CMPT 409/981: Optimization for Machine Learning

Lecture 1

Sharan Vaswani
September 5, 2024

Successes of Machine Learning

hitps:/ /wwwblog 7 s-faster) https:/ /wywwcnet.com /news whatis-siri/

(a) Natural language processing (b) Speech recognition

(c) Reinforcement learning (d) Self-driving cars 1

Machine Learning 101
Dataset { i P cat} { &3, dog }

Model
O MO,
~
Training; . s /! O do g
Prediction
Input-label Update parameters M(, x)
{x v} using optimization

Loss

Output: M(6*,.) [, {x,y})

Machine Learning 101

Validation
Dataset: ! dog}
Trained Model
O~ M6*,.)
Validation: { ﬂ ’ dog} = \O -~ dOg
‘A / Prediction
{x, y} M(6*,x)

Output: Validation Accuracy

Measures how good the trained model is

Modern Machine Learning

160
Inception-va
& Xception
140 Incepti
T DEnSENEf&‘ ResNet-101 ResNet-152
g DehseNet-16f ResNet-50 5 -
= 120 75 © DenseNet-121 V6616 a9
0 ResNet-34
] MobileNS2
£ 100 - MobileNet-v1
£ g7 é ResNet-18
g & 3 | 09 Gongrenet
8 g ENet
5 60 g g5 p fd-MobileNet
o [BN-NIN
g 4w e ShuffleNet
5 21,8 23,0 60 5M 35M 65M 95M 125M 155M
< 13,
20 g5 117 SqueezeNet
o BN-AlexNet
0 = 55 AlexNet
o~ Nd] el
FOSN A e S
PO L e &
F & & & & & = 0 i) 50
@ F F E ¢

20 30
Operations [G-Ops]
Sobezak, Szymon, et al. "Restricted Boltzmann machine as an aggregation technique for binary descriptors.”, 2019.

Model size

Canziani et al, “An Analysis of Deep Neural Network Models for Practical Applications”, 2016.

Number of operations for computing the loss
(a) (b)

Figure 1: Models for multi-class classification on Image-Net. Number of examples = 1.2 M

Faster optimization methods can have a big practical impact!

Optimization for Machine Learning

@ (Non)-Convex minimization: Supervised learning (classification/regression), Matrix
factorization for recommender systems, Image denoising.

@ Online optimization: Learning how to play Go/Atari games, Imitating an expert and
learning from demonstrations, Regulating control systems like industrial plants.

@ Min-Max optimization: Generative Adversarial Networks, Adversarial Learning,
Multi-agent RL.

Course structure

Objective: Introduce foundational optimization concepts with applications to machine learning.
Syllabus:

@ (Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent,
Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction

@ Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)
e Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won’t get time to cover in detail: Non-smooth optimization, Convex analysis,
Global optimization.

What we won’t get time to cover: Constrained optimization, Distributed optimization,
Multi-objective optimization.

Course Logistics

@ Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca
Instructor Office Hours: Thursday, 2.30 pm - 3.30 pm (TASC-1 8221)
Teaching Assistant: Qiushi Lin Email: q1a96@sfu.ca

TA Office Hours: Monday, 9.30 am - 10.30 am (ASB 9814)

o Course Webpage: https://vaswanis.github.io/409_981-F24.html

Piazza: https://piazza.com/sfu.ca/fall2024/cmpt409981/home

o Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning

sharan_vaswani@sfu.ca
qla96@sfu.ca
https://vaswanis.github.io/409_981-F24.html
https://piazza.com/sfu.ca/fall2024/cmpt409981/home

Course Logistics — Grading

Assignments [48%)]

@ Individual assignments to be submitted online, typed up in Latex with accompanying code
submitted as a zip file.
e Assignment 0 [5%]: Out today. Assignment to recall prerequisite knowledge and get used
to notation. Due next week.
o Assignments 1 & 2 [22%]:
e Due in 10 days (at 11.59 pm PST).
o For some flexibility, each student is allowed 1 late-submission and can submit in the next class
(no late submissions beyond that).
o If you use up your late-submission and submit late again, you will lose 50% of the mark.
o Assignments 3 & 4 [21%)]: Released during the semester, but due only at the end of the
term (December 10).

Participation [2%]: In class (during lectures, project presentations), on Piazza

Course Logistics — Grading

Final Project [50%]

@ Aim is to give you a taste of research in Optimization.
@ Projects to be done in groups of 3-4 (more details will be on Piazza)

@ Will maintain a list on Piazza on possible project topics. You are free to choose from the
list or propose a topic that combines Optimization with your own research area.

Project Proposal [10%] — Discussion (before October 20) + Report (due October 22)

Project Milestone [5%] — Update (before November 20)

Project Presentation [10%] (December 3)
Project Report [25%)] (December 17)

Questions?

Minimizing functions

Consider minimizing a function over the domain D

i)

Setting: Have access to a zero-order oracle — querying the oracle at w € D returns f(w).

Objective: For a target accuracy of € > 0, if £* is the minimum value of f in D, return a point
w € D s.t. f(W)— f* <e. Characterize the required number of oracle calls in terms of e.

Example 1: Minimize a one-dimensional function s.t. f(w) = 0 for all x # w*, and f(w*) = —e.

Example 2: Easom function:
f(x1,x) = —cos(x1) — cos(x2) exp(—(x1 —)2 — (x2 — m)3).

Minimizing generic functions is hard! We need to make assumptions on the structure.
10

Lipschitz continuous functions

Consider minimizing a function over the domain D:

g)

Assumption: f is Lipschitz continuous (in D) meaning that f can not change arbitrarily fast as
w changes. Formally, for any x,y € D,

[F0) =) <G lIx =yl
where G is the Lipschitz constant.

Example: f(x) := —x sin(x) in the [—10, 10] interval.

Lipschitz continuity of the function immediately implies that the gradients are bounded i.e. for
all x e D, |[VF(x)]| < G.

11

Global Minimization

Consider minimizing a G-Lipschitz continuous function over a unit hyper-cube:

in f(w).
ooy)

Objective: For a target accuracy of € > 0, if w* € [0,1]? is the minimizer of f, return a point
W € [0,1]7 s.t. f(W) — f(w*) < e. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to ¢ > 0 (to
be determined). Call the zero-order oracle on the centers of these ﬁ cubes and return the
point w with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes. We can guarantee that

we have queried a point w that is at most \/ge, away from w*, i.e. ||w — w*| < @. By

G-Lipschitz continuity, (W) — f(w*) < G ||w — w*|| < G%. For a target accuracy of ¢, we
2¢

GVd'
queried point with the minimum function value. Hence, f(w) < f(w) and consequently,

can set € = implying that f(W) — f(w*) < e. From the algorithm, we know that W is the

d
f(w) — f(w*) < e. Hence, for this naive algorithm, total number of oracle calls = (G2\§) : b

Global Minimization

Consider minimizing a differentiable, G-Lipschitz continuous function over a unit hyper-cube:

min f(w).
wel0,1]¢ ()
Q: Suppose we do a random search over the cubes — choosing a cube at random (say
independently with replacement) and then querying its centre? What is the expected number of
function evaluations to find a cube with is at most % away from w*?

Ans: The probability of finding the cube is p := ¢’¢. If X is the r.v. which corresponds to the

number of attempts to find the correct cube, then X follows a Geometric distribution. Hence,
d
1 (G\/E)

expected number of evaluations is % @7 = 6

Is our naive algorithm good? Can we do better?

Lower-Bound: For minimizing a G-Lipschitz continuous function over a unit hyper-cube, any
. . d
algorithm requires Q ((%)) calls to the zero-order oracle.

13

Questions?

Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. ||[Vf(w)|| < G and can
still include non-smooth (not differentiable everywhere) functions.

For example, f(x) = |x| is 1-Lipschitz continuous but not differentiable at x = 0 and the
gradient changes from —1 at 0~ to +1 at 0*.

An alternative assumption that we can make is that f is smooth — it is differentiable everywhere
and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient Vf is L-Lipschitz continuous if for all x,y € D,
[VF(x) = VIl < Lx—yl

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans:
No, % is 1-smooth but its gradient equal to x is unbounded over R.

14

Smooth functions — Examples

If f is twice-differentiable and smooth, then for all x € D, V2f(x) < Lly i.e. omax[V3f(x)] < L
where o nax is the maximum singular value.

Q: Does f(x) = x3 have a Lipschitz-continuous gradient over R? Ans: No, f”(x) = 12x which is
not bounded as x — oo

Q: Does f(x) = x3 have a Lipschitz-continuous gradient over [0, 1]?
Ans: Yes, because f”(x) = 12x is bounded on [0, 1].

Q: The negative entropy function is given by f(x) = xlog(x). Does it have a
Lipschitz-continuous gradient over [0,1]? Ans: No, f”(x) = 1/x — oo as x — 0.

15

Smooth functions — Examples

Linear Regression on n points with d features. Feature matrix: X € R"*9 vector of
measurements: y € R” and parameters w € RY.

. 1 2
min f(w) = 3 [Xw —]
f(w) = % WT(XTX)w —2w™ Xy + yTy] ; VF(w) = X" Xw — XTy; V3 f(w) = XX

(Prove in Assignment 0)

If £ is L-smooth, then, oma[V2f(w)] < L for all w. Hence, for linear regression L = Apax[XTX].

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since |Vf(w)| — oo as
W — 00.

Q: Compute L for ridge regression — {>-regularized linear regression where

f(w) =3 11Xw = y[* + 3 [w]®. Ans: L= Amax[XTX] + X 16

Questions?

