CMPT 210: Probability and Computing

Lecture 14

Sharan Vaswani

October 29, 2024

• Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R : S \to V$. A r.v partitions the sample space into several blocks.

Example: Suppose we toss three independent, unbiased coins. In this case, $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. C is a random variable equal to the number of heads that appear such that $C : S \rightarrow \{0, 1, 2, 3\}$. $C(HHT) = 2$.

• For r.v. R, for all $i \in \text{Range}(R)$, the event $[R = i] = {\omega \in S | R(\omega) = i}$. For any r.v. R, $\sum_{i \in \text{Range}(R)} \Pr[R = i] = 1.$

Example: $[C = 2] = \{HHT, HTH, THH\}$ and $Pr[C = 2] = \frac{3}{8}$. $\sum_{i \in \mathsf{Range}(\mathsf{C})} \mathsf{Pr}[\mathsf{C}=i] = \mathsf{Pr}[\mathsf{C}=0] + \mathsf{Pr}[\mathsf{C}=1] + \mathsf{Pr}[\mathsf{C}=2] + \mathsf{Pr}[\mathsf{C}=3] = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1.$

Recap

• Indicator Random Variable: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_E and is defined such that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$.

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then $\mathcal{I}_F((2, 4)) = 0$ and $\mathcal{I}_F((2, 3)) = 1$.

• Probability density function (PDF): Let R be a r.v. with codomain V. The probability density function of R is the function PDF_R : $V \rightarrow [0, 1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in \text{Range}(R)$ and equal to zero if $x \notin \text{Range}(R)$.

• Cumulative distribution function (CDF) : The cumulative distribution function of R is the function $CDF_R : \mathbb{R} \to [0, 1]$, such that $CDF_R[x] = Pr[R \le x]$.

Importantly, neither PDF_R nor CDF_R involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then $\mathsf{PDF}_{C}[0] = \mathsf{Pr}[C = 0] = \frac{1}{8}$, and $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] = \frac{7}{8}.$

Distributions

Many random variables turn out to have the same PDF and CDF. In other words, even though R and T might be different random variables on different probability spaces, it is often the case that PDF_R = PDF_T. Hence, by studying the properties of such PDFs, we can study different random variables and experiments.

• Distribution over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is denoted by f.

- Common Discrete Distributions in Computer Science:
	- **•** Bernoulli Distribution
	- **a** Uniform Distribution
	- **Binomial Distribution**
	- **•** Geometric Distribution

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p . Let R be the random variable such that $R = 1$ when the coin comes up heads and $R = 0$ if the coin comes up tails. R follows the Bernoulli distribution.

PDF_R for Bernoulli distribution: $f: \{0, 1\} \rightarrow [0, 1]$ meaning that Bernoulli random variables take values in $\{0, 1\}$. It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF_R is given by:

$$
f(1) = p \quad ; \quad f(0) = q := 1 - p.
$$

In the example, $Pr[R = 1] = f(1) = p = Pr[$ event that we get a heads].

CDF_R for Bernoulli distribution: $F : \mathbb{R} \to [0,1]$:

$$
F(x) = 0
$$
 (for $x < 0$)

$$
= 1 \qquad n \qquad \text{(for } 0 < x < 1)
$$

$$
= 1 - p \qquad \qquad \text{(for } 0 \le x < 1\text{)}
$$
\n
$$
= 1 \qquad \qquad \text{(for } x \ge 1\text{)}
$$

Uniform Distribution

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

PDF_R for Uniform distribution: $f: V \to [0, 1]$ such that for all $v \in V$, $f(v) = 1/|V|$. In the example, $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$.

 CDF_R for Uniform distribution: For *n* elements in V arranged in increasing order – (v_1, v_2, \ldots, v_n) , the CDF is:

$$
F(x) = 0
$$
 (for $x < v_1$)
= $\frac{k}{n}$ (for $v_k \le x < v_{k+1}$)
= 1 (for $x \ge v_n$)

Q: If X has a Bernoulli distribution, when is X also uniform? Ans: When $p = 1/2$

Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p . Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution: $f : \{0, 1, 2, \ldots, n\} \rightarrow [0, 1]$. For $k \in \{0, 1, \ldots, n\}$, $f(k) = {n \choose k} p^k (1-p)^{n-k}.$

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$
E_{k} = (A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup (A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup \dots
$$

\n
$$
Pr[E_{k}] = Pr[(A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c})] + Pr[A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap \dots \cap] + \dots
$$

\n
$$
= Pr[A_{1}] Pr[A_{2}] Pr[A_{k}] Pr[A_{k+1}^{c}] Pr[A_{k+2}^{c}] \dots Pr[A_{n}^{c}] + \dots \text{ (Independence of tosses)}
$$

\n
$$
= p^{k}(1-p)^{n-k} + p^{k}(1-p)^{n-k} + \dots
$$

\n
$$
\implies Pr[E_{k}] = {n \choose k} p^{k}(1-p)^{n-k}
$$

(Number of terms = number of ways to choose the k tosses that result in heads = $\binom{n}{k}$)

For the Binomial distribution, $PDF_R(k) = {n \choose k} p^k (1-p)^{n-k}$.

Q: Prove that $\sum_{k\in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_{R}[k] = 1.$ By the Binomial Theorem, $\sum_{k\in \text{Range}(R)}\text{PDF}_R[k] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1.$

CDF_R for Binomial distribution: $F : \mathbb{R} \to [0,1]$:

$$
F(x) = 0
$$
\n
$$
= \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}
$$
\n
$$
= 1.
$$
\n(for $k \leq x < k+1$)

\n(for $k \leq x < k+1$)

\n(for $x \geq n$)

Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p . Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution: $f: \{1, 2, ...\} \rightarrow [0, 1]$. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1-p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

 $E_k = A_1^c \cap A_2^c \cap \ldots \cap A_k$ $Pr[E_k] = Pr[A_1^c \cap A_2^c \cap ... \cap A_k] = Pr[A_1^c] Pr[A_2^c] ... Pr[A_k]$ (Independence of tosses) $\implies \mathsf{Pr}[E_k] = (1-p)^{k-1}p$

Q: Prove that $\sum_{k \in \text{Range(R)}} \mathsf{PDF}_R[k] = 1.$ By the sum of geometric series, $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = \sum_{k=1}^{\infty} (1-p)^{k-1}p = \frac{p}{1-(1-p)} = 1$. For the Geometric distribution, $\mathsf{PDF}_R(k) = (1-p)^{k-1}p$.

CDF_R for Geometric distribution: $F : \mathbb{R} \to [0,1]$:

$$
F(x) = 0
$$
 (for $x < 1$)
=
$$
\sum_{i=1}^{k} (1-p)^{i-1} p
$$
 (for $k \le x < k+1$)

Questions?

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if there is more than 1 defective disk). What proportion of packages is returned?

Let X be the random variable corresponding to the number of defective disks in a package. Let E be the event that the package is returned. We wish to compute $Pr[E] = Pr[X > 1]$. X follows the Binomial distribution Bin(10, 0.01). Hence,

$$
Pr[E] = Pr[X > 1] = 1 - Pr[X \le 1] = 1 - Pr[X = 0] - Pr[X = 1]
$$

$$
= 1 - {10 \choose 0} (0.99)^{10} - {10 \choose 1} (0.99)^{9} (0.01)^{1} \approx 0.005
$$