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Recap: Randomized Quick Select

Aim: Given an array A of n distinct numbers, return the k th smallest element in A for k ∈ [1, n].

Algorithm Randomized Quick Select
1: function QuickSelect(A, k)
2: If Length(A) = 1, return A[1].
3: Select p ∈ A uniformly at random.
4: Construct sets Left := {x ∈ A|x < p} and Right := {x ∈ A|x > p}.
5: r = |Left|+ 1 {Element p is the r th smallest element in A.}
6: if k = r then
7: return p

8: else if k < r then
9: QuickSelect(Left, k)

10: else
11: QuickSelect(Right, k − r)
12: end if
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Recap: Randomized Quick Select – Analysis

• In the worst case, Randomized Quick Select has an O(n2) runtime which is worse than the
naive strategy of sorting and returning the k th element.

• Claim: For any array A with n distinct elements, and for any k ∈ [n], Randomized Quick
Select performs fewer than 8n comparisons in expectation.

• Last time, we proved that the child sub-problem’s array (either Left or Right) after the
partitioning (in Line 4 of the algorithm) has expected size smaller than 7n

8 .
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Randomized Quick Select – Analysis

In order to upper-bound the total number of comparisons, we use the Lemma with a strong
induction on n. Recall that we need to prove that Randomized Quick Select requires fewer than
8n comparisons in expectation.

Base case: If n = 1, then we require 0 < 8(1) comparisons. Hence the base case is satisfied.

Inductive Step: Assume that for all m < n,
E[Total number of comparisons for size m array] < 8m.

E[Total number of comparisons for size n array]

= E[(n − 1) + Total number of comparisons in child sub-problem] (First step of algorithm)

= (n − 1) + E[Total number of comparisons in child sub-problem] (Linearity of expectation)

< (n − 1) + 8E[|Child|] (Induction hypothesis)

< (n − 1) + 8
7n
8

< 8n. (Lemma)

• Hence, for any k ∈ [n], on average, Randomized Quick Select requires fewer than 8n
comparisons, even though it might require O(n2) comparisons in the worst-case. 3



Questions?
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Deviation from the Mean

• We have developed tools to calculate the mean of random variables. Getting a handle on the
expectation is useful because it tell us what would happen on average.

• However, summarizing the PDF using the mean is typically not enough. We also want to know
how “spread” the distribution is.

Example: Consider three random variables W , Y and Z whose PDF’s can be given as:

W = 0 (with p = 1)

Y = −1 (with p = 1/2)

= +1 (with p = 1/2)

Z = −1000 (with p = 1/2)

= +1000 (with p = 1/2)

Though E[W ] = E[Y ] = E[Z ] = 0, these distributions are quite different. Z can take values
really far away from its expected value, while W can take only one value equal to the mean.
Hence, we want to understand how much does a random variable “deviate” from its mean.
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Deviation from the Mean

• Before we calculate the deviation of a r.v. from its mean, we need an additional definition.

• For a r.v. X : S → V and a function g : V → R, we define E[g(X )] as follows:

E[g(X )] :=
∑

x∈Range(X )

g(x) Pr[X = x ]

If g(x) = x for all x ∈ Range(X ), then E[g(X )] = E[X ].

Q: For a standard dice, if X is the r.v. corresponding to the number that comes up on the dice,
compute E[X 2] and (E[X ])2

For a standard dice, X ∼ Uniform({1, 2, 3, 4, 5, 6}) and hence,

E[X 2] =
∑

x∈{1,2,3,4,5,6}

x2 Pr[X = x ] =
1
6
[
12 + 22 + . . .+ 62] = 91

6

(E[X ])2 =

 ∑
x∈{1,2,3,4,5,6}

x Pr[X = x ]

2

=

(
1
6
[1 + 2 + . . .+ 6]

)2

=
49
4
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Variance

Definition: Variance is the standard way to measure the deviation of a r.v. from its mean.
Formally, for a r.v. X ,

Var[X ] = E[(X − E[X ])2] =
∑

x∈Range(X )

(x − µ)2 Pr[X = x ] (where µ := E[X ])

Intuitively, the variance measures the weighted (by the probability) average of how far (in
squared distance) the random variable is from its mean µ.

Q: If X ∼ Ber(p), compute Var[X ].

Since X is a Bernoulli random variable, X = 1 with probability p and X = 0 with probability
1 − p. Recall that E[X ] = µ = (0)(1 − p) + (1)(p) = p.

Var[X ] =
∑

x∈{0,1}

(x − p)2 Pr[X = x ] = (0 − p)2 Pr[X = 0] + (1 − p)2 Pr[X = 1]

= p2(1 − p) + (1 − p)2p = p(1 − p)[p + 1 − p] = p(1 − p).

• For a Bernoulli r.v. X , Var[X ] = p(1 − p) ≤ 1
4 and the variance is maximum when p = 1/2.
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Variance

Alternate definition of variance: Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2.

Proof : Var[X ] = E[(X − E[X ])2] =
∑

x∈Range(X )

(x − µ)2 Pr[X = x ]

=
∑

x∈Range(X )

(x2 − 2µx + µ2) Pr[X = x ]

=
∑

x∈Range(X )

(x2 Pr[X = x ])− (2µx Pr[X = x ]) + (µ2) Pr[X = x ]

=
∑

x∈Range(X )

x2 Pr[X = x ]− 2µ
∑

x∈Range(X )

x Pr[X = x ] + µ2
∑

x∈Range(X )

Pr[X = x ]

(Since µ is a constant does not depend on the x in the sum.)

= E[X 2]− 2µE[X ] + µ2
∑

x∈Range(X )

Pr[X = x ] (Definition of E[X ] and E[X 2])

= E[X 2]− 2µ2 + µ2 (Definition of µ)

=⇒ Var[X ] = E[X 2]− µ2 = E[X 2]− (E[X ])2. 7


