CMPT 409/981: Optimization for Machine Learning Lecture 1

Sharan Vaswani

September 5, 2024

Successes of Machine Learning

https://www.blog.google/products/gmail/subject-write-emails-faster-smart-compose-gmail/

https://www.cnet.com/news/what-is-siri/

(a) Natural language processing (b) Speech recognition

https://www.bbc.com/news/technology-35785875

(c) Reinforcement learning (d) Self-driving cars 1

https://www.pbs.org/newshour/science/in-a-crash-should-self-driving-carssave-passengers-or-pedestrians-2-million-people-weigh-in

Machine Learning 101

Machine Learning 101

Modern Machine Learning

Figure 1: Models for multi-class classification on Image-Net. Number of examples $= 1.2$ M

Faster optimization methods can have a big practical impact!

- (Non)-Convex minimization: Supervised learning (classification/regression), Matrix factorization for recommender systems, Image denoising.
- Online optimization: Learning how to play Go/Atari games, Imitating an expert and learning from demonstrations, Regulating control systems like industrial plants.
- Min-Max optimization: Generative Adversarial Networks, Adversarial Learning, Multi-agent RL.

Objective: Introduce foundational optimization concepts with applications to machine learning. Syllabus:

- (Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent, Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction
- Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)
- Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won't get time to cover in detail: Non-smooth optimization, Convex analysis, Global optimization.

What we won't get time to cover: Constrained optimization, Distributed optimization, Multi-objective optimization.

- Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca
- Instructor Office Hours: Thursday, 2.30 pm 3.30 pm (TASC-1 8221)
- Teaching Assistant: Qiushi Lin Email: <qla96@sfu.ca>
- TA Office Hours: Monday, 9.30 am 10.30 am (ASB 9814)
- Course Webpage: https://vaswanis.github.io/409_981-F24.html
- Piazza: <https://piazza.com/sfu.ca/fall2024/cmpt409981/home>
- Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning

Assignments [48%]

- Individual assignments to be submitted online, typed up in Latex with accompanying code submitted as a zip file.
- Assignment 0 [5%]: Out today. Assignment to recall prerequisite knowledge and get used to notation. Due next week.
- Assignments $1 \& 2 \left[22\% \right]$:
	- Due in 10 days (at 11.59 pm PST).
	- For some flexibility, each student is allowed 1 late-submission and can submit in the next class (no late submissions beyond that).
	- If you use up your late-submission and submit late again, you will lose 50% of the mark.
- Assignments 3 & 4 [21%]: Released during the semester, but due only at the end of the term (December 10).

Participation [2%]: In class (during lectures, project presentations), on Piazza

Final Project [50%]

- Aim is to give you a taste of research in Optimization.
- Projects to be done in groups of 3-4 (more details will be on Piazza)
- Will maintain a list on Piazza on possible project topics. You are free to choose from the list or propose a topic that combines Optimization with your own research area.
- Project Proposal [10%] Discussion (before October 20) + Report (due October 22)
- Project Milestone [5%] Update (before November 20)
- Project Presentation [10%] (December 3)
- Project Report [25%] (December 17)

Questions?

Consider minimizing a function over the domain D

 $\min_{w \in \mathcal{D}} f(w)$.

Setting: Have access to a zero-order oracle – querying the oracle at $w \in \mathcal{D}$ returns $f(w)$.

Objective: For a target accuracy of $\epsilon > 0$, if f^* is the minimum value of f in \mathcal{D} , return a point $\hat{w} \in \mathcal{D}$ s.t. $f(\hat{w}) - f^* \leq \epsilon$. Characterize the required number of oracle calls in terms of ϵ .

Example 1: Minimize a one-dimensional function s.t. $f(w) = 0$ for all $x \neq w^*$, and $f(w^*) = -\epsilon$.

Example 2: Easom function: $f(x_1, x_2) = -\cos(x_1) - \cos(x_2) \exp(-(x_1 - \pi)^2 - (x_2 - \pi)^2).$

Minimizing generic functions is hard! We need to make assumptions on the structure.

Consider minimizing a function over the domain D:

 $\min_{w \in \mathcal{D}} f(w)$.

Assumption: f is Lipschitz continuous (in D) meaning that f can not change arbitrarily fast as w changes. Formally, for any $x, y \in \mathcal{D}$,

 $|f(x) - f(y)| \le G ||x - y||$

where G is the Lipschitz constant.

Example: $f(x) := -x \sin(x)$ in the [-10, 10] interval.

Lipschitz continuity of the function immediately implies that the gradients are bounded i.e. for all $x \in \mathcal{D}$, $\|\nabla f(x)\| \leq G$.

Consider minimizing a G-Lipschitz continuous function over a unit hyper-cube:

 $\min_{w \in [0,1]^d} f(w)$.

Objective: For a target accuracy of $\epsilon > 0$, if $w^* \in [0,1]^d$ is the minimizer of f, return a point $\hat{w} \in [0,1]^d$ s.t. $f(\hat{w}) - f(w^*) \leq \epsilon$. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to $\epsilon' > 0$ (to be determined). Call the zero-order oracle on the centers of these $\frac{1}{(\epsilon')^d}$ cubes and return the point \hat{w} with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes. We can guarantee that we have queried a point \tilde{w} that is at most $\frac{\sqrt{d}e'}{2}$ $rac{\overline{d}\epsilon'}{2}$ away from w^{*}, i.e. $\|\tilde{w} - w^*\| \leq \frac{\sqrt{d}\epsilon'}{2}$ $\frac{d\epsilon'}{2}$. By G-Lipschitz continuity, $f(\tilde{w}) - f(w^*) \leq G \|\tilde{w} - w^*\| \leq G \frac{\sqrt{d}e^{\sqrt{d}}}{2}$ $\frac{d\epsilon'}{2}$. For a target accuracy of ϵ , we can set $\epsilon' = \frac{2\epsilon}{C}$ $\frac{2\epsilon}{G\sqrt{d}}$, implying that $f(\tilde{w}) - f(w^*) \leq \epsilon$. From the algorithm, we know that \hat{w} is the queried point with the minimum function value. Hence, $f(\hat{w}) \le f(\tilde{w})$ and consequently, $f(\hat{w}) - f(w^*) \leq \epsilon$. Hence, for this naive algorithm, total number of oracle calls $= \left(\frac{G\sqrt{d}}{2\epsilon}\right)^d$.

Consider minimizing a differentiable, G-Lipschitz continuous function over a unit hyper-cube:

 $\min_{w \in [0,1]^d} f(w)$.

 $Q:$ Suppose we do a random search over the cubes – choosing a cube at random (say independently with replacement) and then querying its centre? What is the expected number of function evaluations to find a cube with is at most $\frac{\sqrt{d}\epsilon}{2}$ away from w^* ?

Ans: The probability of finding the cube is $p := \epsilon'^d$. If X is the r.v. which corresponds to the number of attempts to find the correct cube, then X follows a Geometric distribution. Hence, expected number of evaluations is $\frac{1}{p} = \frac{1}{(\epsilon')^d} = \left(\frac{G\sqrt{d}}{\epsilon}\right)^d$.

Is our naive algorithm good? Can we do better?

Lower-Bound: For minimizing a G-Lipschitz continuous function over a unit hyper-cube, any algorithm requires $\Omega\left(\left(\frac{G}{\epsilon}\right)^d\right)$ calls to the zero-order oracle.

Questions?

Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. $\|\nabla f(w)\| \leq G$ and can still include *non-smooth* (not differentiable everywhere) functions.

For example, $f(x) = |x|$ is 1-Lipschitz continuous but not differentiable at $x = 0$ and the gradient changes from -1 at 0^- to $+1$ at 0^+ .

An alternative assumption that we can make is that f is smooth – it is differentiable everywhere and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient ∇f is *L*-Lipschitz continuous if for all $x, y \in \mathcal{D}$,

 $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans: No, $\frac{x^2}{2}$ $\frac{x^2}{2}$ is 1-smooth but its gradient equal to x is unbounded over $\mathbb R$.

If f is twice-differentiable and smooth, then for all $x\in\mathcal{D},$ $\nabla^2f(x)\preceq L\,I_d$ i.e. $\sigma_{\sf max}[\nabla^2f(x)]\leq L$ where σ_{max} is the maximum singular value.

Q: Does $f(x) = x^3$ have a Lipschitz-continuous gradient over R? Ans: No, $f''(x) = 12x$ which is not bounded as $x \to \infty$

Q: Does $f(x) = x^3$ have a Lipschitz-continuous gradient over [0, 1]?

Ans: Yes, because $f''(x) = 12x$ is bounded on [0, 1].

Q: The *negative entropy function* is given by $f(x) = x \log(x)$. Does it have a Lipschitz-continuous gradient over [0, 1]? Ans: No, $f''(x) = 1/x \rightarrow \infty$ as $x \rightarrow 0$.

Smooth functions – Examples

Linear Regression on *n* points with *d* features. Feature matrix: $X \in \mathbb{R}^{n \times d}$, vector of measurements: $y \in \mathbb{R}^n$ and parameters $w \in \mathbb{R}^d$.

$$
\min_{w \in \mathbb{R}^d} f(w) := \frac{1}{2} \left\|Xw - y\right\|^2
$$

$$
f(w) = \frac{1}{2} \left[w^{\mathsf{T}} (X^{\mathsf{T}} X) w - 2w^{\mathsf{T}} X^{\mathsf{T}} y + y^{\mathsf{T}} y \right] ; \nabla f(w) = X^{\mathsf{T}} X w - X^{\mathsf{T}} y ; \nabla^{2} f(w) = X^{\mathsf{T}} X
$$
\n(Prove in Assignment 0)

If f is L-smooth, then, $\sigma_{\sf max}[\nabla^2 f(w)] \leq L$ for all w. Hence, for linear regression $L=\lambda_{\sf max}[X^{\sf T}X].$

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since $\|\nabla f(w)\| \to \infty$ as $w \rightarrow \infty$.

Q: Compute L for *ridge regression* – ℓ_2 -regularized linear regression where $f(w) := \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$. Ans: $L = \lambda_{\text{max}}[X^{\text{T}}X] + \lambda$

Questions?