CMPT 210: Probability and Computing

Lecture 3

Sharan Vaswani September 12, 2024

Product Rule: For sets $A_1, A_2, ..., A_m, |A_1 \times A_2 \times ... \times A_m| = \prod_{i=1}^m |A_i|$ (E.g: Selecting one course each from every subject.)

Sum rule: If $A_1, A_2 \ldots A_m$ are disjoint sets, then, $|A_1 \cup A_2 \cup \ldots \cup A_m| = \sum_{i=1}^{m} |A_i|$ (E.g Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be selected in n_1 ways, after the first entry is chosen, the second one can be chosen in n_2 ways, and so on, then $|S| = n_1 \times n_2 \times \ldots n_k$. (E.g Number of ways *n* people can be arranged in a line $= n!$)

Division rule: $f : A \rightarrow B$ is a k-to-1 function, then, $|A| = k|B|$. (E.g. For arranging people around a round table, f : seatings \rightarrow arrangements is an *n*-to-1 function).

Number of ways to select size-k subsets from a size-n set = n choose $k = \binom{n}{k} := \frac{n!}{k! \times (n-k)!}$.

Q: Prove that $\binom{n}{k} = \binom{n}{n-k}$ - both algebraically (using the formula for $\binom{n}{k}$) and combinatorially (without using the formula)

Ans: Algebraically, $\binom{n}{k}$ is symmetric with respect to k and $n - k$. Combinatorially, number of ways of choosing elements to form a set of size $k =$ number of ways of choosing $n - k$ elements to discard.

Q: Which is bigger? $\binom{8}{4}$ vs $\binom{8}{5}$? Ans: $\binom{8}{4}$ = 70. $\binom{8}{5}$ = 56

 Q : How many *m*-bit binary sequences contain exactly k ones?

Consider set $A = \{1, \ldots, m\}$ and selecting S, a subset of size k. For example, say $m = 10$, $k = 3$ and $S = \{3, 7, 10\}$. S records the positions of the 1's, and can mapped to the sequence 001 0001 001. Similarly, every m -bit sequence with exactly k ones can be mapped to a subset S of size k . Hence, there is a bijection:

f : m-bit sequence with exactly k ones \rightarrow subsets of size k from size m-set, and |m-bit sequence with exactly k ones| = |subsets of size k | = $\binom{m}{k}$.

Q: What is the number of *n*-bit binary sequences with at least k ones?

Ans: Set of *n*-bit binary sequences with at least k ones $= n$ -bit binary sequences with exactly k ones \cup n-bit binary sequences with exactly $k + 1$ ones $\cup \ldots \cup n$ -bit binary sequences with exactly n ones. By the sum rule for disjoint sets, number of n -bit binary sequences with at least k ones $=\sum_{i=k}^{n}\binom{n}{i}.$

Q: What is the number of *n*-bit binary sequences with less than k ones?

Ans: $\sum_{i=0}^{k-1} \binom{n}{i}$

Q: What is the total number of *n*-bit binary sequences?

Ans: 2^n

Total number of *n*-bit binary sequences $=$ number of *n*-bit binary sequences with at least *k* ones + number of *n*-bit binary sequences with less than k ones. Combining the above answers, we can conclude that, $\sum_{k=0}^{n} {n \choose k} = 2^n$. Have recovered a special case of the binomial theorem!

Binomial Theorem

For all $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$,

$$
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k
$$

Example: If $a = b = 1$, then $\sum_{k=0}^{n} {n \choose k} = 2^{n}$ (result from previous slide). If $n = 2$, then $(a + b)^2 = {2 \choose 0}a^2 + {2 \choose 1}ab + {2 \choose 2}b^2 = a^2 + 2ab + b^2$. Q: What is the coefficient of the terms with ab^3 and a^2b^3 in $(a+b)^4$? Ans: $\binom{4}{1} = \binom{4}{3}$, 0. Q: For a, $b > 0$, what is the coefficient of $a^{2n-7}b^7$ and $a^{2n-8}b^8$ in $(a + b)^{2n} + (a - b)^{2n}$? Ans: $(a + b)^{2n} = \sum_{k=0}^{2n} {2n \choose k} a^{2n-k} b^k$, $(a - b)^{2n} = -\sum_{k=0}^{2n} {2n \choose k} a^{2n-k} b^k \mathcal{I} \{k \text{ is odd}\} + \sum_{k=0}^{2n} {2n \choose k} a^{2n-k} b^k \mathcal{I} \{k \text{ is even}\}.$ $(a + b)^{2n} + (a - b)^{2n} = 2 \sum_{k=0}^{2n} {2n \choose k} a^{2n-k} b^k \mathcal{I} \{k \text{ is even}\}.$ Hence, coefficient of $a^{2n-7}b^7 = 0$, coefficient of $a^{2n-8}b^8 = 2{2n \choose 8}.$

Counting Sets – using a bijection

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled, sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Let A be the set of ways to select the 10 donuts. Each element of A is a potential selection. For example, 4 chocolate, 3 lemon, 0 sugar, 2 glazed and 1 plain.

Let's map each way to a string as follows: $\left[0000\right],\left[000\right],\left[00\right],\left[0\right]$ chocolate lemon sugar glazed plain

Lets fix the ordering – chocolate, lemon, sugar, glazed and plain, and abstract this out further to get the sequence: 0000 1 000 1 1 00 1 0. Hence, each way of choosing donuts is mapped to a binary sequence of length 14 with exactly 4 ones. Now, let B be all 14-bit sequences with exactly 4 ones. An element of B is 11110000000000.

Q: The above sequence corresponds to what donut order? Ans: All plain donuts.

For every way to select donuts, we have an equivalent sequence in B. And every sequence in B implies a unique way to select donuts. Hence, the mapping from $A \rightarrow B$ is a bijective function.

Counting Sets – using a bijection

Hence, $|A| = |B|$, meaning that we have reduced the problem of counting the number of ways to select donuts to counting the number of 14-bit sequences with exactly 4 ones. This is equal to counting the number of subsets $= \binom{14}{4} = 1001$.

General result: The number of ways to choose n elements with k available varieties is equal to the number of $n + k - 1$ -bit binary sequences with exactly $k - 1$ ones. This is equal to $\binom{n+k-1}{k-1}$.

Q: There are 2 donut varieties – chocolate and lemon-filled. Suppose we want to buy only 2 donuts. Use the above result to count the number of ways in which we can select the donuts? What are these ways?

Ans: Since $n = 2$, $k = 2$, we want to count the sequences with exactly 1 one in 3-bit sequences. $\{(0, 0, 1), (1, 0, 0), (0, 1, 0)\}.$

Q: In the above example, I want at least one chocolate donut. What are the types of acceptable 3-bit sequences with this criterion? How many ways can we do this?

Ans: We want to count the number of 3-bit sequences that start with zero and have exactly 1 one in them. So $\{(0, 1, 0), (0, 0, 1)\}.$

Questions?