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Successes of Machine Learning

(a) Natural language processing (b) Speech recognition

(c) Reinforcement learning (d) Self-driving cars 1



Machine Learning 101
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Machine Learning 101
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Modern Machine Learning

(a) (b)

Figure 1: Models for multi-class classification on Image-Net. Number of examples = 1.2 M

Faster optimization methods can have a big practical impact!
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Optimization for Machine Learning

(Non)-Convex minimization: Supervised learning (classification/regression), Matrix
factorization for recommender systems, Image denoising.

Online optimization: Learning how to play Go/Atari games, Imitating an expert and
learning from demonstrations, Regulating control systems like industrial plants.

Min-Max optimization: Generative Adversarial Networks, Adversarial Learning,
Multi-agent RL.
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Course structure

Objective: Introduce foundational optimization concepts with applications to machine learning.

Syllabus:

(Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent,
Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction

Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)

Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won’t get time to cover in detail: Non-smooth optimization, Convex analysis,
Global optimization.

What we won’t get time to cover: Constrained optimization, Distributed optimization,
Multi-objective optimization.
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Course Logistics

Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca

Instructor Office Hours: Thursday, 2.30 pm - 3.30 pm (TASC-1 8221)

Teaching Assistant: Qiushi Lin Email: qla96@sfu.ca

TA Office Hours: Monday, 9.30 am - 10.30 am (ASB 9814)

Course Webpage: https://vaswanis.github.io/409_981-F24.html

Piazza: https://piazza.com/sfu.ca/fall2024/cmpt409981/home

Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning
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Course Logistics – Grading

Assignments [48%]

Individual assignments to be submitted online, typed up in Latex with accompanying code
submitted as a zip file.

Assignment 0 [5%]: Out today. Assignment to recall prerequisite knowledge and get used
to notation. Due next week.
Assignments 1 & 2 [22%]:

Due in 10 days (at 11.59 pm PST).
For some flexibility, each student is allowed 1 late-submission and can submit in the next class
(no late submissions beyond that).
If you use up your late-submission and submit late again, you will lose 50% of the mark.

Assignments 3 & 4 [21%]: Released during the semester, but due only at the end of the
term (December 10).

Participation [2%]: In class (during lectures, project presentations), on Piazza
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Course Logistics – Grading

Final Project [50%]

Aim is to give you a taste of research in Optimization.

Projects to be done in groups of 3-4 (more details will be on Piazza)

Will maintain a list on Piazza on possible project topics. You are free to choose from the
list or propose a topic that combines Optimization with your own research area.

Project Proposal [10%] – Discussion (before October 20) + Report (due October 22)

Project Milestone [5%] – Update (before November 20)

Project Presentation [10%] (December 3)

Project Report [25%] (December 17)
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Questions?
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Minimizing functions

Consider minimizing a function over the domain D

min
w∈D

f (w).

Setting: Have access to a zero-order oracle – querying the oracle at w ∈ D returns f (w).

Objective: For a target accuracy of ϵ > 0, if f ∗ is the minimum value of f in D, return a point
ŵ ∈ D s.t. f (ŵ)− f ∗ ≤ ϵ. Characterize the required number of oracle calls in terms of ϵ.

Example 1: Minimize a one-dimensional function s.t. f (w) = 0 for all x ̸= w∗, and f (w∗) = −ϵ.

Example 2: Easom function:
f (x1, x2) = − cos(x1) − cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

Minimizing generic functions is hard! We need to make assumptions on the structure.
10



Lipschitz continuous functions

Consider minimizing a function over the domain D:

min
w∈D

f (w).

Assumption: f is Lipschitz continuous (in D) meaning that f can not change arbitrarily fast as
w changes. Formally, for any x , y ∈ D,

|f (x)− f (y)| ≤ G ∥x − y∥

where G is the Lipschitz constant.

Example: f (x) := −x sin(x) in the [−10, 10] interval.
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Lipschitz continuity of the function immediately implies that the gradients are bounded i.e. for
all x ∈ D, ∥∇f (x)∥ ≤ G .
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Global Minimization

Consider minimizing a G -Lipschitz continuous function over a unit hyper-cube:

min
w∈[0,1]d

f (w).

Objective: For a target accuracy of ϵ > 0, if w∗ ∈ [0, 1]d is the minimizer of f , return a point
ŵ ∈ [0, 1]d s.t. f (ŵ)− f (w∗) ≤ ϵ. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to ϵ′ > 0 (to
be determined). Call the zero-order oracle on the centers of these 1

(ϵ′)d
cubes and return the

point ŵ with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes. We can guarantee that
we have queried a point w̃ that is at most

√
dϵ′

2 away from w∗, i.e. ∥w̃ − w∗∥ ≤
√
dϵ′

2 . By
G -Lipschitz continuity, f (w̃)− f (w∗) ≤ G ∥w̃ − w∗∥ ≤ G

√
dϵ′

2 . For a target accuracy of ϵ, we
can set ϵ′ = 2 ϵ

G
√
d
, implying that f (w̃)− f (w∗) ≤ ϵ. From the algorithm, we know that ŵ is the

queried point with the minimum function value. Hence, f (ŵ) ≤ f (w̃) and consequently,

f (ŵ)− f (w∗) ≤ ϵ. Hence, for this naive algorithm, total number of oracle calls =
(

G
√
d

2 ϵ

)d

.
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Global Minimization

Consider minimizing a differentiable, G -Lipschitz continuous function over a unit hyper-cube:

min
w∈[0,1]d

f (w).

Q: Suppose we do a random search over the cubes – choosing a cube at random (say
independently with replacement) and then querying its centre? What is the expected number of
function evaluations to find a cube with is at most

√
dϵ
2 away from w∗?

Ans: The probability of finding the cube is p := ϵ′d . If X is the r.v. which corresponds to the
number of attempts to find the correct cube, then X follows a Geometric distribution. Hence,

expected number of evaluations is 1
p = 1

(ϵ′)d
=

(
G
√
d

ϵ

)d

.

Is our naive algorithm good? Can we do better?

Lower-Bound: For minimizing a G -Lipschitz continuous function over a unit hyper-cube, any
algorithm requires Ω

((
G
ϵ

)d)
calls to the zero-order oracle.
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Questions?
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Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. ∥∇f (w)∥ ≤ G and can
still include non-smooth (not differentiable everywhere) functions.

For example, f (x) = |x | is 1-Lipschitz continuous but not differentiable at x = 0 and the
gradient changes from −1 at 0− to +1 at 0+.

An alternative assumption that we can make is that f is smooth – it is differentiable everywhere
and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient ∇f is L-Lipschitz continuous if for all x , y ∈ D,

∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f ).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans:
No, x2

2 is 1-smooth but its gradient equal to x is unbounded over R.
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Smooth functions – Examples

If f is twice-differentiable and smooth, then for all x ∈ D, ∇2f (x) ⪯ L Id i.e. σmax[∇2f (x)] ≤ L

where σmax is the maximum singular value.

Q: Does f (x) = x3 have a Lipschitz-continuous gradient over R? Ans: No, f ′′(x) = 12x which is
not bounded as x → ∞

Q: Does f (x) = x3 have a Lipschitz-continuous gradient over [0, 1]?

Ans: Yes, because f ′′(x) = 12x is bounded on [0, 1].

Q: The negative entropy function is given by f (x) = x log(x). Does it have a
Lipschitz-continuous gradient over [0, 1]? Ans: No, f ′′(x) = 1/x → ∞ as x → 0.
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Smooth functions – Examples

Linear Regression on n points with d features. Feature matrix: X ∈ Rn×d , vector of
measurements: y ∈ Rn and parameters w ∈ Rd .

min
w∈Rd

f (w) :=
1
2
∥Xw − y∥2

f (w) =
1
2
[wT(XTX )w − 2wTXTy + yTy ] ;∇f (w) = XTXw − XTy ;∇2f (w) = XTX

(Prove in Assignment 0)

If f is L-smooth, then, σmax[∇2f (w)] ≤ L for all w . Hence, for linear regression L = λmax[X
TX ].

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since ∥∇f (w)∥ → ∞ as
w → ∞.

Q: Compute L for ridge regression – ℓ2-regularized linear regression where
f (w) := 1

2 ∥Xw − y∥2 + λ
2 ∥w∥2. Ans: L = λmax[X

TX ] + λ 16



Questions?
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