%)

Taking expectation w.r.t the randomness from iterations k =0 to T — 1 and recursing,

= flwic — w* || — 2

* T * —T *
Eflwr — w1 < (1) lwo~ wl < exp (1) o - w'l?



Minimizing smooth, strongly-convex functions using SGD under interpolation

@ We can modify the proof in order to get an O (exp (=L) + ¢?) where (> x E; V(w1

. 2 * 2
@ Moreover, as before, if we use a mini-batch of size b, the effective noise is Cg x M.

Hence, if the model is sufficiently over-parameterized so that it almost interpolates the data,
and we are using a large batch-size, then (2 is small, and constant step-size works well.

@ When minimizing convex functions under (exact) interpolation, constant step-size SGD
results in O(1/T) convergence, matching deterministic GD, but with much smaller
per-iteration cost (Need to prove this in Assignment 3!)



Questions?



Minimizing smooth, non-convex functions using SGD under interpolation

e When minimizing non-convex functions, interpolation is not enough to guarantee a fast
(matching the deterministic) O(1/T) rate for SGD.

e Can achieve this rate under the strong growth condition (SGC) on the stochastic gradients.
Formally, there exists a constant p > 1 such that for all w,

E; | VE(w)|* < p [VF(w)]?

Hence, SGC implies that ||V ;(w*)||* = 0 for all i and hence interpolation.

o As before, let us study the effect of SGC on the variance o2(w).
?(w) = E; |[VAi(w) — VF(W)|]> = E; [VH(W)|? — [VF(w)]? (Unbiasedness)
— (W) < (p— 1) [VF(w)|? (SGC)

Hence, SGC implies that as w gets closer to a stationary point (in terms of the gradient norm),
the variance decreases and constant step-size SGD converges to a stationary point.



Minimizing smooth, non-convex functions using SGD under interpolation

Claim: For (i) L-smooth functions lower-bounded by f*, (ii) under p-SGC, T iterations of SGD

with 7, = ﬁ returns an iterate W such that,

2oL [F(wo) — ]
T

Proof: Similar to the proof in Lecture 8, using the L-smoothness of f with x = wj and

E[|VF(W)[*] <

Y = Wi1 = Wi — 0 Vi (wi),
Flwksa) < Flw) + (97 (wi), 14V i) + 72 [V (o)
Taking expectation w.r.t ix on both sides and using that 7 is independent of i
BIF(wera)] < F(wi) = B [ F(wi), Vhi(wil] + S22 B [V fu(wi) ]

L .
Elf (wia)] < F(wi) = i [ VAWl + == E {1V fic(wi)|I] (Unbiasedness)



Minimizing smooth, non-convex functions using SGD under interpolation

Recall E[f (wii1)] < F(wi) — mic [VF(we)|? + 25 E [||w,-k(wk)||2] Using p-SGC
2 L/”?i 2
Eff (wir)] < f(wi) = i [IVF(wi) [* + = IV (wil |

1 .
E[f (wit1)] < f(wi) — 2L IV F(we)||? (Using n =n = ;)

Taking expectation w.r.t the randomness from iterations i = 0 to k — 1, and summing
T-1

> ElIVF(w )12 < 2oL ;)E[f W) — Fwipr)] = 240 E[”Tw(wk)” L 2pLE[f(;V°) =i

(Dividing by T)
Defining w := arg MiNgefo1,.., T-1} E[HVf(wk)Hz],

v ()|} < 20 = 7]



Questions?



Stochastic Line-Search

e Algorithmically, convergence under interpolation requires knowledge of L. We will use a
stochastic line-search (SLS) procedure [VMLT19] to estimate L. SLS is similar to the
deterministic variant in Lecture 3, but uses only stochastic function/gradient evaluations.

Algorithm SGD with Stochastic Line-search
1. function SGD with Stochastic Line-search (f, wp, 7max, ¢ € (0,1), 8 € (0,1))
2. for k=0,...,T —1do
3: Tk <= Tmax
4 while fir(wi — iV i(wie)) > Fix(wi) — ¢ - i ||V i (wie) 1> do
5 Tk <= ik
6: end while
7

Nk < Tk
8 Wiy1 = Wk — i V(W)
9: end for
10: return wr




Stochastic Line-Search

e SLS searches for a good step-size in the wrong direction. b Vfiwe)

e Since all f; have zero gradient at w* and the noise
decreases as we get closer to the solution (because of
interpolation), SGD with SLS converges to the minimizer.

Claim: If each f; is L-smooth, then the (exact) backtracking procedure for SLS terminates and
returns 7, € {min {2(17[.:)7 nmax} 777ma><]

Proof: Similar to the deterministic case (Lecture 3), but requires that each f; is L-smooth.



Minimizing smooth, strongly-convex functions using SGD + SLS

under interpolation

Claim: When minimizing f(w) = 2 Y7 fi(w) such that (i) f is u-strongly convex, (ii) each f;

n
is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ||Vfi(w*)|| =0, T iterations of

SGD with SLS (with ¢ = 1/2) returns iterate wr such that,
.2 1 .2
Eflwr — w7 < e (< T min{ Loomc) ) oo = |
Proof: Similar to the previous proof, we get that,
Eflwesr — w*[2] = lwi — w2 — 2B [ V(). we — w*)] +E [1 [Vi(m)l?] ()

Since 7, depends on iy, we can not push the expectation in. 7y is set by SLS, it satisfies the
stochastic Armijo condition. Simplifying the third term and denoting f;; := min fi(w),

fir (W) _Cfik(Wk-O—l)} <E {Uk f'k("‘/kc)_fl:} (2)

E [ IVfu(wi)|?] <E [nk



Minimizing smooth, strongly-convex functions using SGD + SLS

under interpolation

Using eq. (1) + eq. (2),

Ellwers — w7 = e = wl* = 28 E (V. e — )] + [ L] )
B o IR o (o) — (™) + ) ~ 1) (Setting ¢ = 1/2)

= E [2n) (fuc(wi) — fi(w™))] + E l2nk (fix (w™) — f,-Z))]
—_————

Positive

< E [0 (fuc(wic) = fi(w™))] + 21)max E [fix(w™) — f] - (Since nic < 7max)

Since f is convex and Vfy(w*) =0, fy(w*) = f;.

B o IR < o () — fuw) @
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Minimizing smooth, strongly-convex functions using SGD + SLS

under interpolation

Using eq. (3) + eq. (4),
Efllwess — wl7] = lwe — w* I — 2B [ (5 i (i), wie — w*)] + E (2 (i) — ("))
= [wi — w*||* + 2B [mie(Fae(wi)) — Fac(w™) + (Vi (wie), w* — wi))]
Since fiy is convex, fix(wi) — fix(w*) + (Vi(wi), w* — wy) <0
< Wi = w17 + 20min B [fire (W) — Fae(w™) + (V fae(wie), w* — wie)]
(Lower-bounding 7. 7min := min {%, nmax})
= [lwic — W*|* + 20min B [F(wic) — F(wW*) + (VF(wi), w* — wi)]
(Unbiasedness)

< Jlwie — w*|I* + 27min [_2# lwg — W*||2:| (f is p-strongly convex)
(|2 |2
= E[Hwk-H - w H ] < (1 _,unmin) HWk - w ||
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Minimizing smooth, strongly-convex functions using SGD + SLS

under interpolation

Recall that E[||wis1 — w*[|’] < (1 — pt7min) |[wi — w*||>. Taking expectation w.r.t the
randomness from iterations k = 0 to T — 1 and recursing,

Bl wr — w* 2] < (1 omia) 0 — w* < 050 (—ps T ) [l — w2
.1 .
— Bllr ~ wl) < o (< T min{ Lmnc} ) 1o wl?

Hence, when minimizing smooth, strongly-convex functions under interpolation, SGD + SLS will
will converge to the minimizer at an exponential rate.

e If interpolation is not exactly satisfied, we can modify the proof to get an O (exp (=) + ¢(?)
rate, where (2 := E [fy(w*) — f;].
e When minimizing convex functions under (exact) interpolation, SGD + SLS results in an

O(1/T) rate without requiring knowledge of L. (Need to prove this in Assignment 3!)

e Do not have strong theoretical results for SGD + SLS on smooth, non-convex problems. "



Stochastic Line-Search and Effect of Over-parametrization

Objective: ming, g, 3- > 1 [|62 61 — yi|[? ; Parameterization: 6; € R¥*6, 9, ¢ R10%k,
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13



Stochastic Line-Search - Experimental Results

Task: Multi-class classification with logistic loss.
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Stochastic Polyak Step-size

e When interpolation is (approximately) satisfied, we can use SGD with the stochastic Polyak
step-size (SPS) [LVLLJ21]: At iteration k, for hyper-parameter ¢ € (0,1) and f; := min,, fir(w),
_ fu(wi) — £
= ———k

c IV ei(wi)l
Common machine learning losses (squared loss, logistic loss, exponential loss) are lower-bounded
by zero. Algorithmically, we can set £} = 0.

@ SPS matches the SLS rates on smooth, (strongly) convex functions. E.g. SPS with ¢ = 1/2
achieves the O (exp (=L) + (?) rate for smooth, strongly-convex functions.

Much simpler and computationally inexpensive to implement compared to SLS.

Unlike SLS, SPS can be used for minimizing non-smooth, convex functions.

Results in large step-sizes and requires some additional heuristics for stabilizing the method.
For neural networks, generalization for SGD + SPS was typically worse than for SGD + SLS.

Requires access to f;; which might be difficult to compute for more general problems.

15



Adaptivity for SGD

Noise-adaptivity: When minimizing smooth, strongly-convex functions, with T iterations of
K
SGD with 7 := % (%) T we can obtain an O (exp (*TT) + g) rate, where

¢? = E;[fi(w*) — £*]. Adaptive to the extent of interpolation, but requires L to set the step-size.

Problem-adaptivity: SGD with the step-size set according to SLS/SPS is adaptive to L, but
results in an O (exp (=) + ¢?) rate.

e [VDTB21] attempts to combine the above ideas to obtain both noise and problem adaptivity

k
i.e. use SLS to set vx &~ I and use nx =« (+)7. Either not guaranteed to converge to the
minimizer or will converge to the minimizer at a slower (than optimal) rate.

e For smooth, strongly-convex problems, we do not (yet) know how to make SGD problem and
noise-adaptive, and achieve the optimal rate.

e For smooth, convex problems, AdaGrad is both problem and noise-adaptive.
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Questions?
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