CMPT 409/981: Optimization for Machine Learning

Lecture 1

Sharan Vaswani September 5, 2024

Successes of Machine Learning

https://www.blog.google/products/gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-faster-smart-compose-gmail/subject-write-emails-smart-compose-gmail/subject-write-emails-smart-compose-gmail/subject-write-emails-smart-smart-compose-gmail/subject-write-emails-smart-s

https://www.cnet.com/news/what-is-siri/

(a) Natural language processing

https://www.bbc.com/news/technology-35785875

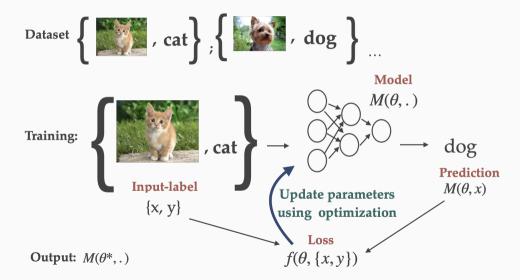
(c) Reinforcement learning

(b) Speech recognition

https://www.pbs.org/newsnour/science/in-a-crash-should-self-drivingsave-passengers-or-pedestrians-2-million-people-weigh-in

(d) Self-driving cars

Machine Learning 101



Machine Learning 101

Output: Validation Accuracy

Measures how good the trained model is

Modern Machine Learning

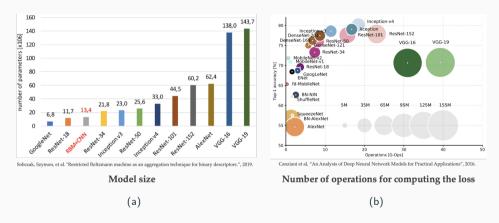


Figure 1: Models for multi-class classification on Image-Net. Number of examples = 1.2 M

Faster optimization methods can have a big practical impact!

Optimization for Machine Learning

- (Non)-Convex minimization: Supervised learning (classification/regression), Matrix factorization for recommender systems, Image denoising.
- Online optimization: Learning how to play Go/Atari games, Imitating an expert and learning from demonstrations, Regulating control systems like industrial plants.
- Min-Max optimization: Generative Adversarial Networks, Adversarial Learning, Multi-agent RL.

Course structure

Objective: Introduce foundational optimization concepts with applications to machine learning. **Syllabus**:

- (Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent, Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction
- Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)
- Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won't get time to cover in detail: Non-smooth optimization, Convex analysis, Global optimization.

What we won't get time to cover: Constrained optimization, Distributed optimization, Multi-objective optimization.

Course Logistics

- Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca
- Instructor Office Hours: Thursday, 2.30 pm 3.30 pm (TASC-1 8221)
- Teaching Assistant: Qiushi Lin Email: qla96@sfu.ca
- TA Office Hours: Monday, 9.30 am 10.30 am (ASB 9814)
- Course Webpage: https://vaswanis.github.io/409_981-F24.html
- Piazza: https://piazza.com/sfu.ca/fall2024/cmpt409981/home
- Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning

Course Logistics – Grading

Assignments [48%]

- Individual assignments to be submitted online, typed up in Latex with accompanying code submitted as a zip file.
- Assignment 0 [5%]: Out today. Assignment to recall prerequisite knowledge and get used to notation. Due next week.
- Assignments 1 & 2 [22%]:
 - Due in 10 days (at 11.59 pm PST).
 - For some flexibility, each student is allowed 1 late-submission and can submit in the next class (no late submissions beyond that).
 - If you use up your late-submission and submit late again, you will lose 50% of the mark.
- Assignments 3 & 4 [21%]: Released during the semester, but due only at the end of the term (December 10).

Participation [2%]: In class (during lectures, project presentations), on Piazza

Course Logistics – Grading

Final Project [50%]

- Aim is to give you a taste of research in Optimization.
- Projects to be done in groups of 3-4 (more details will be on Piazza)
- Will maintain a list on Piazza on possible project topics. You are free to choose from the list or propose a topic that combines Optimization with your own research area.
- Project Proposal [10%] Discussion (before October 20) + Report (due October 22)
- Project Milestone [5%] Update (before November 20)
- Project Presentation [10%] (December 3)
- Project Report [25%] (December 17)

Minimizing functions

Consider minimizing a function over the domain ${\mathcal D}$

$$\min_{w\in\mathcal{D}}f(w).$$

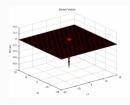
Setting: Have access to a *zero-order oracle* – querying the oracle at $w \in \mathcal{D}$ returns f(w).

Objective: For a target accuracy of $\epsilon > 0$, if f^* is the minimum value of f in \mathcal{D} , return a point $\hat{w} \in \mathcal{D}$ s.t. $f(\hat{w}) - f^* \le \epsilon$. Characterize the required number of oracle calls in terms of ϵ .

Example 1: Minimize a one-dimensional function s.t. f(w) = 0 for all $x \neq w^*$, and $f(w^*) = -\epsilon$.

Example 2: Easom function:

$$f(x_1, x_2) = -\cos(x_1) - \cos(x_2) \exp(-(x_1 - \pi)^2 - (x_2 - \pi)^2).$$



Minimizing generic functions is hard! We need to make assumptions on the structure.

Lipschitz continuous functions

Consider minimizing a function over the domain \mathcal{D} :

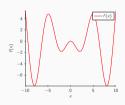
$$\min_{w\in\mathcal{D}}f(w).$$

Assumption: f is Lipschitz continuous (in \mathcal{D}) meaning that f can not change arbitrarily fast as w changes. Formally, for any $x, y \in \mathcal{D}$,

$$|f(x)-f(y)|\leq G\|x-y\|$$

where G is the Lipschitz constant.

Example: $f(x) := -x \sin(x)$ in the [-10, 10] interval.



Lipschitz continuity of the function immediately implies that the gradients are *bounded* i.e. for all $x \in \mathcal{D}$, $\|\nabla f(x)\| \leq G$.

Global Minimization

Consider minimizing a *G*-Lipschitz continuous function over a unit hyper-cube:

$$\min_{w\in[0,1]^d}f(w).$$

Objective: For a target accuracy of $\epsilon > 0$, if $w^* \in [0,1]^d$ is the minimizer of f, return a point $\hat{w} \in [0,1]^d$ s.t. $f(\hat{w}) - f(w^*) \le \epsilon$. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to $\epsilon'>0$ (to be determined). Call the zero-order oracle on the centers of these $\frac{1}{(\epsilon')^d}$ cubes and return the point \hat{w} with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes. We can guarantee that we have queried a point \tilde{w} that is at most $\frac{\sqrt{d}\epsilon'}{2}$ away from w^* , i.e. $\|\tilde{w}-w^*\| \leq \frac{\sqrt{d}\epsilon'}{2}$. By G-Lipschitz continuity, $f(\tilde{w}) - f(w^*) \leq G \|\tilde{w} - w^*\| \leq G \frac{\sqrt{d}\epsilon'}{2}$. For a target accuracy of ϵ , we can set $\epsilon' = \frac{2\epsilon}{G\sqrt{d}}$, implying that $f(\tilde{w}) - f(w^*) \leq \epsilon$. From the algorithm, we know that \hat{w} is the queried point with the minimum function value. Hence, $f(\hat{w}) \leq f(\tilde{w})$ and consequently, $f(\hat{w}) - f(w^*) \leq \epsilon$. Hence, for this naive algorithm, total number of oracle calls $= \left(\frac{G\sqrt{d}}{2\epsilon}\right)^d$.

Global Minimization

Consider minimizing a differentiable, *G*-Lipschitz continuous function over a unit hyper-cube:

$$\min_{w\in[0,1]^d}f(w).$$

Q: Suppose we do a random search over the cubes – choosing a cube at random (say independently with replacement) and then querying its centre? What is the expected number of function evaluations to find a cube with is at most $\frac{\sqrt{d}\epsilon}{2}$ away from w^* ?

Ans: The probability of finding the cube is $p:=\epsilon'^d$. If X is the r.v. which corresponds to the number of attempts to find the correct cube, then X follows a Geometric distribution. Hence, expected number of evaluations is $\frac{1}{p}=\frac{1}{(\epsilon')^d}=\left(\frac{G\sqrt{d}}{\epsilon}\right)^d$.

Is our naive algorithm good? Can we do better?

Lower-Bound: For minimizing a G-Lipschitz continuous function over a unit hyper-cube, any algorithm requires $\Omega\left(\left(\frac{G}{\epsilon}\right)^d\right)$ calls to the zero-order oracle.

Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. $\|\nabla f(w)\| \leq G$ and can still include *non-smooth* (not differentiable everywhere) functions.

For example, f(x) = |x| is 1-Lipschitz continuous but not differentiable at x = 0 and the gradient changes from -1 at 0^- to +1 at 0^+ .

An alternative assumption that we can make is that f is smooth – it is differentiable everywhere and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient ∇f is L-Lipschitz continuous if for all $x, y \in \mathcal{D}$,

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$$

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans: No, $\frac{x^2}{2}$ is 1-smooth but its gradient equal to x is unbounded over \mathbb{R} .

Smooth functions – Examples

If f is twice-differentiable and smooth, then for all $x \in \mathcal{D}$, $\nabla^2 f(x) \leq L I_d$ i.e. $\sigma_{\max}[\nabla^2 f(x)] \leq L$ where σ_{\max} is the maximum singular value.

Q: Does $f(x) = x^3$ have a Lipschitz-continuous gradient over \mathbb{R} ? Ans: No, f''(x) = 12x which is not bounded as $x \to \infty$

Q: Does $f(x) = x^3$ have a Lipschitz-continuous gradient over [0,1]?

Ans: Yes, because f''(x) = 12x is bounded on [0,1].

Q: The negative entropy function is given by $f(x) = x \log(x)$. Does it have a Lipschitz-continuous gradient over [0,1]? Ans: No, $f''(x) = 1/x \to \infty$ as $x \to 0$.

Smooth functions – Examples

Linear Regression on *n* points with *d* features. Feature matrix: $X \in \mathbb{R}^{n \times d}$, vector of measurements: $y \in \mathbb{R}^n$ and parameters $w \in \mathbb{R}^d$.

$$\min_{w \in \mathbb{R}^d} f(w) := \frac{1}{2} \left\| Xw - y \right\|^2$$

$$f(w) = \frac{1}{2} \left[w^{\mathsf{T}} (X^{\mathsf{T}} X) w - 2 w^{\mathsf{T}} X^{\mathsf{T}} y + y^{\mathsf{T}} y \right] ; \nabla f(w) = X^{\mathsf{T}} X w - X^{\mathsf{T}} y ; \nabla^2 f(w) = X^{\mathsf{T}} X$$
(Prove in Assignment 0)

If f is L-smooth, then, $\sigma_{\max}[\nabla^2 f(w)] \leq L$ for all w. Hence, for linear regression $L = \lambda_{\max}[X^{\mathsf{T}}X]$.

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since $\|\nabla f(w)\| \to \infty$ as $w \to \infty$.

Q: Compute L for ridge regression – ℓ_2 -regularized linear regression where $f(w) := \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$. Ans: $L = \lambda_{\text{max}}[X^{\mathsf{T}}X] + \lambda$

