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e Random variable: A random “variable” R on a probability space is a total function whose
domain is the sample space S. The codomain is denoted by V (usually a subset of the real
numbers), meaning that R : & — V. A r.v partitions the sample space into several blocks.

Example: Suppose we toss three independent, unbiased coins. In this case,
S ={HHH,HHT ,HTH, HTT, THH, THT, TTH, TTT}. C is a random variable equal to the
number of heads that appear such that C : § — {0,1,2,3}. C(HHT) =2.

e For r.v. R, for all i € Range(R), the event [R = i] = {w € S|R(w) = i}. For any r.v. R,
ZieRange(R) PrlR=1i]=1.

Example: [C = 2] = {HHT ,HTH, THH} and Pr[C = 2] = 3.

Y icRange(q) PIIC =11 =Pr[C =0+ Pr[C =1] + Pr[C =2] + Pr[C=3] =t + 3+ 3+ ¢ =L



e Indicator Random Variable: An indicator random variable corresponding to an event E is
denoted as Z¢ and is defined such that for w € E, Zg[w] = 1 and for w ¢ E, Zg[w] = 0.

Example: When throwing two dice, if E is the event that both throws of the dice result in a
prime number, then Zg((2,4)) = 0 and Zg((2,3)) = 1.

e Probability density function (PDF): Let R be a r.v. with codomain V. The probability
density function of R is the function PDFg : V — [0, 1], such that PDFg[x] = Pr[R = x] if
x € Range(R) and equal to zero if x ¢ Range(R).

e Cumulative distribution function (CDF): The cumulative distribution function of R is the
function CDFg : R — [0, 1], such that CDFg[x] = Pr[R < x].

Importantly, neither PDFr nor CDFg involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then
PDF¢[0] = Pr[C =0] = %, and

CDFc[2.3] = Pr[C <23] =Pr[C =0]+ Pr[C = 1]+ Pr[C =2] = %.



Distributions

Many random variables turn out to have the same PDF and CDF. In other words, even though R
and T might be different random variables on different probability spaces, it is often the case
that PDFr = PDF . Hence, by studying the properties of such PDFs, we can study different
random variables and experiments.

e Distribution over a random variable can be fully specified using the cumulative distribution
function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is
denoted by f.

e Common Discrete Distributions in Computer Science:

@ Bernoulli Distribution
@ Uniform Distribution
@ Binomial Distribution

@ Geometric Distribution



Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let
R be the random variable such that R = 1 when the coin comes up heads and R = 0 if the coin
comes up tails. R follows the Bernoulli distribution.

PDF for Bernoulli distribution: f: {0,1} — [0, 1] meaning that Bernoulli random variables
take values in {0,1}. It can be fully specified by the “probability of success’ (of an experiment)
p (probability of getting a heads in the example). Formally, PDF is given by:

fl)=p ; f(0)=qg:=1-p.
In the example, Pr[R = 1] = f(1) = p = Pr[event that we get a heads].
CDFk for Bernoulli distribution: F : R — [0, 1]:

F(x)=0 (for x < 0)
=1-p (for 0 < x < 1)
=i (for x >1)



Uniform Distribution

Canonical Example: We roll a standard die. Let R be the random variable equal to the number
that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same
probability is said to be uniform.

PDFg for Uniform distribution: f : V — [0, 1] such that for all v € V, f(v) = 1/|v|. In the
example, f(1) = f(2) =... = f(6) = %.

CDFg for Uniform distribution: For n elements in V arranged in increasing order —
(vi,va,...,V,), the CDF is:

F(x)=0 (for x < wvq)
= k/n (for vie < x < vik41)
= (for x > v,)

Q: If X has a Bernoulli distribution, when is X also uniform? Ans: When p =1/2



Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for
each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses.
R follows the Binomial distribution.
PDF for Binomial distribution: : {0,1,2,...,n} — [0,1]. For k € {0,1,...,n},
F(k) = (0)p (1 — p)*.
Proof: Let Ex be the event we get k heads. Let A; be the event we get a heads in toss /.
Ec=(AiNA.. . AANAL LI NALLN...NANDUATNA. .. AN A1 NA LN .NA)U ...
PriEx] =Pri(AiNAz.. . AcN A1 NAL LN NAD) +PIAT N A Ak N A NN+
= Pr[A1] Pr[A2] Pr[A] Pr[Ag 1] PrlAL o] . PrlA7] + . .. (Independence of tosses)
=p (L—p)"F+p 1 —-p)F+ ...

= Pr[E] = (Z) ) s

(Number of terms = number of ways to choose the k tosses that result in heads = (7))



Binomial Distribution

For the Binomial distribution, PDFg(k) = (})p*(1 — p)"~X. forsh)

Q: Prove that ~, range(r) PDFR[K] = 1.
By the Binomial Theorem, 3=, r.nge(r) PDFRIKl = 200 (1) P*(1—p)" * = (p+1-p)" = L.

CDFg for Binomial distribution: F: R — [0, 1]:

F(x)=0 (for x < 0)
“ /n
:Z(I_>pi(1—p)”_i (for k < x < k+1)
i=0
= (forx>n)



Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of
getting a heads is p. Let R be the random variable equal to the number of tosses needed to get
the first heads. R follows the geometric distribution.
PDFy for Geometric distribution: f : {1,2,...} —[0,1]. For k € {1,2,..., 00},
F(K) = (1- ) p.
Proof: Let Ex be the event that we need k tosses to get the first heads. Let A; be the event
that we get a heads in toss i.
Ex =AINASN...N Ak
Pr[Ex] = Pr[Af N A5 N ... N Ax] = Pr[A7] Pr[AS] ... Pr[A] (Independence of tosses)
— PrlE] = (1—p)p

Q: Prove that }, crange(r) PDFR[K] = 1.

By the sum of geometric series, 3°, crange(r) PDFRIK] = Yoo (1= p)kt =1.

pP= 1—([13—/3)



Geometric Distribution

For the Geometric distribution, PDFg(k) = (1 — p)<~1p.

CDFk for Geometric distribution: F : R — [0, 1]:

F(x)

o p=0.2 |
e p=0.5
o p=0.8

(for x < 1)

(for k <x < k+1)



Questions?



Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01
independently of each other. The company sells the disks in packages of 10 and offers a
money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if
there is more than 1 defective disk). What proportion of packages is returned?

Let X be the random variable corresponding to the number of defective disks in a package. Let
E be the event that the package is returned. We wish to compute Pr[E] = Pr[X > 1]. X follows
the Binomial distribution Bin(10,0.01). Hence,

PrlE]=Pr[X >1]=1—-Pr[X <1]=1-Pr[X =0] - Pr[X =1]

=1-— (100)(0.99)10 = (110)(0.99)9(0.01)1 ~ 0.005

10



