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Functions

We can also define a function with a set as the argument. For a set S ∈ D,
f (S) := {x | ∀s ∈ S , x = f (s)}.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26}. f : A → B such that f (a) = 1, f (b) = 2, . . ..
f ({e, f , z}) = {5, 6, 26}.

If D is the domain of f , then range(f ) := f (D) = f (domain(f )).

Q: If f : N → R, and f (x) = x2. What is the domain and codomain of f ? What is the range?

Ans: N, R, {0, 1, 4, 9, . . .}

Q: Consider f : {0, 1}5 → N s.t. f (x) counts the length of a left to right search of the bits in
the binary string x until a 1 appears. f (01000) = 2.

What is f (00001), f (00000)? Is f a total function? Ans: 5, undefined, No
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Surjective Functions

Surjective functions: f : A → B is a surjective function iff for every b ∈ B, there exists an
a ∈ A s.t. f (a) = b. f : R → R such that f (x) = x + 1 is a surjective function.

For surjective functions, |#arrows| ≥ |B|.

Since each element of A is assigned at most one value, and some need not be assigned a value at
all, |#arrows| ≤ |A|.

Hence, if f is a surjective function, then |A| ≥ |B|.

A = {a, b, c , . . . z , α, β, γ, . . .}, B = {1, 2, 3, . . . 26}. f : A → B such that f (a) = 1,
f (b) = 2, . . .. f does not assign any value to the Greek letters. For every number in B , there is a
letter in A. Hence, f is surjective, and |A| > |B|.
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Injective & Bijective Functions

Injective functions: f : A → B is an injective function iff ∀a ∈ A, there is a unique b ∈ B s.t.
f (a) = b. If f is injective and f (a) = f (b), then it implies that a = b.

Hence, |#arrows| = |A| ≤ |B|. Hence, if f is a injective function, then |A| ≤ |B|.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26, 27, . . . 100}. f : A → B such that f (a) = 1,
f (b) = 2, . . .. No element in A is assigned values 27, 28, . . ., and for every letter in A, there is a
unique number in B. Hence, f is injective, and |A| < |B|.

Bijective functions: f is a bijective function iff it is both surjective and injective, implying that
|A| = |B|.

A = {a, b, c , . . . z}, B = {1, 2, 3, . . . 26}. f : A → B such that f (a) = 1, f (b) = 2, . . .. Every
element in A is assigned a unique value in B and for every element in B, there is a value in A

that is mapped to it. f is bijective, and |A| = |B|.
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Functions

Converse of the previous statements is also true.

If |A| ≥ |B|, then it’s always possible to define a surjective function f : A → B.

If |A| ≤ |B|, then it’s always possible to define a injective function f : A → B.

If |A| = |B|, then it’s always possible to define a bijective function f : A → B.

Q: Recall that the Cartesian product of two sets S = {s1, s2, . . . , sm}, T = {t1, t2, . . . , tn} is
S × T := {(s, t)|s ∈ S , t ∈ T}. Construct a bijective function f : (S × T ) → {1, . . . nm}, and
prove that |S × T | = nm.

Ans: f (s1, t1) = 1, f (s1, tn) = n, f (s2, t1) = n+ 1, and so on. f (si , tj) = n(i − 1) + j . Since f is
bijective, |S × T | = |{1, . . . nm}| = nm.
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Sequences

Examples: (a, b, a), (1,3,4), (4,3,1)

An element can appear twice. E.g. (a, a, b) ̸= (a, b).

The order of the elements does matter. E.g. (a, b) ̸= (b, a).

Q: What is the size of (1, 2, 2, 3)? What is the size of {1, 2, 2, 3}? Ans: 4, 3.

Sets and Sequences: The Cartesian product of sets S × T × U is a set consisting of all
sequences where the first component is drawn from S , the second component is drawn from T

and the third from U. S × T × U = {(s, t, u)|s ∈ S , t ∈ T , u ∈ U}.

Q: For set S = {0, 1}, S3 = S × S × S . Enumerate S3. What is |S3|?

Ans: S3 = {(0, 0, 0), (0, 0, 1) . . . (1, 1, 1)}, |S3| = 8
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Questions?
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Counting Sets – using the sum rule

Q: Let R be the set of rainy days, S be the set of snowy days and H be the set of really hot days
in 2023. A bad day can be either rainy, snowy or really hot. What is the number of good days?

Let B be the set of bad days. B = R ∪ S ∪ H, and we want to estimate |B̄|. |D| = 365.
|B̄| = |D| − |B| = 365 − |B| = 365 − |R ∪ S ∪ H|.

Since the sets R , S and H are disjoint, |R ∪ S ∪ H| = |R|+ |S |+ |H|, and hence the number of
good days = 365 − |R| − |S | − |H|.

Sum rule: If A1,A2 . . .Am are disjoint sets, then, |A1 ∪ A2 ∪ . . . ∪ Am| =
∑m

i=1 |Ai |.
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Counting Sequences – using the product rule

Q: Suppose the university offers Math courses (denoted by the set M), CS courses (set C ) and
Statistics courses (set S). We need to pick one course from each subject – Math, CS and
Statistics. What is the number of ways we can select the 3 courses?

The above problem is equivalent to counting the number of sequences of the form (m, c , s) that
maps to choose the Math course m, CS course c and Stats course s.

Recall that the product of sets M × C × S is a set consisting of all sequences where the first
component is drawn from M, the second component is drawn from C and the third from S , i.e.
M × C × S = {(m, c , s)|m ∈ M, c ∈ C , s ∈ S}. Hence, counting the number of sequences is
equivalent to computing |M × C × S |.

Product Rule: |M × C × S | = |M| × |C | × |S |.

Using the above equivalence, the number of sequences and hence, the number of ways to select
the 3 courses is |M| × |C | × |S |.
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Counting – Example

Q: What is the number of length n-passwords that can be generated if each character in the
password is only allowed to be lower-case letter?

Ans: Each possible password is of the form (a, b, d , . . . , ) where each element in the sequence
can be selected from the {a, b, . . . z} set.
Using the equivalence between sequences and products of sets, counting the number of such
sequences is equivalent to computing |{a, b, . . . z} × {a, b, . . . z}×{a,b,. . . z} . . . |.
Using the product rule, |{a, b, . . . z} × {a, b, . . . z} × {a, b, . . . z} . . . | =
|{a, b, . . . z}| × |{a, b, . . . z}| × . . . = 26n.
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Counting – Example

Q: What is the number of passwords that can be generated if the (i) first character is only
allowed to be a lower-case letter, (ii) each subsequent character in the password is allowed to be
lower-case letter or digit (0 − 9) and (iii) the length of the password is required to be between
6-8 characters?

Let L = {a, b, . . . z} and D = {0, 1, 2, . . .}. Using the equivalence between sequences and
products of sets, the set of passwords of length 6 is given by P6 = L× (L ∪ D)5. Using the
product rule, |P6| = |L| × (|L ∪ D|)5 = |L| × (|L|+ |D|)5.

Since the total set of passwords are P = P6 ∪ P7 ∪ P8, and a password can be either of length 6,
7 or 8, sets P6, P7 and P8 are disjoint. Using the sum rule, |P| = |P6|+ |P7|+ |P8| =
|L| ×

[
(|L|+ |D|)5(1 + (|L|+ |D|) + (|L|+ |D|)2)

]
= 26 × 365 × [1 + 36 + 1296].
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Counting sequences – using the generalized product rule

Q: Suppose we have p prizes to be handed amongst the set A of n students. What are the
number of ways in which we can distribute the prizes? Ans: Consider sequences of length p

where element i is the student that receives prize i . The element i can be one of n students.
The number of sequences is equal to |A× A× . . . | = |A|p = np.

Q: Suppose we have p prizes to be handed amongst the set A of n students. What are the
number of ways in which we can distribute the prizes such that each prize goes to a different
student i.e. no student receives more than one prize? Assume that n ≥ p.

Consider sequences of length p. The first entry can be chosen in n ways (the first prize can be
given to one of the n students). After the first entry is chosen, since the same student cannot
receive the prize, the second entry can be chosen in n − 1 ways, and so on. Hence, the total
number of ways to distribute the prizes = n × (n − 1)× . . .× (n − (p − 1)).

Generalized product rule: If S is the set of length k sequences such that the first entry can be
selected in n1 ways, after the first entry is chosen, the second one can be chosen in n2 ways, and
so on, then |S | = n1 × n2 × . . . nk . If n1 = n2 = . . . = nk , we recover the product rule.
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Counting - Example

Q: A dollar bill is defective if some digit appears more than once in the 8-digit serial number.
What is the fraction of non-defective bills?

In order to compute the fraction of non-defective bills, we need to compute the quantity
|serial numbers with all different digits|

|possible serial numbers| .

For computing |possible serial numbers|, each digit can be one of 10 numbers. Hence, using the
product rule, |possible serial numbers| = 10 × 10 . . . = 108.

For computing |serial numbers with all different digits|, the first digit can be one of 10 numbers.
Once the first digit is chosen, the second one can be chosen in 9 ways, and so on. By the
generalized product rule, |serial numbers with all different digits| = 10 × 9 × . . . 3 = 1, 814, 400.

Fraction of non-defective bills = 1,814,400
108 = 1.8144%.
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Permutations

A permutation of a set S is a sequence of length |S | that contains every element of S exactly
once. Permutations of {a, b, c} are (a, b, c), (a, c , b), (b, c , a), (b, a, c), (c , a, b), (c , b, a).

Q: Given a set of size n, what is the total number of permutations?

Considering sequences of length n, the first entry can be chosen in n ways. Since each element
can be chosen only once, the second entry can be chosen in n − 1 ways, and so on.

By the generalized product rule, the number of permutations = n × (n − 1)× . . .× 1.

Factorial: n! := n × (n − 1)× . . .× 1. By convention: 0! = 1.

How big is n!? Stirling approximation: n! ≈
√

2πn
(
n
e

)n.
Q: Which is bigger? n! vs n(n − 1)(n + 2) (n − 3)! ? Ans:
n! = n(n − 1)(n − 2)(n − 3)! < n(n − 1)(n + 2)(n − 3)!.

Q: In how many ways can we arrange n people in a line? Ans: n!
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Counting – Division rule

k-to-1 function: Maps exactly k elements of the domain to every element of the codomain.

If f : A → B is a k-to-1 function, then, |A| = k |B|.

Example: E is the set of ears in this room, and P is the set of people. Then f mapping the ears
to people is a 2-to-1 function. Hence, |E | = 2|P|.

Q: If f : A → B is a k-to-1 function, and g : B → C is a m-to-1 function, then what is |A|/|C |?

Ans: |A| = k|B| = km|C |. Hence |A|/|C | is km.

Q: If f : A → B is a k-to-1 function, and g : C → B is a m-to-1 function, then what is |A|/|C |?

Ans: |A| = k|B|. |C | = m|B|. |A|/|C | = k
m .
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Counting – Example

Q: In how many ways can we arrange n people around a round table? Two seatings are
considered to be the same arrangement if each person sits with the same person on their left in
both seatings.

Starting from the head of the table, and going clockwise, each seating has an equivalent
sequence. |seatings| = number of permutations = n!.

n different seatings can result in the same arrangement (by clockwise rotation).

Hence, f : seatings → arrangements is an n-to-1 function. Hence, the
|seatings| = n |arrangements|, meaning that the |arrangements| = (n − 1)!.
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Questions?
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Counting subsets (Combinations)

Q: How many size-k subsets of a size-n set are there?
Example: How many ways can we select 5 books from 100?

Let us form a permutation of the n elements, and pick the first k elements to form the subset.
Every size k subset can be generated this way. There are n! total such permutations.

The order of the first k elements in the permutation does not matter in forming the subset, and
neither does the order of the remaining n − k elements.

The first k elements can be ordered in k! ways and the remaining n− k elements can be ordered
in (n − k)! ways. Using the product rule, k!× (n − k)! permutations map to the same size k

subset.

Hence, the function f : permutations → size k subsets is a k!× (n − k)!-to-1 function. By the
division rule, |permutations| = k!× (n − k)! |size k subsets|. Hence, the total number of size k

subsets = n!
k!×(n−k)! .

n choose k =
(
n
k

)
:= n!

k!×(n−k)! .
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