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Recap

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent O (1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Stochastic Gradient Descent Θ(1/ϵ2) Θ (1/ϵ2) Θ (1/ϵ)

Table 1: Comparing the convergence rates of GD and SGD
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Minimizing smooth, strongly-convex functions using SGD

• Let us prove that SGD with an O(1/k) decaying step-size results in an O(1/T ) convergence
to the minimizer.

• Following [LJSB12], let us first do the proof with an additional (strong) assumption that the
stochastic gradients are bounded in expectation, i.e. there exists a G such that
E ∥∇fi (w)∥2 ≤ G 2 for all w .

• Claim: For µ-strongly convex functions with the above assumption, T iterations of SGD with
ηk = 1

µ (k+1) returns iterate w̄T =
∑T−1

k=0 wk

T such that,

E[f (w̄T )− f (w∗)] ≤ G 2 [1 + log(T )]

2µT

• Three problems with the above result: (i) setting the step-size requires knowledge of µ, (ii)
requires bounded stochastic gradients (not necessarily true for quadratics), (iii) the guarantee
only holds for the average and not the last iterate.
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Minimizing smooth, strongly-convex functions using SGD

Proof: Following a proof similar to the convex case,

∥wk+1 − w∗∥2 = ∥wk − ηk∇fik(wk)− w∗∥2

= ∥wk − w∗∥2 − 2ηk⟨∇fik(wk),wk − w∗⟩+ η2
k ∥∇fik(wk)∥2

Taking expectation w.r.t ik on both sides,

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E
[
η2
k ∥∇fik(wk)∥2

]
= ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k E
[
∥∇fik(wk)∥2

]
(Assuming ηk is independent of ik and Unbiasedness)

Using µ-strong convexity, f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ
2 ∥y − x∥2 with y = w∗ and x = wk ,

=⇒ E[∥wk+1 − w∗∥2] ≤ (1 − µ ηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k E

[
∥∇fik(wk)∥2

]
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Minimizing smooth, strongly-convex functions using SGD

E[∥wk+1 − w∗∥2] ≤ (1 − µ ηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] ∥wk − w∗∥2 + η2
k E

[
∥∇fik(wk)∥2].

Using the boundedness of stochastic gradients, E ∥∇fi (w)∥2 ≤ G 2 for all w ,

E ∥wk+1 − w∗∥2 ≤ (1 − µηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k G

2

=⇒ f (wk)− f (w∗) ≤

[
∥wk − w∗∥2 (1 − µηk)− E ∥wk+1 − w∗∥2

]
2ηk

+
ηk
2

G 2

Taking expectation w.r.t the randomness from iterations i = 0 to k − 1,

E[f (wk)− f (w∗)] ≤
E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
ηk
2

G 2
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Minimizing smooth, strongly-convex functions using SGD

Recall that E[f (wk)− f (w∗)] ≤
E
[
∥wk−w∗∥2

(1−µ ηk )−∥wk+1−w∗∥2]
2ηk

+ ηk
2 G 2.

Summing from k = 0 to T − 1,

T−1∑
k=0

E[f (wk)− f (w∗)] ≤
T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2

2

T−1∑
k=0

ηk

=
T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2

2

T−1∑
k=0

1
µ (k + 1)

≤
T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2 [1 + log(T )]

2µ

Dividing by T , using Jensen’s inequality for the LHS, and by definition of w̄T ,

E[f (w̄T )− f (w∗)] ≤ 1
T

T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2 [1 + log(T )]

2µT
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Minimizing smooth, strongly-convex functions using SGD

Recall that E[f (w̄T )− f (w∗)] ≤ 1
T

∑T−1
k=0

E[∥wk−w∗∥2 (1−µ ηk )−∥wk+1−w∗∥2]
2ηk

+ G2 [1+log(T )]
2µT .

Simplifying the first term on the RHS,

1
2T

T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

=
1

2T
E

[
T−1∑
k=1

[
∥wk − w∗∥2

(
1
ηk

− 1
ηk−1

− µ

)]
+ ∥w0 − w∗∥2

(
1
η0

− µ

)
− ∥wT − w∗∥2

ηT−1

]

≤ 1
2T

E

[
T−1∑
k=1

[
∥wk − w∗∥2 (µ(k + 1)− µk − µ)

]
+ ∥w0 − w∗∥2 (µ− µ)

]
= 0

Putting everything together,

E[f (w̄T )− f (w∗)] ≤ G 2 [1 + log(T )]

2µT
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Questions?
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Minimizing smooth, strongly-convex functions using SGD

• Next, we will adapt the proof from [GLQ+19] that does not require bounded stochastic
gradients. It uses a constant followed by a O(1/k) decaying step-size, and converges to the
minimizer at an O(1/T ) rate.

Claim: For L-smooth, µ-strongly convex functions, T iterations of SGD with

ηk =
1
L

(For k < k0) [Phase 1] ; ηk =
1

µ (k + 1)
(For k ≥ k0) [Phase 2]

for k0 := ⌈2κ− 1⌉ returns iterate w̄T :=
∑T−1

k=k0
wk

T−k0
such that for T > k0,

E[f (w̄T )− f (w∗)] ≤ µ k0

T − k0

[
exp

(
−k0

κ

)
∥w0 − w∗∥2 +

σ2

µ L

]
+

σ2 [1 + log(T )]

µ (T − k0)
.

• Three problems with the above result: (i) setting the step-size requires knowledge of µ, (ii)
guarantee only holds for T > k0 (iii) guarantee holds only for the average iterate and not the
last iterate.
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Minimizing smooth, strongly-convex functions using SGD

Proof: Following the same sequence of steps as before, we obtain the following inequality:

E[∥wk+1 − w∗∥2] ≤ (1 − µηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)]

+ η2
k E

[
∥∇f (wk)∥2

]
+ η2

k σ
2

Using L-smoothness,

=⇒ E[∥wk+1 − w∗∥2] ≤ (1 − µηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] (1)

+ 2L η2
k E[f (wk)− f (w∗)] + η2

k σ
2

Phase 2: We require that ηk ≤ 1
2L in Phase 2, i.e. for all k ≥ k0,

=⇒ 1
µ (k + 1)

≤ 1
2L

=⇒ k ≥ 2κ− 1 .

Since Phase 2 only starts when k ≥ k0 = ⌈2κ− 1⌉, this ensures the desired condition.
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Minimizing smooth, strongly-convex functions using SGD

Phase 2: Since ηk ≤ 1
2L in Phase 2, using Eq (1) for all k ≥ k0 and following the previous proof,

E[∥wk+1 − w∗∥2] ≤ (1 − µηk) ∥wk − w∗∥2 − ηk [f (wk)− f (w∗)] + η2
k σ

2

=⇒ E[f (wk)− f (w∗)] ≤

[
∥wk − w∗∥2 (1 − µηk)− E ∥wk+1 − w∗∥2

]
ηk

+ ηk σ
2

Taking expectation w.r.t the randomness from iterations k = k0 to T − 1,

E[f (wk)− f (w∗)] ≤
E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

+ ηk σ
2

Summing from k = k0 to T − 1 in Phase 2,

T−1∑
k=k0

E[f (wk)− f (w∗)] ≤
T−1∑
k=k0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

+ σ2
T−1∑
k=k0

ηk
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Minimizing smooth, strongly-convex functions using SGD

T−1∑
k=k0

E[f (wk)− f (w∗)] ≤
T−1∑
k=k0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

+
T−1∑
k=0

σ2

µ (k + 1)

≤
T−1∑
k=k0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

+
σ2 [1 + log(T )]

µ

Dividing by T − k0, using Jensen’s inequality for the LHS, and by definition of w̄T ,

E[f (w̄T )− f (w∗)] ≤ 1
T − k0

T−1∑
k=k0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

+
σ2 [1 + log(T )]

µ (T − k0)

Following the same proof as before, we can conclude that,

E[f (w̄T )− f (w∗)] ≤ µk0

T − k0
E
[
∥wk0 − w∗∥2

]
+

σ2 [1 + log(T )]

µ (T − k0)
.
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Minimizing smooth, strongly-convex functions using SGD

Since k0 is a constant, the previous slide already implies an O(1/T ) rate if we can control
∥wk0 − w∗∥2 in Phase 1.

Phase 1: Using Eq(1) for k < k0, for which ηk = 1
L ,

E[∥wk+1 − w∗∥2] ≤
(
1 − µ

L

)
∥wk − w∗∥2 − 1

L
[f (wk)− f (w∗)] +

σ2

L2

Since the above inequality is true for all k < k0, using it for k = k0 − 1 and taking expectation
w.r.t the randomness from iterations k = 0 to k0 − 1,

E[∥wk0 − w∗∥2] ≤ ρE ∥wk0−1 − w∗∥2 +
σ2

L2 (Denoting ρ := 1 − µ/L)

=⇒ E[∥wk0 − w∗∥2] ≤ ρk0 ∥w0 − w∗∥2 +
σ2

L2

k0−1∑
k=0

ρk ≤ ρk0 ∥w0 − w∗∥2 +
σ2

L2

∞∑
k=0

ρk

≤ ρk0 ∥w0 − w∗∥2 +
σ2

L2
1

1 − ρ
=

(
1 − µ

L

)k0
∥w0 − w∗∥2 +

σ2

µ L
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Minimizing smooth, strongly-convex functions using SGD

Using the result from the previous slide,

E[∥wk0 − w∗∥2] ≤ exp

(
−k0

κ

)
∥w0 − w∗∥2 +

σ2

µ L
(1 − x ≤ exp(−x))

Hence, we have controlled ∥wk0 − w∗∥2 term. Putting everything together,

E[f (w̄T )− f (w∗)] ≤ µk0

T − k0

[
exp

(
−k0

κ

)
∥w0 − w∗∥2 +

σ2

µ L

]
+

σ2 [1 + log(T )]

µ (T − k0)

By choosing a different step-size that depends on both σ2 and µ, it is possible to prove
last-iterate convergence (for T > k0) for SGD [GLQ+19] The resulting rate of convergence
is O(κ ln(1/ϵ) + σ2/ϵ).
[LZO21, VDTB21] use an ηk = 1

2L

(
(1/T)k/T

)
step-size, obtain a last-iterate noise-adaptive

convergence rate of O
(
exp

(−T
κ

)
+ σ2

T

)
. However, it requires knowledge of T (in practice,

we can use the doubling trick).
The resulting step-size works well in practice, and can also be combined with Nesterov
acceleration to achieve an O

(
exp

(
−T√

κ

)
+ σ2

T

)
rate. 12



Interpolation for over-parameterized models

Interpolation: Over-parameterized models (such as deep neural networks) are capable of exactly
fitting the training dataset.

Formally, when minimizing f (w) = 1
n

∑n
i=1 fi (w), interpolation means that if ∥∇f (w)∥ = 0,

then ∥∇fi (w)∥ = 0 for all i ∈ [n] i.e. the variance in the stochastic gradients becomes zero at a
stationary point. 13



SGD under Interpolation

• Recall that SGD needs to decrease the step-size to counteract the noise (variance).

Idea: Under interpolation, since the noise is zero at the optimum, SGD does not need to
decrease the step-size and can converge to the minimizer by using a constant step-size.

• If f is strongly-convex and the model is expressive enough such that interpolation is satisfied
(for example, when using kernels or least squares with d > n), constant step-size SGD can
converge to the minimizer at an O(exp(−T/κ)) rate.

• In this setting, SGD matches the rate of deterministic (full-batch) GD, but compared to GD,
each iteration is cheap!

• Moreover, empirical results (and theoretical results on “benign overfitting”) suggest that
interpolating the training dataset does not adversely affect the generalization error!
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Minimizing smooth, strongly-convex functions using SGD under interpolation

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ∥∇fi (w
∗)∥ = 0, T iterations of

SGD with ηk = η = 1
L returns iterate wT such that,

E[∥wT − w∗∥2] ≤ exp

(
−T

κ

)
∥w0 − w∗∥2

.

Before analyzing the convergence of SGD, let us first study the effect of interpolation on σ2(w).

σ2(w) := Ei ∥∇f (w)−∇fi (w)∥2 = ∥∇f (w)∥2 + Ei ∥∇fi (w)∥2 − 2E [⟨∇f (w),∇fi (w)⟩]
= Ei ∥∇fi (w)∥2 + ∥∇f (w)∥2 − 2 ∥∇f (w)∥2 (Unbiasedness)

≤ Ei ∥∇fi (w)∥2 ≤ Ei [2L [fi (w)− fi (w
∗)]]

(Using L-smoothness, convexity of fi and ∇fi (w
∗) = 0)

=⇒ σ2(w) ≤ 2L[f (w)− f (w∗)] (Unbiasedness)

As w gets closer to the solution (in terms of the function values), the variance decreases
becoming zero at w∗. Hence, under interpolation, we do not need to decrease the step-size.
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