CMPT 210: Probability and Computing

Lecture 19

Sharan Vaswani

November 14, 2024

Recap: Randomized Quick Select

Aim: Given an array A of n distinct numbers, return the k^{th} smallest element in A for $k \in [1, n]$.

Algorithm Randomized Quick Select

- 1: function QuickSelect(A, k)
- 2: If Length(A) = 1, return A[1].
- 3: Select $p \in A$ uniformly at random.
- 4: Construct sets Left := $\{x \in A | x < p\}$ and Right := $\{x \in A | x > p\}$.
- 5: r = |Left| + 1 {Element p is the r^{th} smallest element in A.}
- 6: **if** k = r **then**
- 7: return p
- 8: else if k < r then
- 9: QuickSelect(Left, k)

10: **else**

```
11: QuickSelect(Right, k - r)
```

12: end if

- In the worst case, Randomized Quick Select has an $O(n^2)$ runtime which is worse than the naive strategy of sorting and returning the k^{th} element.
- **Claim**: For any array A with n distinct elements, and for any $k \in [n]$, Randomized Quick Select performs fewer than 8n comparisons in expectation.
- Last time, we proved that the child sub-problem's array (either Left or Right) after the partitioning (in Line 4 of the algorithm) has expected size smaller than $\frac{7n}{8}$.

In order to upper-bound the total number of comparisons, we use the Lemma with a strong induction on n. Recall that we need to prove that Randomized Quick Select requires fewer than 8n comparisons in expectation.

Base case: If n = 1, then we require 0 < 8(1) comparisons. Hence the base case is satisfied.

Inductive Step: Assume that for all m < n, $\mathbb{E}[\text{Total number of comparisons for size } m \text{ array}] < 8 m.$

 $\mathbb{E}[\text{Total number of comparisons for size } n \text{ array}]$

 $= \mathbb{E}[(n-1) + \text{Total number of comparisons in child sub-problem}] \quad (\text{First step of algorithm})$ $= (n-1) + \mathbb{E}[\text{Total number of comparisons in child sub-problem}] \quad (\text{Linearity of expectation})$ $< (n-1) + 8 \mathbb{E}[|\text{Child}|] \qquad (\text{Induction hypothesis})$ $< (n-1) + 8 \frac{7n}{8} < 8n. \qquad (\text{Lemma})$

• Hence, for any $k \in [n]$, on average, Randomized Quick Select requires fewer than 8n comparisons, even though it might require $O(n^2)$ comparisons in the worst-case.

Questions?

Deviation from the Mean

• We have developed tools to calculate the mean of random variables. Getting a handle on the expectation is useful because it tell us what would happen on average.

• However, summarizing the PDF using the mean is typically not enough. We also want to know how "spread" the distribution is.

Example: Consider three random variables W, Y and Z whose PDF's can be given as:

W = 0	(with $p=1$)
Y = -1	(with $p=1/2$)
=+1	(with $p=1/2$)
Z = -1000	(with $p=1/2$)
= +1000	(with $p=1/2$)

Though $\mathbb{E}[W] = \mathbb{E}[Y] = \mathbb{E}[Z] = 0$, these distributions are quite different. Z can take values really far away from its expected value, while W can take only one value equal to the mean. Hence, we want to understand how much does a random variable "deviate" from its mean.

Deviation from the Mean

- Before we calculate the deviation of a r.v. from its mean, we need an additional definition.
- For a r.v. $X : S \to V$ and a function $g : V \to \mathbb{R}$, we define $\mathbb{E}[g(X)]$ as follows:

$$\mathbb{E}[g(X)] := \sum_{x \in \mathsf{Range}(X)} g(x) \operatorname{Pr}[X = x]$$

If g(x) = x for all $x \in \text{Range}(X)$, then $\mathbb{E}[g(X)] = \mathbb{E}[X]$.

Q: For a standard dice, if X is the r.v. corresponding to the number that comes up on the dice, compute $\mathbb{E}[X^2]$ and $(\mathbb{E}[X])^2$

For a standard dice, $X \sim \text{Uniform}(\{1, 2, 3, 4, 5, 6\})$ and hence,

$$\mathbb{E}[X^2] = \sum_{x \in \{1,2,3,4,5,6\}} x^2 \Pr[X = x] = \frac{1}{6} \left[1^2 + 2^2 + \dots + 6^2 \right] = \frac{91}{6}$$
$$(\mathbb{E}[X])^2 = \left(\sum_{x \in \{1,2,3,4,5,6\}} x \Pr[X = x] \right)^2 = \left(\frac{1}{6} \left[1 + 2 + \dots + 6 \right] \right)^2 = \frac{49}{4}$$

Variance

Definition: *Variance* is the standard way to measure the deviation of a r.v. from its mean. Formally, for a r.v. X,

$$\mathsf{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x \in \mathsf{Range}(X)} (x - \mu)^2 \mathsf{Pr}[X = x] \qquad (\text{where } \mu := \mathbb{E}[X])$$

Intuitively, the variance measures the weighted (by the probability) average of how far (in squared distance) the random variable is from its mean μ .

Q: If $X \sim \text{Ber}(p)$, compute Var[X].

Since X is a Bernoulli random variable, X = 1 with probability p and X = 0 with probability 1 - p. Recall that $\mathbb{E}[X] = \mu = (0)(1 - p) + (1)(p) = p$.

$$Var[X] = \sum_{x \in \{0,1\}} (x-p)^2 \Pr[X=x] = (0-p)^2 \Pr[X=0] + (1-p)^2 \Pr[X=1]$$
$$= p^2(1-p) + (1-p)^2 p = p(1-p)[p+1-p] = p(1-p).$$

• For a Bernoulli r.v. X, $Var[X] = p(1-p) \le \frac{1}{4}$ and the variance is maximum when p = 1/2.

Variance

Alternate definition of variance: $Var[X] = \mathbb{E}[X^2] - \mu^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$. $Proof: \operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x \in [X]} (x - \mu)^2 \operatorname{Pr}[X = x]$ $x \in \mathsf{Range}(X)$ $= \sum (x^2 - 2\mu x + \mu^2) \Pr[X = x]$ $x \in \mathsf{Range}(X)$ $= \sum (x^2 \Pr[X = x]) - (2\mu x \Pr[X = x]) + (\mu^2) \Pr[X = x]$ $x \in \mathsf{Range}(X)$ $= \sum x^2 \Pr[X = x] - 2\mu \sum x \Pr[X = x] + \mu^2 \sum \Pr[X = x]$ $x \in \operatorname{Range}(X)$ $x \in \mathsf{Range}(X)$ $x \in \mathsf{Range}(X)$ (Since μ is a constant does not depend on the x in the sum.) $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 \qquad \sum \qquad \Pr[X = x] \quad (\text{Definition of } \mathbb{E}[X] \text{ and } \mathbb{E}[X^2])$ $x \in \mathsf{Range}(X)$ $= \mathbb{E}[X^2] - 2\mu^2 + \mu^2$ (Definition of μ) \implies Var[X] = $\mathbb{E}[X^2] - \mu^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

7