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Successes of Machine Learning
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(a) Natural language processing (b) Speech recognition

(c) Reinforcement learning (d) Self-driving cars 1
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Machine Learning 101
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Modern Machine Learning
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Sobezak, Szymon, et al. "Restricted Boltzmann machine as an aggregation technique for binary descriptors.”, 2019.
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Canziani et al, “An Analysis of Deep Neural Network Models for Practical Applications”, 2016.
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Figure 1: Models for multi-class classification on Image-Net. Number of examples = 1.2 M

Faster optimization methods can have a big practical impact!



Optimization for Machine Learning

@ (Non)-Convex minimization: Supervised learning (classification/regression), Matrix
factorization for recommender systems, Image denoising.

@ Online optimization: Learning how to play Go/Atari games, Imitating an expert and
learning from demonstrations, Regulating control systems like industrial plants.

@ Min-Max optimization: Generative Adversarial Networks, Adversarial Learning,
Multi-agent RL.



Course structure

Objective: Introduce foundational optimization concepts with applications to machine learning.
Syllabus:

@ (Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent,
Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction

@ Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)
e Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won’t get time to cover in detail: Non-smooth optimization, Convex analysis,
Global optimization.

What we won’t get time to cover: Constrained optimization, Distributed optimization,
Multi-objective optimization.



Course Logistics

@ Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca
Instructor Office Hours: Thursday, 2.30 pm - 3.30 pm (TASC-1 8221)
Teaching Assistant: Qiushi Lin Email: q1a96@sfu.ca

TA Office Hours: Monday, 9.30 am - 10.30 am (ASB 9814)

o Course Webpage: https://vaswanis.github.io/409_981-F24.html

Piazza: https://piazza.com/sfu.ca/fall2024/cmpt409981/home

o Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning


sharan_vaswani@sfu.ca
qla96@sfu.ca
https://vaswanis.github.io/409_981-F24.html
https://piazza.com/sfu.ca/fall2024/cmpt409981/home

Course Logistics — Grading

Assignments [48%)]

@ Individual assignments to be submitted online, typed up in Latex with accompanying code
submitted as a zip file.
e Assignment 0 [5%]: Out today. Assignment to recall prerequisite knowledge and get used
to notation. Due next week.
o Assignments 1 & 2 [22%]:
e Due in 10 days (at 11.59 pm PST).
o For some flexibility, each student is allowed 1 late-submission and can submit in the next class
(no late submissions beyond that).
o If you use up your late-submission and submit late again, you will lose 50% of the mark.
o Assignments 3 & 4 [21%)]: Released during the semester, but due only at the end of the
term (December 10).

Participation [2%]: In class (during lectures, project presentations), on Piazza



Course Logistics — Grading

Final Project [50%]

@ Aim is to give you a taste of research in Optimization.
@ Projects to be done in groups of 3-4 (more details will be on Piazza)

@ Will maintain a list on Piazza on possible project topics. You are free to choose from the
list or propose a topic that combines Optimization with your own research area.

Project Proposal [10%] — Discussion (before October 20) + Report (due October 22)

Project Milestone [5%] — Update (before November 20)

Project Presentation [10%] (December 3)
Project Report [25%)] (December 17)



Questions?



Minimizing functions

Consider minimizing a function over the domain D

i)

Setting: Have access to a zero-order oracle — querying the oracle at w € D returns f(w).

Objective: For a target accuracy of € > 0, if £* is the minimum value of f in D, return a point
w € D s.t. f(W)— f* <e. Characterize the required number of oracle calls in terms of e.

Example 1: Minimize a one-dimensional function s.t. f(w) = 0 for all x # w*, and f(w*) = —e.

Example 2: Easom function:
f(x1,x) = —cos(x1) — cos(x2) exp(—(x1 — )2 — (x2 — m)3).

Minimizing generic functions is hard! We need to make assumptions on the structure.
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Lipschitz continuous functions

Consider minimizing a function over the domain D:

g )

Assumption: f is Lipschitz continuous (in D) meaning that f can not change arbitrarily fast as
w changes. Formally, for any x,y € D,

[F0) =) <G lIx =yl
where G is the Lipschitz constant.

Example: f(x) := —x sin(x) in the [—10, 10] interval.

Lipschitz continuity of the function immediately implies that the gradients are bounded i.e. for
all x e D, |[VF(x)]| < G.
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Global Minimization

Consider minimizing a G-Lipschitz continuous function over a unit hyper-cube:

in f(w).
ooy )

Objective: For a target accuracy of € > 0, if w* € [0,1]? is the minimizer of f, return a point
W € [0,1]7 s.t. f(W) — f(w*) < e. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to ¢ > 0 (to
be determined). Call the zero-order oracle on the centers of these ﬁ cubes and return the
point w with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes. We can guarantee that

we have queried a point w that is at most \/ge, away from w*, i.e. ||w — w*| < @. By

G-Lipschitz continuity, (W) — f(w*) < G ||w — w*|| < G%. For a target accuracy of ¢, we
2¢

GVd'
queried point with the minimum function value. Hence, f(w) < f(w) and consequently,

can set € = implying that f(W) — f(w*) < e. From the algorithm, we know that W is the

d
f(w) — f(w*) < e. Hence, for this naive algorithm, total number of oracle calls = (G2\§) : b



Global Minimization

Consider minimizing a differentiable, G-Lipschitz continuous function over a unit hyper-cube:

min  f(w).
wel0,1]¢ ( )
Q: Suppose we do a random search over the cubes — choosing a cube at random (say
independently with replacement) and then querying its centre? What is the expected number of
function evaluations to find a cube with is at most % away from w*?

Ans: The probability of finding the cube is p := ¢’¢. If X is the r.v. which corresponds to the

number of attempts to find the correct cube, then X follows a Geometric distribution. Hence,
d
1 (G\/E)

expected number of evaluations is % @7 = 6

Is our naive algorithm good? Can we do better?

Lower-Bound: For minimizing a G-Lipschitz continuous function over a unit hyper-cube, any
. . d
algorithm requires Q ((%) ) calls to the zero-order oracle.
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Questions?



Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. ||[Vf(w)|| < G and can
still include non-smooth (not differentiable everywhere) functions.

For example, f(x) = |x| is 1-Lipschitz continuous but not differentiable at x = 0 and the
gradient changes from —1 at 0~ to +1 at 0*.

An alternative assumption that we can make is that f is smooth — it is differentiable everywhere
and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient Vf is L-Lipschitz continuous if for all x,y € D,
[VF(x) = VIl < Lx—yl

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans:
No, % is 1-smooth but its gradient equal to x is unbounded over R.
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Smooth functions — Examples

If f is twice-differentiable and smooth, then for all x € D, V2f(x) < Lly i.e. omax[V3f(x)] < L
where o nax is the maximum singular value.

Q: Does f(x) = x3 have a Lipschitz-continuous gradient over R? Ans: No, f”(x) = 12x which is
not bounded as x — oo

Q: Does f(x) = x3 have a Lipschitz-continuous gradient over [0, 1]?
Ans: Yes, because f”(x) = 12x is bounded on [0, 1].

Q: The negative entropy function is given by f(x) = xlog(x). Does it have a
Lipschitz-continuous gradient over [0,1]? Ans: No, f”(x) = 1/x — oo as x — 0.
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Smooth functions — Examples

Linear Regression on n points with d features. Feature matrix: X € R"*9 vector of
measurements: y € R” and parameters w € RY.

. 1 2
min f(w) = 3 [Xw — ]
f(w) = % WT(XTX)w —2w™ Xy + yTy] ; VF(w) = X" Xw — XTy; V3 f(w) = XX

(Prove in Assignment 0)

If £ is L-smooth, then, oma[V2f(w)] < L for all w. Hence, for linear regression L = Apax[XTX].

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since |Vf(w)| — oo as
W — 00.

Q: Compute L for ridge regression — {>-regularized linear regression where

f(w) =3 11Xw = y[* + 3 [w]®. Ans: L= Amax[XTX] + X 16



Questions?



