CMPT 210: Probability and Computing

Lecture 3

Sharan Vaswani

September 12, 2024

Product Rule: For sets A_1 , A_2 ..., A_m , $|A_1 \times A_2 \times ... \times A_m| = \prod_{i=1}^m |A_i|$ (E.g.: Selecting one course each from every subject.)

Sum rule: If $A_1, A_2 \dots A_m$ are disjoint sets, then, $|A_1 \cup A_2 \cup \dots \cup A_m| = \sum_{i=1}^m |A_i|$ (E.g Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be selected in n_1 ways, after the first entry is chosen, the second one can be chosen in n_2 ways, and so on, then $|S| = n_1 \times n_2 \times \ldots n_k$. (E.g Number of ways n people can be arranged in a line = n!)

Division rule: $f : A \to B$ is a k-to-1 function, then, |A| = k|B|. (E.g. For arranging people around a round table, f : seatings \to arrangements is an *n*-to-1 function).

Number of ways to select size-k subsets from a size-n set = n choose $k = \binom{n}{k} := \frac{n!}{k! \times (n-k)!}$.

Q: Prove that $\binom{n}{k} = \binom{n}{n-k}$ - both algebraically (using the formula for $\binom{n}{k}$) and combinatorially (without using the formula)

Ans: Algebraically, $\binom{n}{k}$ is symmetric with respect to k and n - k. Combinatorially, number of ways of choosing elements to form a set of size k = number of ways of choosing n - k elements to discard.

Q: Which is bigger? $\binom{8}{4}$ vs $\binom{8}{5}$? Ans: $\binom{8}{4} = 70$. $\binom{8}{5} = 56$

Q: How many *m*-bit binary sequences contain exactly k ones?

Consider set $A = \{1, ..., m\}$ and selecting S, a subset of size k. For example, say m = 10, k = 3 and $S = \{3, 7, 10\}$. S records the positions of the 1's, and can mapped to the sequence 0010001001. Similarly, every *m*-bit sequence with exactly k ones can be mapped to a subset S of size k. Hence, there is a bijection:

f : m-bit sequence with exactly k ones \rightarrow subsets of size k from size m-set, and |m-bit sequence with exactly k ones| = |subsets of size $k| = \binom{m}{k}$.

Q: What is the number of n-bit binary sequences with at least k ones?

Ans: Set of *n*-bit binary sequences with at least *k* ones = *n*-bit binary sequences with exactly *k* ones \cup *n*-bit binary sequences with exactly *k* + 1 ones $\cup ... \cup n$ -bit binary sequences with exactly *n* ones. By the sum rule for disjoint sets, number of *n*-bit binary sequences with at least *k* ones $= \sum_{i=k}^{n} {n \choose i}$.

Q: What is the number of n-bit binary sequences with less than k ones?

Ans: $\sum_{i=0}^{k-1} \binom{n}{i}$

Q: What is the total number of *n*-bit binary sequences?

Ans: 2^{*n*}

Total number of *n*-bit binary sequences = number of *n*-bit binary sequences with at least *k* ones + number of *n*-bit binary sequences with less than *k* ones. Combining the above answers, we can conclude that, $\sum_{k=0}^{n} {n \choose k} = 2^{n}$. Have recovered a special case of the binomial theorem!

Binomial Theorem

For all $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Example: If a = b = 1, then $\sum_{k=0}^{n} {n \choose k} = 2^{n}$ (result from previous slide). If n = 2, then $(a + b)^2 = \binom{2}{2}a^2 + \binom{2}{2}ab + \binom{2}{2}b^2 = a^2 + 2ab + b^2$. Q: What is the coefficient of the terms with ab^3 and a^2b^3 in $(a+b)^4$? Ans: $\binom{4}{1} = \binom{4}{3}$, 0. Q: For a, b > 0, what is the coefficient of $a^{2n-7}b^7$ and $a^{2n-8}b^8$ in $(a+b)^{2n} + (a-b)^{2n}$? Ans: $(a+b)^{2n} = \sum_{k=0}^{2n} {\binom{2n}{k}} a^{2n-k} b^k$, $(a-b)^{2n} = -\sum_{k=0}^{2n} {2n \choose k} a^{2n-k} b^k \mathcal{I}\{k \text{ is odd}\} + \sum_{k=0}^{2n} {2n \choose k} a^{2n-k} b^k \mathcal{I}\{k \text{ is even}\}.$ $(a+b)^{2n} + (a-b)^{2n} = 2\sum_{k=0}^{2n} {\binom{2n}{k}} a^{2n-k} b^k \mathcal{I}\{k \text{ is even}\}.$ Hence, coefficient of $a^{2n-7}b^7 = 0.$ coefficient of $a^{2n-8}b^8 = 2\binom{2n}{2}$.

Counting Sets – using a bijection

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled, sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Let A be the set of ways to select the 10 donuts. Each element of A is a potential selection. For example, 4 chocolate, 3 lemon, 0 sugar, 2 glazed and 1 plain.

Let's map each way to a string as follows: $\underbrace{0000}_{\text{chocolate lemon sugar glazed plain}} \underbrace{000}_{\text{chocolate lemon sugar glazed plain}} \underbrace{000}_{\text{chocolate lemon sugar glazed plain}}$.

Lets fix the ordering – chocolate, lemon, sugar, glazed and plain, and abstract this out further to get the sequence: 00001000110010. Hence, each way of choosing donuts is mapped to a binary sequence of length 14 with exactly 4 ones. Now, let *B* be all 14-bit sequences with exactly 4 ones. An element of *B* is 11110000000000.

Q: The above sequence corresponds to what donut order? Ans: All plain donuts.

For every way to select donuts, we have an equivalent sequence in B. And every sequence in B implies a unique way to select donuts. Hence, the mapping from $A \rightarrow B$ is a bijective function.

Counting Sets – using a bijection

Hence, |A| = |B|, meaning that we have reduced the problem of counting the number of ways to select donuts to counting the number of 14-bit sequences with exactly 4 ones. This is equal to counting the number of subsets = $\binom{14}{4} = 1001$.

General result: The number of ways to choose *n* elements with *k* available varieties is equal to the number of n + k - 1-bit binary sequences with exactly k - 1 ones. This is equal to $\binom{n+k-1}{k-1}$.

Q: There are 2 donut varieties – chocolate and lemon-filled. Suppose we want to buy only 2 donuts. Use the above result to count the number of ways in which we can select the donuts? What are these ways?

Ans: Since n = 2, k = 2, we want to count the sequences with exactly 1 one in 3-bit sequences. $\{(0,0,1), (1,0,0), (0,1,0)\}$.

Q: In the above example, I want at least one chocolate donut. What are the types of acceptable 3-bit sequences with this criterion? How many ways can we do this?

Ans: We want to count the number of 3-bit sequences that start with zero and have exactly 1 one in them. So $\{(0,1,0), (0,0,1)\}$.

7

Questions?