
CMPT 210: Probability and Computing

Lecture 18

Sharan Vaswani

November 12, 2024

Recap

Expectation: For a r.v. R, E[R] =
∑

x∈Range(R) x Pr[R = x].

Conditional Expectation: For an event A and r.v. R,
E[R|A] :=

∑
x∈Range(R) x Pr[R = x |A].

Law of Total Expectation: If R is a random variable S → V and events A1,A2, . . .An

form a partition of the sample space i.e. for all i , j , Ai ∩ Aj = ∅ and
A1 ∪ A2 ∪ . . . ∪ An = S, then, E[R] =

∑
i E[R|Ai] Pr[Ai].

Pairwise Independence: R.v’s R1,R2,R3, . . .Rn are pairwise independent iff for any pair
Ri and Rj , for all x ∈ Range(Ri) and y ∈ Range(Rj), events [Ri = x] and [Rj = y] are
pairwise independent implying that Pr[(Ri = x) ∩ (Rj = y)] = Pr[Ri = x] Pr[Rj = y].

1

Independence of random variables

• Similar to events, random variables R1,R2, . . . ,Rn are mutually independent if for all
x1 ∈ Range(R1), x2 ∈ Range(R2), . . . , xn ∈ Range(Rn), events [R1 = x1], [R2 = x2], . . . [Rn = xn]

are mutually independent.

Mutual Independence of events: A set of events is said to be mutually independent if the
probability of each event in the set is the same no matter which subset of events has occurred.
For events E1,E2 and E3 to be mutually independent, all the following equalities should hold:

Pr[E1 ∩ E2] = Pr[E1] Pr[E2] Pr[E1 ∩ E3] = Pr[E1] Pr[E3]

Pr[E2 ∩ E3] = Pr[E2] Pr[E3] Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2] Pr[E3].

Alternatively, (i) ∀i and j ̸= i , Pr[Ei |Ej] = Pr[Ei] and (ii) ∀i and j , k ̸= i , Pr[Ei |Ej ∩ Ek] = Pr[Ei].

• For 2 r.v’s R1 and R2, mutual independence and pairwise independence are equivalent.
• For more than 2 r.v’s R1,R2, . . . ,Rn, mutual independence implies pairwise independence.

2

Independence - Examples

Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat i.e. a person gets their own
coat with probability 1

n .

Q: If Gi is the indicator r.v. that person i gets their own coat, are the random variables
G1,G2, . . .Gn mutually independent? No. Since if G1 = G2 = . . .Gn−1 = 1, then,
Pr[Gn = 1|(G1 = 1 ∩ G2 = 1 ∩ . . . ∩ Gn−1 = 1)] = 1 ̸= 1

n = Pr[Gn = 1]. Conditioning on
(G1,G2, . . . ,Gn−1) changes Pr[Gn], and hence the r.v’s are not independent. Notice that we
used the linearity of expectation even though these r.v’s are not mutually independent.
Q: Are the random variables G1,G2, . . .Gn pairwise independent? Ans: No.
Pr[G1 = 1|G2 = 1] = 1

n−1 ̸= Pr[G1 = 1]

Q: What is the expected number of people who get their own coat? Let G be the number of
people that get their own coat. We wish to compute E[G]. Define Gi to be the indicator r.v.
that person i gets their own coat. Observe that G = G1 + G2 + . . .+ Gn and by linearity of
expectation E[G] = E[G1] + E[G2] + . . .+ E[Gn]. For each i , E[Gi] = Pr[Gi] =

1
n . Hence,

E[G] = 1 meaning that on average one person will correctly receive their coat. 3

Questions?

3

Max Cut

• Aim: Given a graph G = (V, E), partition the graph’s vertices into two complementary sets S
and T , such that the number of edges between the set S and the set T is as large as possible.

• Max Cut has applications to VLSI circuit design.

In this example, the set U consists of nodes colored black. |U| = 3
and |δ(U)| = 5.

Formal objective: Find a set U ⊆ V of vertices that solve the following problem:

max
U⊆V

|δ(U)| where δ(U) := {(u, v) ∈ E|u ∈ U and v /∈ U}

δ(U) is the “cut” corresponding to the set U and the aim is to find the cut with the largest size.
4

Max Cut

Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in |E|) time
algorithm that solves Max Cut exactly.
We want to find an approximate solution U such that, if OPT is the size of the optimal cut,
then, |δ(U)| ≥ αOPT where α ∈ (0, 1) is the multiplicative approximation factor.
Randomized algorithm that guarantees an approximate solution with α = 1

2 with probability
close to 1 (Erdos, 1967).
Complicated algorithm with α = 0.878. (Goemans and Williamson, 1995).
Under some technical conditions, no efficient algorithm has α > 0.878 (Khot et al, 2004).

We will use Erdos’ randomized algorithm and prove the result in expectation. We wish to prove
that for U returned by Erdos’ algorithm,

E[|δ(U)|] ≥ 1
2
OPT

Algorithm: Select U to be a random subset of V i.e. for each vertex v , choose v to be in the
set U independently with probability 1

2 (do not even look at the edges!).
5

Max Cut

Claim: For Erdos’ algorithm, E[|δ(U)|] ≥ 1
2OPT .

Proof: For each edge (u, v) ∈ E , let Xu,v be the indicator random variable equal to 1 iff (u, v)

is in the cut, i.e. the event Eu,v = {(u, v) ∈ δ(U)} happens.

E[|δ(U)|] = E

 ∑
(u,v)∈E

Xu,v

 =
∑

(u,v)∈E

E [Xu,v] =
∑

(u,v)∈E

Pr[Eu,v]

(Linearity of expectation, and Expectation of indicator r.v’s.)

Pr[Eu,v] = Pr[(u, v) ∈ δ(U)] = Pr [(u ∈ U ∩ v /∈ U) ∪ (u /∈ U ∩ v ∈ U)]
= Pr [(u ∈ U ∩ v /∈ U)] + Pr [(u /∈ U ∩ v ∈ U)] (Union rule for mutually exclusive events)

Pr[Eu,v] = Pr[u ∈ U] Pr[v /∈ U] + Pr[u /∈ U] Pr[v ∈ U] = 1
2

1
2
+

1
2

1
2
=

1
2
.

(Independent events)

=⇒ E[|δ(U)|] =
∑

(u,v)∈E

Pr[Eu,v] =
|E|
2

≥ OPT
2

.

6

Questions?

6

Randomized Quick Select

Aim: Given an array A of n distinct numbers, return the k th smallest element in A for k ∈ [1, n].

Algorithm Randomized Quick Select
1: function QuickSelect(A, k)
2: If Length(A) = 1, return A[1].
3: Select p ∈ A uniformly at random.
4: Construct sets Left := {x ∈ A|x < p} and Right := {x ∈ A|x > p}.
5: r = |Left|+ 1 {Element p is the r th smallest element in A.}
6: if k = r then
7: return p

8: else if k < r then
9: QuickSelect(Left, k)

10: else
11: QuickSelect(Right, k − r)
12: end if

7

Randomized Quick Select

Example: If A = {2, 7, 0, 1, 3} and we wish to find the 2nd smallest element meaning that k = 2.
According to the algorithm, p ∼ Uniform(A). Say p = 3.

Then after step 1, Left = {2, 0, 1} and Right = {7}. r := |Left|+ 1 = 3 + 1 = 4. Since r > k ,
we recurse on the left-hand side by calling the algorithm on {2, 0, 1} with k = 2.

p ∼ Uniform({2, 0, 1}). Say p = 1. After step 2, Left = {0} and Right = {2}.
r := |Left|+ 1 = 1 + 1 = 2. Since r = k , we terminate the recursion and return p = 1 as the
second-smallest element in A.

Q: Run the algorithm if p = 0 in the first step? Ans: Left = {} and Right = {2, 7, 1, 3}. Hence
r = 1 < k = 2. Hence we will recurse on the right-hand side by calling the algorithm on
{2, 7, 1, 3} with k = 1.

Q: Run the algorithm if p = 1 in the first step? Ans: Left = {0} and Right = {2, 7, 3}. Hence
r = 1 + 1 = 2. Hence we will return the pivot element p = 1.

8

Randomized Quick Select – Analysis

Alternate way: Sort the elements in A and return the k th element in the sorted list. Uses
O (n log(n)) comparisons.

Q: Can Randomized Quick Select do better – what is the maximum number of comparisons
required by Randomized Quick Select in the worst-case? Ans: O(n2) when k = n and the pivots
are chosen in increasing order.

• In the worst case, Randomized Quick Select is worse than the naive strategy of sorting and
returning the k th element. What about the average (over the pivot selection) case?

Claim: For any array A with n distinct elements, and for any k ∈ [n], Randomized Quick Select
performs fewer than 8n comparisons in expectation.

In order to prove this claim, we will need to prove the following lemma.

9

Randomized Quick Select – Analysis

Lemma: The child sub-problem’s array (either Left or Right) after the partitioning (in Line 4 of
the algorithm) has expected size smaller than 7n

8 .

Proof : Define a “good” event E that the randomly chosen pivot splits the array roughly in half.

Formally, if n is the length of the array, then E is the event that r ∈
(
n
4 ,

3n
4

]
(for simplicity, let us

assume that n is divisible by 4.) Since p is chosen uniformly at random, Pr[E] = 3n/4−n/4
n = 1

2 .

Recall that |Left| = r − 1 and |Right| = n − r . Hence if event E happens, then |Left| < 3n
4 and

|Right| < 3n
4 . Hence, |Child| < 3n

4 . If event E does not happen, in the worst-case, |Child| < n.
By using the law of total expectation,

E[|Child|] = E[|Child| |E] Pr[E] + E[|Child| |Ec] Pr[Ec]

<
3n
4

1
2
+ (n)

1
2
=

7n
8
.

• Hence on average, the size of the child sub-problem is smaller than 7n
8 , proving the lemma.

10

Questions?

10

