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e For minimizing f(w) = >__, fi(w), the SGD update is wiy1 = wx — n Vi (wi), where
ik € [n].

@ SGD does not require computing the gradient of all the points in the dataset, and results in
cheaper iterations compared to GD.

o Compared to GD, the rate of convergence (in terms of the number of required iterations) is
slower.

@ To counter the noise in the stochastic gradients, the step-size 7, needs to be decayed to
ensure convergence to the minimizer.

e Two key properties we used to analyze SGD: For all w,
Unbiasedness: E,[Vf(w)] = Vf(w) ; Bounded Variance: E; |Vfi(w) — Vf(w)|*> < o2.
e For minimizing L-smooth, but potentially non-convex functions, T iterations of SGD with

n =1 _1
e =T Vkt1

result in the following suboptimality for the “best” iterate w,

2L[f(x0) = "] | o* (1+log(T))
VT VT

:

E[|VF(W)[*] <



Minimizing smooth, convex functions using SGD

Claim: For L-smooth, convex functions with bounded noise o2, T iterations of stochastic

T-1
gradient descent with 7, = i \/;ﬁ returns an iterate v;/T = %%Wk such that,
_ oy < 2L lwo —w™||” | o*(1 + log(T))
E[f(wr) — f(w")] <
VT 2LVT
Proof: Using the SGD update, wii1 = wi — 0V i (wi),
[wicr1 — w*[|* = [[wie — iV Fac(wic) — w*|?

= [wic = w*[I* = 2m(V Fic(wie), wie — w™) + 1% ||V F(wac) ||
Taking expectation w.r.t i, on both sides, and assuming 7 is independent of i
E[[| w1 — w*|*] = [|wi — w*||* = 2 [k (V fi(wi), we — w*)] + E {nf Hfok(Wk)m
= lwic = w*|* = 2 (B [V ()] we — w*) + 2 E [V Fu ()|

— Ellwicr — w[%] = [lwic— w2 — 205 (V (i), wic — w*) + 72 [V ic(wi) ]
(Unbiasedness)



Minimizing smooth, convex functions using SGD

Recall that E[[lwesy — w* 2] = [lwe — w12 = 20 (VF(wi), we = w*) + 1 B [V (i) 7]
Bl wirs — w' ]

= lwic = w*|* = 2 (TF(wi), we — w*) + 1R E |||V fuc(wi) — VF(w) + VF(w)|?]

= lwic = w*|* = 20T F(wi ), we — w*) + 2 [V (i) = V£ (wi)|2] + 12 [V ()]

(Since E[(Vf(wx), Vfi(wi) — VF(w))] = 0)
< llwic = w* I = 2T F(wi), wie — w*) + 12 E [|IVF(wi[P] + 2 0?

(Using the bounded variance assumption)
Using convexity of f, f(y) > f(x) + (Vf(x),y — x) with y = w* and x = w,
< llwic = w* I = 20kl (we) = F(w*)] + 3 E [|VF () 2] + 17 02

= Eflwirs — w*[*] < llwe = w*l|* = 2l f (wi)) — F(w*)] + 2L E[f (wie) — F(w")] + 1 0
(Using L-smoothness of f)



Minimizing smooth, convex functions using SGD

Recall E[[|wicy1 — w*[|*] < [lwi — w*[|* = 2nu[F(wi) — F(w*)] + 2L n E[f (wi)) — F(w*)] + 173 0.
Using nx < o for all &,

Elllwess = w*°] < llwe = w* I = 20lf (wi) = F(w)] + mi B[ (we) = F(w*)] + 7 o
= [lwe = w2 = melF(wid) = F(w*)] + 7
— mulf () = F(W] < [lwe = w2 = E [ wipa = w*|P] + n o
—> ilf () = F(w)] < [l wic = w| B [ wisa = w|?] 4} o2

Taking expectation w.r.t the randomness from iterations i = 0 to k — 1,

i BIF () = F(w")] < E [llwie = w1 = lwys = w|[?] + 7 o2

Summing from k=0to T — 1,

- T=1 T-1
* %112 112
min: > BLF(we) = F(w)] < 30 [lwie = w? = wiesr — w'P] + 0% 3
k=0 k=0 k=0



Minimizing smooth, convex functions using SGD

T-1 " T-1 M2 2 T-1
Recall nmin 15 EIF(wi) = F(w)] < T E [lw = w I = lwisa = w'lP] + 0% 755 2.

o E[lwe - wr P = wr - wrP] 2 T
D E[f(we) — f(w")] < : : up
k—0 Tlmin Tmin “—0
T—1 2 T—1
_o E[f(wk) — f(w™)] _ |lwo — w*|| o2 .
k=0 2
T ST tToT %nk (Dividing by T)
T-1
Define wr := M Since f is convex, we can use Jensen's inequality to conclude that

T—1 Y .
E[f(wr)] < == 2 Choosing iy = & i,

2L |lwo — w*|? o? L
E[f(wr) — f(w")] < + E
[ ( T) ( )] — /T 21 /T P k




Minimizing smooth, convex functions using SGD

Recall that E[f(wr) — f(w*)] < 2“'“%””*“2 + 52 Sher k. Since S0, 1 <1+ log(T),

_ o 2L [wo — w*? 02(1+ log(T))
E[f(wr) — f(w")] < i Tl

e Hence, compared to GD that has an O (1/7) rate of convergence, SGD has an O (/vT)
convergence rate, but each iteration of SGD is faster.

e For GD, we proved a guarantee for the last iterate wr; for SGD, our guarantee only holds for
the average iterate wr. By using a different step-size scheme, we can get last-iterate
convergence.

Lower Bound: Without additional assumptions, for smooth, convex functions, no first-order
algorithm using the stochastic gradient oracle can obtain a (dimension-independent) convergence
rate faster than Q (1/vT).

Hence, SGD is optimal for minimizing smooth, convex functions. In the stochastic setting, using
momentum or Nesterov acceleration has no provable benefit in terms of the dependence on T.



Minimizing smooth, convex functions using SGD

e Let us analyze the convergence for an alternative choice of the step-size. By following the
previous proof, we have that for 7, < 2—1L

-
) I
E[f(wr) — f(w*)] < +
[ ( T) ( )] Tlmin T TImin T ;nk
e If we do not decay the step-size, and set ), = n = 21—1_ then,
} 2L ||lwo — w|? 02
E[f — W) < ———— — —
[Far) - Fw)] < 0y 2
—— ~~
bias neighbourhood

e Hence, if we use a constant step-size for SGD, it will not converge to the minimum value but
will oscillate in a neighbourhood around the minimum.

e Recall that if we use a mini-batch size of b, the “effective” noise is reduced to ai = ";bb o2

e Common practice: Step-size schedules — run SGD for some iterations (in a stage), decrease
the step-size by a multiplicative factor and use the smaller step-size in the next stage. 7



Questions?



Minimizing smooth, convex functions using SGD

o If 0 =0, SGD can attain an O(1/T) convergence to the minimizer using a constant step-size.
If o # 0, then SGD can converge to the minimizer at an ©(1/vT) rate using a O(1/vk) step-size.

e If o is known, SGD with a tuned step-size can attain an O(1/T + ¢/v/T) rate i.e. convergence is
slowed down only by the extent of noise [GL13, Corollary 2.2].

e Using ny =n < i following the same proof,
E[|wirr — w*[’] < [lwic — w|[> = 2n[f (wi) — F(w*)] + 2L E[f (wi) — £(w™)] + 1 0

20(1 = L) E[f(wi) — F(w")] < E [lwe — w2 = [[wicrs = w*[[?] +72 02

As before, taking expectation w.r.t the randomness from iterations i = 0 to kK — 1 and summing,
T-1 T-1
(1 —nL) Y Elf(wi) — F(w)] < wo — w*[[*+ 02 Y n?
k=0 k=0
-
20(1 — L) Elf(wr) — F(w)] < L2020 | 2,2

T
(By dividing by T and using Jensen similar to before) 8
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Recall that 25(1 — L) B[f(iwr) — f(w*)] < Le="I2 4 622, Choosing 5 = min { &, 1=}

wo—w? | P oo — w*l? .
Toad—nD) " ma-a0) =~  Tg O

(For n < 57, n < 2n—21°L)

[lwo — W*||2 o [lwo — W*||2 {
< < 2L T}
< Tn + N T max ,U\F

E[f(wr) = f(w")] <

A
VT
(1/min{a,b} = max{l/a, l/b})
lwo — w*|I? a
T (2L al Uﬁ) + ﬁ
(max{a, b} < a+ b for a, b >0)

IN

lwo — w|[® + 1

VT

Hence, with 17 = min {Q—IL, 0\1/?} SGD converges to the minimizer at an O(Y/T + 9/V/T) rate.

2L [|wo — w*?
— E[f(wr) — f(w*)] < - +o




Questions?
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